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with VTR. Finally, the placement and routing engines have beeenbeen sped up by 4x and 2.2x vs. VIR §,
respectively, leading to an overall physical implementation flow CPU time reduction of 48% with better result
quality on average compared to VIR 8.
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1 Introduction

For many years, the performance of computing platforms improved from one generation to the
next mainly by fabricating smaller, faster, and cheaper transistors following the trend predicted by
Moore’s Law [1]. More recently, the gains of process scaling have diminished due to fundamental
challenges in manufacturing technologies and chip power dissipation as transistor dimensions
approach the scale of a few silicon atoms [2]. On the other hand, there is increasing demand for
higher compute performance due to the tremendous amount of data generated by mobile devices
and the adoption of compute-intensive Deep Learning (DL) algorithms in numerous applica-
tion domains both at the edge and in large-scale datacenters. As a result, specialized computing
architectures are being widely deployed in production to deliver the required performance of
critical high-demand applications [3, 4]. However, the design, manufacturing, testing, and de-
ployment cycle of specialized Application-Specific Integrated Circuit (ASIC) chips is very
costly and time consuming, making them suitable only for the largest markets or relatively stable
applications.

Field-Programmable Gate Arrays (FPGAs) enable the implementation of specialized hardware
at a fraction of the development time and cost of ASIC chips due to their hardware reconfigurability
and diverse pre-fabricated high-speed external interfaces. A designer can describe any custom
processing pipeline in a Hardware Description Language (HDL) (e.g., Verilog or VHDL), which
is then synthesized, placed, and routed using a complex Computer-Aided Design (CAD) flow to
generate a configuration bitstream that is used to program an off-the-shelf FPGA to implement
the desired functionality. The FPGA can then be reconfigured in-field to implement a different
functionality in hardware as the application design evolves over time. FPGAs have been deployed
as datacenter accelerators [5, 6] and used to build custom processing pipelines for a wide variety
of applications such as wireless communications [7], networking infrastructure [8-10], high-
frequency trading [11], DL inference [12-14], genomics [15], and biophotonic cancer treatment
simulation [16].

Over the past three decades, FPGAs have been growing in size and complexity to enhance
their efficiency across a diverse range of application domains [17]. For example, the AMD Versal
Premium devices contain up to 18.5 million logic cells [18] and recent devices from Intel embed
specialized tensor cores in the FPGA fabric to significantly enhance their arithmetic density for DL
applications [19]. The continuous growth in size and complexity of modern FPGA architectures
and the application designs implemented on them requires continuous algorithmic innovation to
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develop scalable CAD tools that can achieve high Quality of Results (QoR) while maintaining
reasonable bitstream compilation runtime. Additionally, CAD tools are also essential for quantita-
tively evaluating new FPGA architectural ideas. This requires a flexible and data-driven flow that
accepts as an input not only the application designs to be mapped to an FPGA but also a detailed
description of the target FPGA architecture. Such a flexible flow enables architects to experiment
with novel ideas on both the architecture (e.g., organization of existing FPGA components [20, 21]
or new embedded hard blocks [22, 23]) and microarchitecture levels (e.g., new Logic Blocks [LBs]
[24, 25] or alternative circuit-level implementations of routing multiplexers [26]), and then compare
different ideas based on application design implementation quality metrics such as Critical Path
Delay (CPD), routed Wirelength (WL), and resource utilization.

While commercial closed-source FPGA CAD tools such as the Intel Quartus and AMD Vivado
suites are continuously evolving to improve scalability and implementation QoR, they cannot
be used for architecture exploration since they can only map designs to a pre-defined set of
vendor-specific FPGA families. To this end, the open source Verilog-to-Routing (VTR) project
was originally introduced and has been continuously evolving over the past 20+ years to enable
FPGA architecture and CAD research via a highly flexible data-driven tool flow [27-29]. VTR
takes as an input a human-readable description of a proposed FPGA architecture and produces
physical (i.e., synthesized, placed, and routed) implementations of input designs on the described
architecture with their corresponding estimates of the timing, area, and power consumption. This
article presents the new VTR features and enhancements included in its latest release, VIR 9, to
improve all three aspects of the tool flow: scalability, QoR, and modeling flexibility. Although some
of these enhancements were previously introduced as independent contributions [30-36] and others
are new additions to the flow, the main goal of this article is to describe how all these different
efforts from tens of developers and multiple research institutes fit together in the broader picture
of the VIR project, and provide a new baseline release for future research studies to compare to.
The highlights of new VTR 9 features that we cover in this article are:

—New architecture modeling capabilities to capture recent commercial features such as embed-
ded hard Networks-on-Chip (NoCs) and future architecture possibilities such as 3D-stacked
FPGA fabrics.

— Architecture approximations of Intel’s Stratix 10 and AMD series-7 FPGA fabrics to provide
recent-generation baselines for researchers to build upon and enable approximate comparisons
between VTR and commercial CAD tools on similar architectures.

— A new frontend flow, Parmys, which adds architecture awareness to Yosys [37] and improves
automatic inference of hard blocks.

—Substantial enhancements to the VTR backend to optimize the overall generality, QoR, and
runtime of the packing, placement, and routing stages.

—Multiple new benchmark suites to drive architecture and CAD studies using VIR such as the
Koios suite for DL-specific designs, new Titan benchmarks targeting Stratix 10 commercial
devices, and NoC-based benchmarks.

This article is organized as follows. First, Section 2 reviews related work, and Section 3 gives a
high-level overview of the VIR flow. Then, Section 4 details the enhancements to VIR’s
architecture modeling capabilities, Section 5 introduces VTR-compatible benchmark suites, and
Section 6 describes two new architecture captures of modern commercial FPGAs. Sections 7 and 8
summarize the enhancements to the VIR logic synthesis and physical implementation flows,
respectively, while Section 9 covers developer-focused utilities and software engineering improve-
ments. Section 10 provides a detailed evaluation of the VIR 9 CAD flow, offering an in-depth
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analysis of its performance and capabilities. Finally, conclusions and future work are presented in
Sections 11 and 12, respectively.

2 Related Work

FPGA users implement application designs and generate the programming bitstream files for their
FPGA devices using vendor-supplied closed-source CAD tools such as Quartus from Intel/Altera
and Vivado from AMD/Xilinx. However, to enable researchers to evaluate new CAD algorithms,
some FPGA vendors have defined and documented interfaces that facilitate the integration of
research prototypes of certain stages of the design flow into the commercial tool flows. The now-
legacy AMD/Xilinx Integrated Software Environment flow allowed users to access intermediate
implementation results through the Xilinx Design Language (XDL) [38]. Torc [39] and RapidSmith
IT [40] leveraged XDL to introduce an open source C++ infrastructure for FPGA CAD research.
Building upon this paradigm, RapidWright [41] adopted similar techniques for reading/writing
of partial implementation results from/to different stages of Xilinx’s modern Vivado CAD flow,
enabling selective customization of specific implementation steps within the overall design flow.
Intel/Altera documented interfaces in the Quartus University Interface Program for devices up
to the Stratix III generation to allow users to access architecture/timing information and read
and write technology mapping, placement, and routing results. However, these interfaces are not
documented for more recent devices [42].

Although these interfaces provide valuable support to the research community, they have two
limitations. Firstly, as they interface a research prototype implementation of a specific stage of
the flow with closed-source implementations of other stages, they cannot be used to evaluate
CAD algorithms that require (even minor) modifications to other parts of the flow. Secondly, they
exclusively target existing commercial devices and thus do not allow the exploration of new FPGA
architectures. Some vendors have internal tools to architect their next-generation devices like the
Intel/Altera FPGA modeling toolkit [43], but these tools are proprietary and inaccessible by external
researchers.

Several open source FPGA CAD tools have been developed to bridge these gaps. Independence
[44] is a place and route tool developed to enable evaluation of new FPGA architectures; however,
it’s extremely long runtime limits its use to only small benchmarks. Nextpnr is a placement
and routing tool that can target the Lattice iCE40, ECP5, and Nexus families; in combination
with Yosys for logic synthesis, it enables an open source design implementation flow for these
devices [45].

VTR [29] is an open source FPGA tool flow that has been widely used to explore different FPGA
architectures and prototype new CAD algorithms; in recent years it has also been used as the design
implementation/programming flow for both commercial and research FPGA devices. VIR’s ability
to model and target a wide variety of FPGA architectures makes it a common choice for exploring
and evaluating new FPGA architectural ideas. For example, Eldafrawy et al. [25] use VIR to
evaluate several LB architectural enhancements that increase the density of low-precision multiply-
accumulate operations in the programmable fabric. Arora et al. [23] introduce new hard blocks for
the tensor computations common in DL applications and use VTR to evaluate their effect on the
resource utilization, routed WL, and maximum operating frequency of DL and non-DL benchmarks.
Arora et al. [46] also use VTR to evaluate adding in-memory compute capabilities to FPGA BRAMs.
Numerous works use VTR to explore programmable routing architecture enhancements, including
direct inter-block connections [47], highly routable switch patterns [48, 49], diagonal wires [50],
and capacitance-minimizing switch patterns [51].

Since VTR provides a complete open source FPGA CAD flow, it is also a popular framework in
which new algorithms can be integrated and evaluated. For example, MULTIPART [52] proposes a
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Fig. 1. Summary of the FPGA CAD tool features.

packing technique that combines seed-based and partitioning-based approaches. Elgammal et al.
[53] introduce a reclustering API that allows changing the packing decisions in later stages of the
flow. The authors of [54] apply machine learning to predict FPGA routing success, using a mix of
binary classifiers and linear regressors. Chen et al. [55] create hooks between VIR and the OpenAl
Gym framework to enable fine-grained interaction between CAD algorithms and Reinforcement
Learning (RL) libraries. Other works use VTR to evaluate security threats and mitigations in open
source CAD toolchains [56, 57].

VTR is also used as the implementation CAD flow for fabricated FPGA architectures. For example,
the SymbiFlow project [58] compiles designs to configuration bitstreams for Xilinx’s 7-series
commercial FPGAs using Yosys [37] for logic synthesis and VIR for physical implementation
(packing, placement, and routing). The QuickLogic Open Reconfigurable Computing CAD flow
similarly uses Yosys for logic synthesis and VTR for physical implementation targeting their FPGAs.
VTR is a part of the OpenFPGA [59] framework which automates the design, verification, and
layout generation of user-specified FPGA architectures. OpenFPGA is now the main software
tool chain used by multiple startups such as RapidSilicon and RapidFlex; the VTR architecture
description drives the OpenFPGA layout generator, and the VTR CAD flow is used to implement
designs in the fabricated FPGAs. VTR is also used in several research flows that synthesize custom
standard-cell-based FPGA fabrics [60-64]. As summarized in Figure 1, VTR is the only open source
flow that targets all these different FPGA CAD flow use cases.

Given the diverse applications of VIR and the large number of studies and products based on it,
enhancements to its flexibility, result quality, and software engineering are all important.

3 Overall Flow

Figure 2 illustrates the overall flow of VTR 9, with the components upgraded or newly introduced
in this release highlighted in red. The flow is segmented into two main stages: logic synthesis
and physical implementation. The logic synthesis stage converts a digital circuit described in a
HDL into a technology-mapped netlist composed of the basic resources (primitives) available in
the target FPGA such as Lookup Tables (LUTs), Flip-Flops (FFs), and one-bit wide RAM slices.
VTR 9 enhances the two logic synthesis flows (Odin/ABC and Titan) from prior releases and
introduces a third flow (Parmys). The first flow, which was the default for VTR 8, uses Odin II
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Fig. 2. Overview of the VTR 9 CAD flow. The components highlighted in red are updated in the new VTR
release compared to prior versions and the default flow is highlighted in green.

for synthesis and ABC for technology mapping; in VIR 9, Odin II is enhanced to provide richer
Verilog language support. Alternatively, the Titan flow uses the Intel/Altera Quartus frontend
for synthesis and the VQM2BLIF utility to convert Quartus synthesis output to the BLIF format
which can be consumed by the rest of the VIR flow. In previous VIR versions, the Titan flow
only supported Intel’s Stratix IV family, which is now only supported in older Quartus versions. In
VTR 9, we provide an architecture capture of Stratix 10 (Section 6.1) and upgrade the VQM2BLIF
utility to support Stratix 10 FPGAs and the latest Quartus Prime Pro versions. Additionally, we
introduce the new Parmys logic synthesis flow (Section 7) that integrates Yosys with VIR and
extends it by adding two new passes, Parmys_arch and Parmys, to combine Odin’s architecture
awareness with the richer language support of Yosys. This is the default logic synthesis flow of
VTR 9.

The physical implementation stage in VIR 9 consists of three major components. Packing
chooses how the primitive blocks in the technology-mapped netlist produced by logic synthesis
are grouped into coarser-granularity blocks (i.e., clusters) to simplify the placement and routing
problems. For example, LUTs and FFs are grouped into LBs while RAM slices are grouped into
Block RAMs (BRAMs). Placement then chooses the locations of clustered primitives on the
grid of available tiles in the target FPGA such that the placement is legal (i.e., no two primitives
are mapped to the same location and all primitives are mapped to the correct tile types) and the
estimated WL and delay of the programmable interconnect used to implement all the inter-block
connections are minimized. Finally, the routing stage chooses the exact programmable routing wires
and switches for the connections between placed clustered primitives to minimize the overall WL
and CPD.
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This release provides major updates in each of these physical implementation flow steps. VIR 9’s
placement engine reduces runtime by combining a higher-quality initial placement (Section 8.1),
several intelligent placement perturbations (Section 8.2), and a RL agent for adaptive and smart
perturbation selection throughout the Simulated Annealing (SA) process (Section 8.3). The
placement engine now optimizes not only traditional programmable fabric quality metrics but also
NoC usage (Section 8.4). VIR 9 also allows users to define placement floorplanning constraints
(Section 8.5), enabling both user-guided optimization and experimentation with divide-and-conquer
physical implementation flows. In the routing step, VIR 9 enhances its state-of-the-art Adaptive
Incremental Router (AIR) router [65] by introducing two major features: parallel routing and flat
routing. Firstly, it can route the entire path between primitive pins in a single step (Section 8.7) to
improve the QoR compared to the separate inter- and intra-cluster routing steps in the prior VIR
versions. Secondly, it can now route multiple nets or portions of nets in parallel to reduce CPU
time (Section 8.8). In addition, VTR 9 also extends the XML FPGA architecture description format
to enable the modeling of modern commercial programmable routing fabrics (Sections 6.1 and 6.2),
architectures with hardened packet-switched NoCs (Section 4.1), and 3D-stacked reconfigurable
devices (Section 4.2).

Collectively, the VIR 9 enhancements allow more faithful captures of commercial FPGA archi-
tectures, enable exploration of new architecture features along with their CAD support, reduce the
flow’s runtime, and improve its QoR.

4 Architecture Modeling

In this VTR release, we extend VIR’s XML architecture description language to enable exploration of
new FPGA architectural features and their CAD support. For background on key FPGA architecture
components and how they are modeled in VTR we refer interested readers to [17] and [66],
respectively. The following subsections describe extensions which add support for hard packet-
switched NoCs, 3D-stacked reconfigurable fabrics, different per-direction compositions of routing
wire types, and complex wire shapes (e.g., L-shaped interconnect).

4.1 Hard NoCs

As FPGA devices continue to grow in capacity and complexity, it is becoming more challenging to
close timing on the large number of modules communicating with each other and with various
high-speed external interfaces (e.g., Ethernet, PCle, high-bandwidth memories). Typically, an
FPGA designer needs to implement and optimize system-wide communication busses, which
requires several time-consuming design iterations and consumes a significant amount of the FPGA’s
programmable routing and registers. To face these challenges, recent commercial FPGAs from
Xilinx [67], Achronix [68], and Intel [69] have introduced hard packet-switched NoCs embedded in
their programmable fabric. These NoCs provide efficient system-level communication and facilitate
timing closure. They can also enable faster FPGA implementation flows, in which different modules
can be compiled in parallel and then stitched together using the system-wide NoC.

FPGA designs implemented on devices with embedded hard packet-switched NoCs contain
modules connected to each other using the traditional programmable routing and others commu-
nicating by exchanging packets over the NoC, as illustrated in Figure 3. The circuit netlist contains
not only the conventional primitives (such as LBs, RAM blocks) but also logical routers connected
to the design modules that are sending and receiving packets over the NoC. During placement, the
CAD tools are responsible for mapping these logical routers to physical routers at specific locations
in the FPGA fabric to co-optimize conventional circuit metrics (e.g., CPD and WL) and NoC metrics
(e.g., latency and aggregate bandwidth).
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1 <!-- Description of a 3x3 mesh NoC-->

2 <noc link_bandwidth="128e9" router_latency="1e-9" link_latency="1e-9" noc_router_tile_name=
3 "noc_router_adapter">

4 <topology>

5 <router id="0" positionx="0" positiony="@" connections="1 3"/>

6 <router id="1" positionx="5" positiony="@" connections="0 2 4"/>

7 <router id="2" positionx="10" positiony="0" connections="1 5"/>

8 <router id="3" positionx="0" positiony="5" connections="0 4 6"/>

9 <router id="4" positionx="5" positiony="5" connections="1 3 5 7"/>
10 <router id="5" positionx="10" positiony="5" connections="2 4 8"/>
11 <router id="6" positionx="@" positiony="10" connections="3 7"/>

12 <router id="7" positionx="5" positiony="10" connections="6 8 4"/>
13 <router id="8" positionx="10" positiony="10" connections="7 5"/>
14 </topology>

15 </noc>

Listing 1. A snippet from a VTR architecture description file specifying a simple 3 X 3 mesh NoC.

<— Netlist connection Q User module (IP)
— Communication over NoC ] Logical NoC router

M3
ENEEEE
Logical . . Design
Representation Design Netlist Implementation

Fig. 3. Overview of the NoC placement optimization problem.

4.1.1  Flexible NoC Description. To enable architecture exploration of NoC-enhanced FPGAs in
VTR 9, we extend the XML-based architecture description language to allow users to describe FPGA
fabrics with embedded NoCs that have arbitrary topologies and specifications. Listing 1 shows
an example architecture description file snippet that defines a simple 3 X 3 mesh NoC. The new
<noc> tag can be used to specify general NoC specifications such as link bandwidth (in bits/s) and
link/router latencies (in seconds). Then, the user can describe any custom NoC topology using the
<topology> tag by listing all the NoC routers, their locations within the FPGA grid, and the IDs of
the other routers they are connected to. This format enables specification of arbitrary topologies; for
example, Figure 4 from the VIR GUI depicts an example NoC topology that resembles a simplified
version of the AMD/Xilinx Versal NoC [67].

4.1.2  Traffic Flows Input File. For the VTR placement engine to also optimize NoC-related metrics
such as latency and aggregate bandwidth, it requires a new design component: a description of the
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VPR: Versatile Place and Route for FPGAS.

Fig. 4. VTR GUI showing an FPGA grid that contains a custom AMD-Versal-like NoC topology.

<traffic_flows>

<single_flow src="m@" dst="m1" bandwidth="23e9" latency_cons="3e-9"/>

<single_flow src="m@" dst="m2" bandwidth="50e8"/>

<single_flow src="ddr" dst="m@" bandwidth="128e9" priority="3"/>

<single_flow src="pcie" dst="m2" bandwidth="48e9" latency_cons="5e-9" priority="2"/>
</traffic_flows>

(=R R TR R

Listing 2. An example description of application design traffic flows.

application traffic expected to flow between different NoC endpoints. Thus, we add a new XML user
input file to VTR that lists the source and destination router IDs and the bandwidth requirement
for each of the NoC traffic flows as shown in Listing 2. Users can also optionally specify a priority
and/or a latency constraint for a flow. A higher priority value for a specific traffic flow corresponds
to a higher weight in the placement optimization cost function.

Section 8.4 details how VIR’s placement optimization engine has been enhanced to leverage this
architecture and design information to optimize NoC usage.

4.2 3D-Stacked Architectures

Recent advancements in chip packaging (e.g., Intel’s Foveros [70] and TSMC’s SoIC [71]) have
enabled the 3D stacking of active dice on top of each other. This new technology has been employed
in some GPU systems such as Intel’s Ponte Vecchio and AMD’s MI300 and some CPU systems such
as Ryzen processors that contain a 3D V-Cache [72]. Future FPGAs could benefit from homogeneous
stacking of multiple FPGA fabrics to increase logic capacity, or heterogeneous stacking of different
dice such as an FPGA fabric with an ASIC application-specific accelerator die. While FPGAs were
early adopters of 2.5D interposer-based integration [73], FPGA vendors have not yet utilized 3D die
stacking technology, except for memory stacking in high bandwidth memory. 3D stacking enables
higher interconnect bandwidth and lower delay between dice than 2.5D integration, making it
attractive for future reconfigurable systems, but architecture exploration tools are needed to study
how to best exploit it. Prior research by Ababei [74] augmented an older version of VIR with
partitioning and 3D-awareness so it could evaluate homogeneous stacks of identical fabric dice.
However, it could not evaluate the more general case of heterogeneous stacks in which each die
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<!--FPGA on top of NoC die without programmable routing-->
<layout name="3d_heterogeneous_fpga" height="4" width="4">
<layer die="0" has_prog_routing="false">
<fill type="noc_die@">
</layer>
6 <layer die="1">
7 <fill type="fabric_diel">
s </layer>
9 </layout>
10 <!--NoC router on layer @ connects to layer 1-->
11 <tile>
12 <sub_tile name="noc">
13 <pinlocations pattern="custom">

[% R N T R

14 <loc layer_offset="1">noc.tdatal[128:0]</loc>
15 </pinlocations>

16 </subtile>

17 </tile>

Listing 3. Sample XML representation of a 3D FPGA configuration. The lower die contains NoCs, and the
upper die hosts the FPGA fabric.

can have different resource types and distributions. This earlier work was also not incorporated
into the VTR master branch; it is neither available online nor compatible with recent VIR versions.

VTR 9 fills this gap by extending the architecture description file to define 3D architectures and
enhancing the placement and routing engines to exploit the flexibility provided by 3D devices
[31]. We extend the VTR architecture description language so that it now can describe a stack of
dice in which each die has its own layout (i.e., grid) of available resources; this allows modeling
of an arbitrary homogeneous or heterogeneous stack of dice. The architecture file also allows the
user to define arbitrary connectivity between the different layers. For each block type, some or all
of its inputs and outputs can have programmable switches connecting them to routing wires on
other dice. In addition, custom Switch Blocks (SBs) can be specified to create arbitrary 3D switch
patterns in which some programmable routing switches allow inter-die crossings between routing
wires. For example, Listing 3 illustrates a portion of an XML file that describes a 3D architecture
with two dice using the <layer> tags. In this example, an FPGA fabric is stacked on top of a die
that contains a NoC. The pins of NoC blocks located on the lower die (die#0) can connect to the
programmable routing wires of the FPGA fabric on the upper die (die#1).

4.3 Heterogeneous Programmable Routing

In many commercial architectures both the channel width and the wire segment types in the
horizontal and vertical directions are different for a variety of reasons, such as different metal layer
usage or layout efficiency. For example, the horizontal channel width in Stratix 10 devices is nearly
twice that of the vertical channels. Stratix 10 uses a redundant row repair scheme that requires
extra (redundant) connections on vertical wires such that broken rows can be skipped without
recompiling a design; this makes vertical wiring more expensive, motivating wider horizontal
channels and narrower vertical ones. Another common reason for differing channel widths is that
the ratio of rows to columns is often not 1:1 due to the layout aspect ratio of the FPGA tiles. In
Stratix 10, for example, the LB is roughly twice as tall as it is wide. A physically square Stratix
10 FPGA would therefore have more columns than rows, which increases demand for horizontal
routing and is most efficient with wider horizontal channels [75]. The tall and skinny Stratix 10 LB
also makes horizontal wires physically shorter than vertical wires of the same logical (SBs spanned)
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Fig. 5. VTR GUI showing an FPGA grid with different wire types in the vertical (length-2) and horizontal
(length-4) directions as described in Listing 4.
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length [43]. Therefore, horizontal channels consist of length 2, 4, 10, and 24 wires, while vertical
channels consist of (logically shorter) length 2, 3, 4, and 16 wires.

In previous versions of VTR, only routing architectures with identical horizontal and vertical
channel widths and types were supported. To address this shortcoming, we extend the VTR
architecture description to allow users to describe different channel widths and wire segment types
in the horizontal and vertical directions, as shown in Listing 4. The <chan_width_distr> tagin
this XML snippet specifies that vertical channels are only 48% as wide as horizontal channels, and
the <segment> tags define an x-directed length 4 wire and a y-directed length 2 wire using the
new axis attribute. Figure 5 shows the resulting FPGA architecture in the VTR GUL

To enable this more flexible architecture specification, the RR graph generator in VTR is exten-
sively upgraded and the data-driven optimizers in VIR automatically adapt to it. The placement
engine’s WL cost divides the expected wiring in a region/direction by the average channel capacity
in that area, biasing it to minimize wiring where capacity is most limited. The placer and the router
profile paths through the RR graph to create fast timing and resource estimators before their main
algorithms begin, enabling automatic adaptation to different wire types and directionality in the
architecture.

4.4 Complex-Shape Routing Wires

Previous versions of VTR have supported the specification of a variety of routing segment lengths
in the architecture XML file, but only traveling in the cardinal directions (north, east, south, and
west), with no support for other shapes like bent (L-shaped) wires or T-shaped wires. However,
academic research has shown timing and area benefits to more complex wire shapes [76], and
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1 <device>

2 <chan_width_distr>

3 <x distr="uniform" peak="1.00"/>

4 <y distr="uniform" peak="@.48"/> <!-- vertical channels only 48% as wide as horizontal -->

5 </chan_width_distr>

6 </device>

7

8 <!-- This architecture sets routing wire Cmetal and Rmetal to @, as all switches are buffered
and each switch delay (not shown) includes the delay of the wire it drives. The x- and y-
directed wires below have different lengths. -->

9 <segmentlist>

10 <segment Cmetal="0" Rmetal="0" axis = "x" freq="2" length="4" name="H4" type="unidir">
11 <mux name="@"/>

12 <sb type="pattern">1 1 1 1 1</sb>

13 <cb type="pattern">1 1 1 1</cb>

14 </segment>

15 <segment Cmetal="@" Rmetal="0" axis = "y" freg="2" length="2" name="V2" type="unidir">
16 <mux name="Q"/>

17 <sb type="pattern">1 1 1</sb>

18 <cb type="pattern">1 1</cb>

19 </segment>

20 </segmentlist>

Listing 4. A snippet from a VTR architecture description file specifying different horizontal (X) and vertical
(Y) channel widths and wire types.

many commercial FPGAs contain bent wire segments to create more complex routing patterns. For
example, Xilinx 7-series FPGAs contain wires that travel one tile vertically and then turn and travel
one tile horizontally (called NW2, NE2, SW2, SE2), as well as wires that travel two tiles horizontally
and four tiles vertically (called NWe6, NE6, SW6, SE6) [77]. Neither VIR 8’s XML architecture file
nor its Routing Resource (RR) graph generator supported the specification of these bent/diagonal
wires. The VTR 8 router can leverage these wires if they exist in a custom (externally provided) RR
graph, but the inability to specify and generate RR graphs with complex wire shapes within VTR
restricted architecture exploration of FPGAs containing them.

In the VTR 9 architecture file, users can define custom SBs with switch types that join a set of
horizontal and vertical wires using non-programmable (i.e., shorted) connections, while maintaining
normal switch connections at other points (e.g., the ends) on these wires. This allows the formation
of arbitrary rectilinear wire shapes such as those illustrated in Figure 6. These wires can be described
in the architecture XML file as shown in Listing 5 for an NE3 (L-shaped) case.

5 Benchmark Suites

To evaluate the QoR of a proposed architecture or a new CAD algorithm, we need a suite of
benchmark designs that are representative of contemporary FPGA use cases. To ensure CAD
or architecture conclusions are applicable to a broad range of designs, it is important for these
benchmarks to be diverse in circuit properties (e.g., routing demand, maximum logic depth, fanout
connections), FPGA resource composition (e.g., memory, Digital Signal Processing [DSP], regis-
ters), and application domain (e.g., wireless communications, DL, emulation). Large and complex
benchmarks best represent current and future designs, but it is also beneficial to have some smaller
designs that allow rapid iteration during the initial stages of architecture or CAD tool tuning. FPGA
architectures with new hard blocks (e.g., NoC routers) also necessitate new benchmarks that use
these resources to enable quantitative evaluation. The VTR [27, 29] and Titan23 [78] suites are
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Fig. 6. Example variations of complex-shape wires in VTR 9. Green squares represent FPGA SBs and red
lines are complex-shape wires formed by shorting multiple cardinal wire segments together. The rest of
the programmable routing fabric is not shown for clarity. L-shaped wires short two cardinal wires together
and H-shaped wires short 3; arbitrary wire shapes can be created by shorting any number of cardinal wires
together.

1 <segmentlist>

2 <segment axis="y" name="NE3_vert" fregq="0.04" length="1" type="unidir" Rmetal="101"
3 Cmetal="22.5e-15"> ... </segment>

4 <segment axis="x" name="NE3_horiz" freg="0.04" length="3" type="unidir" Rmetal="101"
5 Cmetal="22.5e-15"> ... </segment>

6 </segmentlist>

7

g <switchblocklist>

9  <switchblock name="NE3_diagonal_short" type="unidir">
10 <switchblock_location type="EVERYWHERE" />

11 <!-- Create a short from an NE3_vert (track t bottom) wire to an NE3_horiz (track t right)
wire to make an L-shaped wire -->

12 <switchfuncs>

13 <func type="br" formula="t"/>

14 </switchfuncs>

15 <wireconn num_conns="min(from,to)" from_type="NE3_vert" from_switchpoint="0"

16 to_type="NE3_horiz" to_switchpoint="0" switch_override="electrical_short"/>
17 </switchblock>

19 <switchblock name="NE3_normal" type="unidir">

20 <switchblock_location type="EVERYWHERE"/>

21 <!-- Define switchblock functions for normal interconnect at ends of diagonal wire -->
22 </switchblock>

23 </switchblocklist>

Listing 5. A snippet from a VTR architecture description file specifying an L-shaped (NE3) routing wire.

the most commonly used benchmark suites in the FPGA literature and are supported by VIR 9.
To keep pace with the evolution in FPGA applications, VIR 9 includes an additional Titan-flow
suite with new designs (Titanium25), a DL focused suite (Koios), and a suite of designs that include
NoC communication (Hermes). All these benchmarks (summarized in Table 1) have been made
compatible with the VTR CAD flow and are included in its tests to ensure they remain compatible.

5.1 Titanium25: Large Stratix Benchmarks

The Titan23 benchmark suite has been a part of VIR releases since VIR 7. In VIR 9, we augment
the Titan23 suite with two main improvements. First, we incorporate 25 additional benchmarks
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Table 1. Summary of the New Benchmark Suites in VTR 9

Suite # Circuits Domain # Primitives
Titanium25 (S-IV & S10 Arch) 25 Misc. 23K-7.6M
Koios (Arch Agnostic) 40 DL
Application Designs 32 12K-1.6M
Synthetic Benchmarks 8 148K-440K
Hermes (Arch w/ NoCs) 35 NoC Comm.
Synthetic (Known Optimal Sol.) 27 5K-201K (4-64 R)
Peripheral Interfaces (I/O Heavy) 4 210K (64 R)
MLP Acceleration (DL) 4 316K-579K (9-16 R)

Table 2. Characteristics of the Titanium25 Benchmark Circuits

Name # Primitives LUTs Reg. DSP Mem.Bits Application
mem_tester_max 7,605,183 3,442,316 4,002,852 0 163,811,328 Mem. parametric failure testing
rocket31 1,448,187 933,803 481,672 341 8,506,654 31-core RISC-V Rocket chip
ASU_LRN 955,146 346,955 596,579 3,036 4,165,888 AlexNet [79] accelerator
ChainNN_LRN 937,695 190,550 428,996 2,437 16,874,048 AlexNet accelerator
ChainNN_ELT 937,300 199,771 419,571 2,310 16,777,216 ResNet-50 accelerator
ChainNN_BSC 905,098 185,247 401,893 2,310 16,777,216 VGG-16 accelerator
rocket17 801,897 514,910 268,114 187 4,643,612 17-core RISC-V Rocket chip
ASU_ELT 767,837 262,976 493,697 3,036 3,965,184 ResNet-50 [80] accelerator
ASU_BSC 734,883 245975 477,744 3,036 3,965,184 VGG-16 [81] accelerator
tdfir 706,338 309,835 394,083 512 211,680 DSP

pricing 668,537 290,371 350,454 774 3,769,552  Option pricing algorithm
mem_tester 621,351 283,304 325,227 0 163,811,328 Mem. parametric failure testing
mandelbrot 579,813 214,447 348,072 250 1,181,672 Fractal rendering
channelizer 462,003 179,655 265,878 196 6,530,084 DSP

fftid_offchip 440,661 165,076 258,706 166 5,165,932  DSP spectral analysis
DLA_LRN 414,250 151,150 255,660 400 14,108,160 AlexNet accelerator
matrix_mult 392,682 157,112 219,894 264 3,437,992 Matrix multiplication
fftid 389,350 150,918 227,580 120 4,612,592 DSP spectral analysis
fftad 354,506 132,760 209,273 96 9,978,604 DSP spectral analysis

neko 304,581 184,628 113,215 178 6,717,440 GPU simulation

DLA_ELT 296,292 93,313 195,763 304 14,011,392 ResNet-50 accelerator
DLA_BSC 285,347 87,498 190,633 304 14,011,392 VGG-16 accelerator
jpeg_deco 209,313 79,508 110,831 145 3,967,482 Image processing

nyuzi 90,857 47,987 37,459 96 1,529,368 GPGPU processor

sobel 23,224 8,575 12,717 0 131,464 Image processing

(collectively, Titanium25) with an average primitive count of 850k; these new designs include recent
applications such as DL accelerators which are not represented in the original Titan23 suite. Table 2
lists key characteristics of the Titanium25 benchmarks. Both Titan23 and Titanium25 include
Intel/Altera-specific IPs, and hence use Quartus synthesis plus VIR placement and routing (i.e., the
Titan flow) [78]. Secondly, we implement the Titanium25 designs and update the 23 original Titan
designs so that both are now compatible not only with Stratix IV devices (as in VTR 8) but also
with Stratix 10 devices. The Stratix 10 versions allow compilation in more recent commercial tools
(e.g., Quartus Prime Pro 23).

5.2 Koios: DL Benchmarks

With the continuous growth in DL-driven applications both in datacenters and edge devices, DL
acceleration has become a major FPGA use case [13, 82] but neither the VTR nor the Titan23
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benchmark suites include designs from this domain. The Koios suite addresses this gap by intro-
ducing 40 DL benchmark circuits that capture a wide variety of sizes, circuit properties, target
neural networks, and numerical precisions. Some of these circuits are original implementations,
some are re-creations of published designs from industry and academia, and others are collected
from open source implementations. The benchmark circuits make heavy use of DSP and BRAM
blocks and their sizes range from 12K to 1.6M netlist primitives. Unlike the Titan23 and Titanium25
benchmarks, the Koios circuits are compatible with the VTR 9 front-end (Parmys) and do not
need to use Quartus for synthesis. Thus, they are not limited to only the Stratix IV and Stratix 10
architecture captures and can be flexibly used with arbitrary FPGA architecture definitions. For
more details about the characteristics of these benchmarks and their use for FPGA architecture and
CAD studies, we refer the reader to [35].

5.3 Hermes: NoC Benchmarks

As detailed in Section 4.1, many recent FPGA families include hardened NoCs within their fabric;
however, none of the pre-existing benchmark suites include designs that leverage an NoC for
communication. To enable quantitative evaluation of NoC-aware CAD and NoC-enhanced archi-
tectures, VIR 9 builds on the work in [30, 83] to create the Hermes benchmark suite. It consists
of three categories of benchmarks, as summarized in Table 1. The first category consists of 27
synthetic benchmarks with different numbers of routers (listed in parenthesis under # primitives
in Table 1) and different communication patterns between routers. Each design employs traffic
generator modules (to send data to a NoC router) and traffic processor modules (to receive data from
NoC routers). The traffic flows in each design follow one of three patterns: 1D chain, 2D nearest
neighbor, or star communication. The optimal placement for each design, in terms of NoC metrics,
can be manually determined, aiding in evaluating the NoC-aware placement engine. The second
category has four peripheral interface benchmarks whose communication patterns are inspired by
real-world applications. In each design, a subset of NoC routers are locked down to locations at the
boundary of the FPGA device to mimic hardened memory controllers and high-speed interfaces,
such as PCle. Finally, Hermes includes four Multi-Layer Perceptron (MLP) inference designs in
which large compute-intensive modules communicate using a hard NoC. These designs help assess
NoC-aware CAD flows and FPGA architectures for larger, more realistic applications.

6 Architecture Capture of Commercial FPGAs

Modeling recent commercial FPGA architectures in VIR serves several purposes. First, it exercises
the architecture modeling capabilities of VTR, driving enhancements to its generality and flexibility.
Second, these architecture captures can be modified by researchers to evaluate a new feature in the
context of a realistic and complete FPGA. Finally, these captures enable the use of the synthesis
frontend of commercial tools (as in the Titan flow [78]), which in turn facilitates developing new
benchmarks for evaluating VIR’s QoR and approximate VTR to commercial QoR comparisons to
identify areas for improvement. In VIR 9, we include architecture captures of two commercial
FPGA families, one from Intel/Altera and another from AMD/Xilinx; the modeling of essential
architecture features of these devices is discussed in the following subsections.

6.1 Intel/Altera Stratix 10 Architecture

Earlier versions of VIR included a capture of the Stratix IV (40 nm) FPGA family. However, Stratix
IV is not supported by the recent versions of the Quartus Prime Pro tool suite from Intel/Altera
and its routing architecture is simpler, with fewer types of routing wires, than more recent FPGAs.
In addition to the Stratix IV architecture capture, VIR 9 includes a capture of the 14 nm Stratix 10
FPGA family [84] which contains a more diverse set of routing wires and is supported by the most
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recent CAD tool versions. The next sections discuss the various components of this architecture
capture, which is contained in the stratix1@_arch.timing.xml file in the VTR repository.

6.1.1 Logic Array Blocks (LABs). Each of the programmable LABs in Stratix 10 contains 10
Adaptive Logic Modules (ALMs). Each ALM consists of a 6-input Fracturable Lookup Table
(FLUT), two full adders, and four output registers. The mode features in the VTR architecture
description are used to capture the fact that an ALM can be used in several ways (one 6-LUT,
two 5-LUTs, LUTs feeding adders, etc.). Each LAB includes 60 local interconnects called LAB
lines, driven by general routing, neighboring blocks, and the LAB’s own outputs. In our Stratix
10 capture, we assume a full crossbar between LAB lines and ALM inputs, which will result in a
slight overestimation of routability compared to the 50% populated crossbars in the commercial
device [33]. One-quarter of the LAB columns can also function as memory blocks (MLABs), with
all their 10 ALMs collectively configured as a 64 X 10b or 32 X 20b memory unit. VIR 9 adds a
new equivalent tiles feature that enables precisely capturing such dual-use blocks, which was not
possible in earlier versions.

6.1.2 Hard Blocks. The Stratix 10 DSP blocks have Input/Output (I/0) registers, internal
pipeline registers, multipliers, adders/subtractors, and an accumulator. These components can be
configured to operate in many different ways; however, modeling all possible DSP configurations is
cumbersome and results in a significantly more complex architecture description file despite many
of the configurations being very similar. As a result, we capture only the key operating modes
of the DSP block based on their function (e.g., multiply-accumulate, independent multiplier) and
whether the inputs and outputs are registered or not. The Stratix 10 devices also contain a single
type of BRAM with 20Kb capacity (M20Ks), for which we capture several configurations based on
the operating mode (e.g., single-port, true dual-port) and whether the output ports are registered
or not. Our capture of M20Ks does not include the less commonly used configurations such as the
simple quad-port and dual-port ROM modes.

6.1.3 1/Os. The I/O banks are located in two dedicated columns in the Stratix 10 fabric. Each
I/O bank consists of four I/O lanes, with each lane containing 12 I/O Elements (IOEs). An IOE
consists of various components such as I/O pads, I/O buffers, an output enable register, double data
rate I/O circuitry, and a pseudo-differential buffer. Groups of I/Os share Phase Locked Loop (PLL)
and on-chip termination controller blocks. While our benchmark circuits currently use only simple
I/Os that do not leverage most of these blocks, the architecture capture includes them all to enable
the use of future benchmarks with complex I/Os.

6.1.4  Device Layout. The architecture’s layout follows the structure of the Intel Stratix 10 GX/SX
series which mainly consists of FPGA core fabric (including LAB, MLAB, M20K, and DSP columns),
I/0 banks, transceivers, a Secure Device Manager (SDM), and in some variants, a Hard Processor
System (HPS). In our capture, the transceivers, SDM and HPS are replaced with empty regions as
they typically have a marginal impact on QoR and are not used in our benchmark suites. Figure 7
shows a snapshot of the device layout from the VTR GUIL.

6.1.5 Routing Architecture. All the programmable routing wires in Stratix 10 are x- or y-directed,
with different types of routing segments in each direction. The routing wire drivers also have op-
tional registers (known as the hyperflex registers [84]) that enable deep pipelining application
designs to improve timing. However, we do not include these interconnect registers in our archi-
tecture capture since the physical implementation algorithms in VTR cannot make use of them
yet. The Stratix 10 routing architecture has four types of wires per direction. The different types of
wires and their composition in the horizontal and vertical channels are listed in Table 3. Table 4
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Fig. 7. Screenshot of our captured Stratix 10 architecture layout from the VTR GUI.

Table 3. Breakdown of Stratix 10 Routing Channels by Wire Type

Horizontal Wires Vertical Wires
Type Count % of Channel Type Count % of Channel
H2 40 10% V2 24 12%
H4 112 28% V3 72 38%
H10 200 50% V4 64 33%
H24 48 12% Vie 32 17%

Table 4. Organization of Driver Multiplexers for Different Wire Types in Stratix 10
Architecture Capture

Distribution of Driver Mux Inputs
Wire Type Driver Mux | H2, H4, H10 | V2,V3,V4 | H24, V16 | Block OPins
H2, H4, H10 12:1 2 4 1 5
V2,V3,V4 15:1 7 1 1 6
H24,V16 50:1 38 - 12 -
Block IPins 12:1 6 or 7 4 - 2orl

summarizes the size of the multiplexer that drives each type of wire or block input pin, along with
the statistical distribution of how many of these multiplexer inputs come from each type of wire
and from block output pins. Our architecture capture matches the distribution of wire types and
switches driving each kind of wire in Stratix 10, but not the precise switch pattern of which exact
wires drive each other, as that information is not public. Stratix 10 also includes nearest neighbor
connections between adjacent blocks that bypass the general routing, and dedicated routing for
carry chains and DSP cascade chains; both these features are modeled in our architecture capture.
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6.1.6  Timing Models. To model the timing of different architecture components, we develop
a number of microbenchmark circuits that are mapped by Quartus to different combinations of
primitives operating in various modes. Then, we extract delays from the “Slow 900mV 100C” timing
corner, which typically resulted in the worst-case delays. The local interconnect, LUT, and register
delays are captured for the LABs, with different delay values for the paths from each LUT input
to the output. For M20Ks, we extract the timing models for any combination of operating modes
(e.g., ROM, single-port RAM, dual-port RAM) and output port configuration (e.g., combinational,
registered). We also extract the timing information of different operating modes of the DSP block
but to reduce modeling complexity, we average the delay values of similar modes under one mode
in our architecture capture. Finally, since the metal wire parasitics of the Stratix 10 global routing
is unknown to us, we extract the average combined delay for each wire type and its driver from
the Quartus reports of a large set of benchmarks. Then, we use these values as the driver delays for
the corresponding types of wires and set the wire delay itself to zero.

6.1.7 Validation against Quartus Results. Table 5 shows quality and runtime metrics of the Titan-
New designs when implemented by VTR in this architecture capture, with the relative comparison
to Quartus Prime Pro 23.4 targeting Stratix 10 in brackets. The mem_tester_max design is too large
to fit in any Stratix 10 device and the rocket31 and neko designs were timed out in VIR after 2 days
(during the routing phase) and were therefore excluded. Both VTR and Quartus Prime Pro target
an unachievable design frequency to maximize design performance and use one CPU core on a
3.9 GHz Xeon Gold 6146 server with 768 GB of RAM. Quartus is run with default settings, while
VTR was run with a higher placement effort (-—-inner_num 2) and a less directed routing search
(--astar_fac 1) to align its effort level (which controls QoR vs. Runtime) more closely with that
of Quartus. Since the Titan flow uses Quartus for synthesis, the primitive counts are the same for
VTR and Quartus. Table 5 shows that the LB packing density is similar between Quartus and VTR,
and the DSP packing is identical as each Stratix 10 DSP block contains only a single primitive,
but VTR uses 14% more M20K BRAMs than Quartus. VIR uses somewhat more WL (1.06X) than
Quartus but has 32% less runtime despite the higher-effort VIR placement and routing settings
used in this comparison. The largest quality gap occurs for CPD, which is 28% higher in VTR than
Quartus on average. There are many possible reasons for this gap, but significant contributors
are likely that the hand-tuned routing switch patterns in Quartus are more optimized than the
automatically generated VIR switch patterns, that VIR is not modeling or using the Stratix 10
interconnect registers, and Quartus includes retiming algorithms while VTR does not.

6.2 AMD/Xilinx 7-Series Architecture

While most architecture descriptions shipped with previous VTR versions have been modeled after
Intel/Altera FPGA families, VIR 9 introduces several new architecture generation features that
allow modeling of AMD/Xilinx FPGAs such as support for different wire types/distributions in the
horizontal and vertical channels (Section 4.3) and L-shaped wires (Section 4.4). We leverage these
features to develop an approximate architecture model for AMD/Xilinx 7-series FPGAs which can be
found in the 7series_BRAM_DSP_carry.xml file in the VTR repository. The following subsections
outline the various components of this architecture capture and their current limitations.

6.2.1 Configurable Logic Blocks (CLBs). In our architecture capture, each CLB consists of two
slices, each of which has four Basic Logic Elements (BLEs). A BLE is a 6-input FLUT (that
operates as a 6-LUT or two 5-LUTs) combined with two FFs and one bit of a carry chain [17, 85].
The 7-series CLB contains two disjoint carry chains (one for each slice), enabling more flexible
logic packing; the architecture capture models this pattern of carry chains and their dedicated
interconnect cascading across the CLBs in a column. Similarly to the Virtex-6 architecture [86], each
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Table 5. Implementation Results of the Titanium25 Benchmarks on Our Stratix 10 Architecture Capture

Resource Utilization Run Time
Benchmark LABs DSPs BRAMs CPD (ns) WL )
ASU_LRN 41,079 (1.36X) | 3,036 (1.00x) | 372 (1.00x) | 10.69 (2.79x) | 10,034,904 (1.08X) | 28,903 (0.87x)
ChainNN_LRN_LG | 47,087 (1.02x) | 2,438 (1.00x) | 2,395 (1.00x) | 8.52 (1.14x) | 6,595,885 (0.96x) | 20,393 (0.51x)
ChainNN_ELT_LG | 46,298 (0.99x) | 2,310 (1.00x) | 2,392 (1.00X) 9.31 (1.68x%) 6,745,044 (1.00x) | 20,723 (0.59%)
ChainNN_BSC_LG | 45,528 (0.99x) | 2,310 (1.00x) | 2,392 (1.00x) | 6.51 (1.31x)| 6,830,877 (0.98x) | 19,849 (0.53x)
rocket17 47,005 (0.78%) | 187 (1.00X) | 1,233 (3.30x) | 14.58 (1.13x) | 10,347,803 (0.97x) | 48,463 (1.01x)
ASU_ELT 33,143 (1.45x) | 3,036 (1.00x) | 344 (1.00X) | 7.20 (2.04x) | 7,598,316 (0.94x) | 22,931 (0.88x)
ASU_BSC 31,837 (1.44x) | 3,036 (1.00x) | 344 (1.00x) | 8.81 (2.43x)| 7,154,581 (0.86x) | 18,136 (0.72X)
tdfir 26,529 (0.95%) | 512 (1.00x) | 56 (L.12X)| 573 (0.95x) | 4,106,740 (1.31x) | 22,468 (1.15x)
pricing 25379 (0.95%) | 774 (1.00x) | 574 (1.02x)| 556 (1.50x) | 3,924,362 (1.27x) | 21,101 (1.11x)
mem_tester 25,532 (0.92x) 0o - 1,601 (1.00x) | 1.80 (0.95x) | 1,608,865 (1.18x) | 11,786 (0.94x)
mandelbrot 22,459 (0.99%) | 250 (1.00x) | 141 (1.01x)| 5.61 (1.20x) | 3,054,543 (1.24x) | 17,371 (1.09x)
channelizer 16,753 (0.95x) | 196 (1.00x) | 588 (1.03x) | 531 (0.93x) | 2,107,209 (1.16x) | 10,427 (0.79x)
fftid_offchip | 16,683 (0.99x) | 166 (1.00x)| 466 (1.03x)| 594 (1.11x) | 2,211,044 (1.20X) | 11,085 (0.89%)
DLA_LRN 17,606 (1.03x) | 448 (1.00x) | 824 (1.00x) | 594 (1.91x)| 2347767 (1.00x) | 9,565 (0.67x)
matrix_mult 14,682 (0.96X) | 264 (1.00x) | 1,527 (2.50x) | 4.91 (0.97x) | 2,707,265 (1.35x) | 9,561 (0.78)
fftid 14,268 (0.95x) | 120 (1.00x) | 367 (1.04x) | 4.92 (1.04x)| 1,701,507 (1.13x) | 7732 (0.69x)
fft2d 12,944 (0.91x) | 96 (1.00x) | 714 (1.12x) | 4.92 (0.98x) | 1,971,169 (1.19x) | 7,275 (0.66x)
DLA_ELT 12,523 (1.15x) | 352 (1.00x) | 816 (1.00x) | 575 (1.15X)| 1,721,404 (1.06x) | 5,893 (0.57x)
DLA_BSC 12,183 (1.14x) | 352 (1.00x) | 816 (1.00x) | 549 (1.04X)| 1,652,062 (1.04x) | 5855 (0.59x)
jpeg_deco 8,635 (0.95x) | 145 (1.00x)| 686 (1.08x)| 6.69 (1.31x)| 1,391,682 (0.96X) | 5051 (0.62x)
nyuzi 4,468 (0.80X) 96 (1.00x) | 280 (1.39x) | 851 (1.35%x) | 1,316,746 (1.07x) | 1,949 (0.32X)
sobel 834 (0.82%) 0o - 53 (1.04x) | 4.79 (0.89%) 107,052 (0.61x) | 457 (0.15x)
Geomean 1.01x 1.00x 1.14% 1.28% 1.06X 0.68%

The ratios between brackets compare to Quartus Prime Pro results targeting a Stratix 10 device.
mem_tester_max is too large for any Stratix 10 device; the VIR runs of rocket31 and neko were timed out after 2 days.

7-series BLE output can connect back to six BLE inputs in the same CLB using the local interconnect.
Half of the LBs in a 7-series FPGA can also implement distributed RAM; these are called SLICEM
blocks whereas the logic-only version is called a SLICEL. Currently, our architecture capture does
not support distributed RAM and models all CLBs as SLICEL blocks. All the AMD/Xilinx 7-series
CLBs also contains MUX7 and MUX8 multiplexer elements that allow 6-LUT outputs in the same CLB
to be combined to form larger LUTs. These multiplexers are not yet included in our architecture
capture; they are less important than the LUTs and have been removed in the more recent Versal
architecture [87].

6.2.2 Hard Blocks. We capture the most important operating modes of the AMD/Xilinx 7-
series BRAMs (RAMB36E1 and RAMB18E1 primitives). In their true dual-port mode, the RAMB36E1
primitives can be configured as 32K X 1b, 16K X 2b, 8K X 4b, 4K X 9b, 2K X 18b, or 1K X 36b memories.
An additional 512 X 72b configuration is available in the simple dual-port mode. Each BRAM tile
can also implement two RAMB18E1 primitives which have configurations with the same widths but
half the depths of those of the RAMB36E1 primitive. Our architecture capture does not include the
dedicated cascades between BRAMs in the same column (which enable the implementation of deeper
memories without using any extra programmable logic or routing) or the support for mismatched
read and write word widths. We also model a simplified version of the 7-series DSPs that captures
the 25 x 18 multiplication mode without support for the pre-addition or ALU functionalities.

6.2.3  Routing Architecture. To capture the details of the 7-series routing architecture, we combine
information from the NetCracker project [77], the Project X-ray database [88], and our own custom
tcl scripts that query information from Vivado. The distribution of straight (prefixed with an “L”)
and multi-cardinal/diagonal (prefixed with an “MC”) wire types is summarized in Table 6. The
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Table 6. Breakdown of 7-Series Routing Channels by Wire Type

Horizontal Wires (W, = 124) Vertical Wires (W, = 190)
Type Count % of Channel Type Count % of Channel
L1 14 11.3% L1 14 7.4%
L2 16 12.9% L2 16 8.4%
L4 32 25.8% L4 0 0%
L6 0 0% L6 48 25.2%
L12 12 9.7% L12 12 6.3%
L18 0 0% L18 18 9.5%
MC1 18 14.5% MC1 18 9.5%
MC2 32 25.8% MC2 0 0%
MC4 0 0% MC4 64 33.7%

The absolute wire counts reflect those of the actual 7-series architecture; however, our VIR capture
enables targeting architectures with the same wire type composition but different total channel widths.

number following the “L” or “MC” prefix indicates the length the wire spans in a cardinal direction.
For example, each length six diagonal wire consists of a vertical MC4 and a horizontal MC2 hard-
wired together with a non-programmable switch that represents a metal short. Similarly, two MC1
wires (one vertical and one horizontal) are shorted to create a length-2 diagonal connection.

The coordinate system and tiling structure of the 7-series architecture is different from those
conventionally used by VTR [51]. The 7-series pairs LBs with Interconnect Tiles (INT) in a single
repeatable structure. INTs contain the programmable switches used for connecting routing wires to
block I/O pins as well as those connecting different routing wires. In contrast, VIR uses the notion
of SBs and connection blocks and local routing is usually modeled within the LB itself. Figure 8
illustrates key features of the 7-series routing architecture and how they are modeled in VTR. For
example, a vertical L1 7-series wire is driven by one INT and reaches one INT above/below, enabling
connections to two different routing channels and two different CLBs. To model equivalent reach,
a VTR wire needs to be of length 2. Thus, in our 7-series VIR architecture description file, each
cardinal direction wire is modeled as one unit longer than what its 7-series name in Table 6 would
imply. Some of the cardinal wires within the 7-series have access to two adjacent SBs at their ends;
these extra connections are termed stubs in [77]. One-eighth of L1 wires and one-fourth of the other
straight (L) wires have stubs, which we model by shorting a perpendicular L1 to the end of the wire.
Cardinal wires with stubs are similar to the MC wires but MC wires connect to a single SB at their
end. The L12 and L18 wires in the commercial 7-series architecture are bidirectional, which means
they can be driven from either end of the wire segment. While VTR supports both directional and
bidirectional FPGA routing architectures, the architecture generator does not currently support
mixing these two types. Hence our architecture capture models these long wires as unidirectional
which we expect to have a modestly negative impact on routability.

The architecture capture defines a set of custom SBs that model the statistics of how often each
type of wire connects to each other type of wire. The actual 7-series devices all use a horizontal
channel width of 124 wires and a vertical routing channel width of 190 wires. In contrast, our
architecture capture can be targeted with different channel widths for experimentation; it will
maintain the relative frequency and switch count of each wire type and the same 0.65 ratio of
horizontal to vertical channel width. The CLB input pins can only be reached by length-1 and
length-2 wires (both cardinal and diagonal); longer wires cannot connect to function block inputs.
Our architecture capture models this connectivity, along with the local feedback connections that
allow BLE inputs to be directly driven by BLE outputs in the same cluster. For DSPs and BRAMs,
the AMD/Xilinx 7-series architecture has special local routing structures to improve connectivity
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Fig. 8. Routing architecture of the AMD/Xilinx 7-series architecture.

between these blocks and general routing. In our capture, these structures are approximated using
a high F, values and full crossbars to work around routability issues to/from these blocks.

6.2.4 Timing Models. We use the Project X-Ray database [88] to obtain the timing information
for the CLBs (including delays for LUTs, FFs, adder chains, local multiplexing) and different wire
types. Similarly to the Stratix 10 architecture capture, we sum the delay of each routing wire
type with that of its driving multiplexer and annotate the combined delay on the routing switch
that drives each type of wire. The timing models of the included hard blocks (DSPs, BRAMs) are
currently approximations based on the VTR comprehensive architecture. While the overall timing
model is simpler than the Vivado timing model, we find that the CPDs it produce are broadly in
line with those of Vivado.

6.2.5 Validation against Vivado Results. Table 7 shows the implementation results of six of the
largest VTR benchmarks targeting our 7-series architecture capture. All results are at the actual
7-series channel width (W, = 190 and W}, = 124) except the minimum routable vertical channel
width and the designs are run on a 3.6 GHz Intel Xeon W-2123 server with 64 GB of RAM. The
values in brackets in Table 7 are the VTR results divided by the corresponding value for AMD
Vivado 2023.2 targeting the fastest speed grade of Kintex-7. Both VIR and Vivado use one CPU
core, target an aggressive (unachievable) clock frequency to maximize design speed, and use their
default optimization settings except VIR has the --flat_routing option described in Section 8.7
enabled. The results show that FF and RAM utilization is similar to Vivado, but that the number of
LUT primitives is higher on four designs, and lower on two. Parmys mapped more multiplications
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Table 7. Implementation Results of Six of the Largest VTR Benchmarks on Our 7-Series Architecture Capture

Resource Utilization
LUT Primitives FFs DSP Slices | 18 Kb BRAMs
bgm 26,073  (2.08x) | 5105 (0.88x) | 22 (1.00x)| 0O @) 20.65 (1.32X) | 1,086 (1.66X) 122
LUSPEEng | 19,670 (1.18x) | 6,224 (1.13x) | 16 (1.00x) | 45 (1.15x) | 87.17 (1.12x) | 1,224 (0.47x) | 140
LU32PEEng | 69,904 (1.28x) | 19,668 (1.25x) | 64 (1.00x) | 153  (1.04x) | 86.76 (1.08x) | 5,718 (2.26x) | 174

Benchmark CPD (ns) Runtime (s) | Min. W,

stereovision0 | 6,779 (2.28%) | 11,497 (0.98x)| 0  (-) 0 =) 399 (0.88%) | 525 (1.95%) 82
stereovisionl | 6,363  (0.39x) | 10,315 (0.89x) | 152 () 0 =) 454 (0.70) | 461 (0.34X) 66
stereovision2 | 8,458 (0.84x) | 15,659 (1.19x) | 468 (1.90x) | 0 =) 1458 (1.00x) | 1,348 (3.16X) 80
Geomean 1.15x 1.04x 1.17% 1.09% 1.00x 1.25% 104

The ratios between brackets compare to Vivado results targeting a 7-series device. The ratio is omitted (—) when a resource
is not used by Vivado and the geometric average is calculated excluding these data points. VIR 9 runtime is the summation
of synthesis, packing, placement, and routing times. Vivado runtime is the summation of synthesis, physical optimization,
placement, and routing times.

to DSP blocks than Vivado for the two designs (stereovisionl and stereovision2) with lower
LUT usage, and we attribute Vivado’s lower LUT usage on the other four designs to the fact that its
synthesis algorithms have been highly tuned for the 7-series. While the timing model is approximate
in our architecture capture, the CPD for all circuits are within 32% of the Vivado value and the
average CPD matches that of Vivado, indicating broadly reasonable delays. The runtime of VTR
targeting this architecture averages 1.25x that of Vivado. This higher runtime is mainly due to the
VTR packer, which performs general legality and routability checks for all clusters and is the most
time-consuming stage of the VTR flow for the 7-series architecture (averaging 75% of the total). It is
likely packing runtime could be reduced in the future by tuning the legality checks for Xilinx-style
architectures. Finally, all circuits were successfully placed and routed with a minimum channel
width less than that of the commercial 7-series architecture. On average, the benchmarks needed
only 55% of the 7-series physical channel width to successfully route.

7 Logic Synthesis Enhancements

As shown in Figure 2, the logic synthesis stage of the VIR CAD flow generates a technology-
mapped netlist from the Register-Transfer Level (RTL) description of a given circuit. This stage
comprises several steps: RTL elaboration of Verilog or SystemVerilog to a netlist of operations, partial
mapping of some operations to hardened FPGA structures (e.g., multipliers, adders, memories),
general optimization of the remaining logic equations, and technology mapping to the types of
resource available in the specified FPGA architecture. The technology-mapped netlist can then be
passed to the physical implementation flow (packing, placement, routing) to determine the exact
configuration of the FPGA resources to implement the given design.

VTR 9 supports multiple logic synthesis flows as shown in Figure 2. Odin-II provides intelligent
partial mapping capable of performing hard logic inference and hard/soft tradeoff decisions (e.g.,
for multipliers) as to whether to map the logic to embedded hard blocks or the programmable soft
logic [89]. However, the lack of support for many commonly used HDL features limits the set of
designs that Odin-II can process without tedious and time-consuming recoding of the design to use
only the supported language subset. The second logic synthesis option is the Titan flow [78] which
uses the Intel/Altera Quartus synthesis engine, logic optimizer, and technology mapper. Then, it
uses the VQM2BLIF tool to convert the output netlist to a format compatible with the rest of the
VTR flow (BLIF). While this flow has large language coverage and better optimization quality, it
limits the architecture exploration capabilities of VIR as it can only target Intel/Altera commercial
FPGA architectures that use the same primitives (e.g., logic cells, multipliers, basic memories).
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Fig. 9. Passes utilized in the Yosys flow (green: Yosys standard passes, purple: Parmys passes).

The third logic synthesis option is based on Yosys [45], an open source RTL synthesis framework
with good language coverage and various passes that can be combined in different ways to customize
the synthesis process. While some prior work has combined Yosys for logic synthesis with VIR for
physical implementation for specific architectures (e.g., the Xilinx Artix-7 series in [58]), this is the
first release to fully integrate (and regression test) Yosys within the VIR flow. VIR 9 augments
Yosys with the new Parmys plug-in, which enables flexible mapping of design logic to the hard
blocks described in the VTR architecture file, in keeping with VTR’s goal of architecture flexibility.
The Yosys + Parmys synthesis flow is the default in VIR 9.

Analogous to software compilers, Yosys consists of a frontend, a set of passes, and a backend. The
frontend reads a specific input format (e.g., Verilog, SystemVerilog) and parses it into an internal
RTL-level netlist called the Register Transfer Level Intermediate Language (RTLIL). The RTLIL
representation consists of RTL cells and gate cells. The RTL cells represent coarse-grained logic
with multi-bit vectors for I/Os (e.g., multi-bit adders), while the gate cells represent fine-grained
logic with single-bit I/Os (e.g., logic gates). Any algorithm implemented as a Yosys pass can then
manipulate the circuit RTLIL representation. Yosys has numerous pre-defined passes, some of which
call the ABC [90] tool to perform specific logic optimizations. When optimization is complete, the
backend outputs the circuit in the desired format such as Verilog, BLIF, or the Electronic Design
Interchange Format.

To create a synthesis engine that mixes the optimization flexibility and large language coverage
of Yosys and the architecture awareness and intelligent partial mapping of Odin-II, VIR 9 adds
two new plug-ins to Yosys. Figure 9 highlights our new passes added to Yosys in purple and the
standard Yosys passes used in VTR in green. The parmys_arch pass is called early in the flow;
it parses the VTR architecture file and extracts parameters relevant for logic synthesis such as
BRAM sizes/capabilities, carry chain structures, LUT size, and other hard blocks that are available.
This information is used to create appropriate Yosys module types and parameters so that Yosys
can map to the specified architecture (e.g., targeting the proper LUT size) without any additional
information provided by the user. The second new pass is parmys, which extracts and refactors the
partial mapping stages from Odin-II in order to better leverage the various hardened elements on
the target FPGA architecture. It determines the portions of the design to map to hard elements (e.g.,
adders, multipliers, memories, DSP blocks) and replaces them with black box modules to preclude
further (de-)optimization by later Yosys passes. Parmys chooses which elements to map to hard
blocks based on estimates of the relative efficiency in the hard block vs. being left in soft logic as
well as balance estimates of whether the supply of some type of hard element in the target device
is becoming limiting. The rest of the design is mapped to soft logic by Yosys. Finally, the VIR flow
further optimizes the blif file output by Yosys by calling ABC’s general logic optimization (opt)
and technology mapping (tech_map) commands.

8 Physical Implementation Enhancements

VTR 9 introduces a number of enhancements to its placement and routing engines that add support
for new architecture modeling features, improve QoR, and reduce runtime. Firstly, it implements an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 18, No. 3, Article 39. Publication date: August 2025.



39:24 M. Elgammal et al.

Algorithm 1: The VTR 9 Initial Placement Algorithm

Input: B: list of clustered blocks, G: grid across [x, y, layer] of possible locations in device
Output: Placement location in G for each block b; in B
for each block b; in B do

sp; = score(b;) /* Higher scores for blocks with fewer location options */
H.push(b;, sp,) /* Insert b; in a max heap, H, sorted on s, */

end for

while !H.empty() do
b; = H.pop() /* Retrieve highest score block and remove it from H */

(x¢, Yo, layer,) = centroid location of the already placed drivers and sinks of b;
if G[x,, y., layer.] is occupied or not compatible with b; then
(x¢» Yo, layer.) = nearest empty and compatible location
end if
Place block b; at G[x,, y, layer.]
H.update_scores(neighbours(b;)) /* Increase scores of blocks connected to b; */
end while

improved placement engine with a smarter initial placement, several placement perturbation moves
that target the optimization of WL and/or timing, and an RL agent which dynamically selects the
most suitable placement move to apply at different stages of the simulated anneal. The placement
engine can also now accept user-specified floorplanning rules that constrain the placement of
some design primitives to a certain region of the device. Secondly, the placement cost function
is enhanced to consider the co-optimization of NoC quality metrics (e.g., latency and aggregate
bandwidth) and conventional circuit metrics (e.g., CPD and WL) for designs implemented on FPGA
architectures with hard packet-switched NoCs. Thirdly, both the placement and routing engines
are extended to support 3D-stacked architectures. Finally, the VIR router can now perform inter-
and intra-cluster routing in one unified step and route multiple nets (or net portions) in parallel.
This section provides a summary of these new features and their effects on QoR and runtime.

8.1 Centroid Initial Placement

Placement is a critical step in the FPGA design flow that determines an optimized physical location
within the device grid for each netlist block. Moreover, it is one of the most time-consuming steps
in the FPGA CAD flow [78] and directly affects the final QoR metrics (e.g., WL and CPD). Similarly
to earlier versions, VIR 9 uses a SA-based placement engine that starts with an initial solution
and iteratively proposes perturbations (i.e., moves) to optimize it. It evaluates the change in the
placement cost after each move to determine its acceptance. Initially, it operates at high temperatures
allowing most of the moves to be accepted to be able to escape local minima. Then, as optimization
progresses and temperature drops, the algorithm becomes more selective, reducing the probability
of accepting moves that increase the placement cost. The quality of the final placement solution
and the time to reach it are sensitive to the quality of the initial placement. Earlier versions of VTR
created an initial placement by choosing a random legal physical location for each logical block in
the packed netlist. This approach is fast to compute but has low quality as logical blocks connected
by a net can initially be placed far from each other. Hence, the SA algorithm had to start with a
high temperature and perform many perturbations to reach a high-quality placement.

In VTR 9, we implement a new initial placement algorithm (shown in Algorithm 1) to produce
higher-quality solutions by attempting to place each block in proximity to the other blocks it is
connected to, while maintaining a small runtime. The algorithm defines a score for each block that
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Table 8. Centroid Initial Placement QoR and Runtime Relative to That of Random-Legal-Location Initial
Placement (as Employed by VTR 8), Averaged across the Titan23 Benchmark Suite Using Five Random
Seeds

Initial Place WL Initial Place CPD Final WL Final CPD Place Time
0.79 0.89 0.99 1.00 0.76

represents its priority to be placed. This score depends on multiple factors such as its floorplanning
constraints (if any), whether it is a part of a carry-chain, and whether its connected blocks are
already placed or not. Blocks are placed in descending order of their scores. For each block, we
model its connections to other blocks as springs and following Hooke’s law [91], we try to place it
at the point of force equilibrium (i.e., the centroid location of its placed drivers and sinks). If this
location is illegal (e.g., of an incompatible block type) or it is already occupied by another block, we
search its surrounding area to find the nearest empty and compatible location. This new centroid
initial placement can be computed quickly; it averages only 1.04 seconds of CPU time across the
Titan23 benchmarks, which is negligible compared to the total placement time (>2,500 seconds).
By placing connected blocks closer to each other, it produces an initial placement with 21% less
wire and 11% less delay than a random starting point.

As SA has a better starting point, less hill climbing and fewer perturbations are required and
we can start with a lower temperature; a lower temperature is also essential to prevent SA from
destroying the initial placement. We calculate the standard deviation of cost over a small number of
moves (all of which we reject to avoid degrading the placement); we empirically found a good initial
temperature is 1/64 of this standard deviation [36]. This dynamic approach of computing the initial
temperature is superior to using a fixed starting temperature as it automatically adapts to new cost
functions, designs, and architectures. As a result of using a higher-quality initial placement solution,
the SA initial temperature in VIR 9 is over 1,000 lower than that of VIR 8. On average across the
Titan23 benchmarks compiled for the VTR Stratix-IV-like architecture using five different random
seeds, this reduces the overall placement time by 24% while preserving or slightly improving QoR
as shown in Table 8. VTR 9 also includes new command line options that allow an external tool to
provide an initial placement that can be further optimized by the VTR annealer, enabling studies
of hybrid placement algorithms such as the combination of analytic placement and annealing
in [92].

8.2 Directed Placement Perturbations

As explained in the previous subsection, VIR uses a SA-based placement engine. Earlier versions
of VIR explored the solution space only by randomly perturbing the locations of randomly se-
lected blocks within a gradually shrinking region (i.e., range limit). To more efficiently explore
the solution space, we propose a new set of move types (i.e., directed moves), each of which aims
to optimize WL, CPD, or both metrics by intelligently choosing an alternative location of a given
block based on anneal stage, current block location, locations of connected blocks, and estimated
connection delays. Since these moves are performed thousands of times at each placement tem-
perature, they should not only propose useful perturbations, but also be fast to compute. VIR 9
employs multiple move types which are summarized below and were developed and fully detailed
in [93]:

(1) Random: Moves a block to a random location within a region around its current location.
(2) Median: Optimizes WL by moving a block to the closest legal location of a region defined by
the median of the bounding boxes of the nets connected to it.
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(3) Centroid: Optimizes WL by moving a block to the nearest legal location of the zero-force
point when modeling the connections of the moving block as springs. This move is similar
to the algorithm used in the centroid initial placement described in Section 8.1.

(4) Weighted Centroid: Similar to the centroid move but weights the force of each spring (i.e.,
connection) in the centroid calculation based on its timing criticality. This move optimizes
both CPD and WL simultaneously.

(5) Weighted Median: Similar to the median move but weights each edge of the net bounding
boxes in the median region calculation based on the timing criticality of the net terminal on
that bounding box edge. This move optimizes both CPD and WL.

(6) Critical Random: Similar to random move but only tries to move blocks attached to timing-
critical connections to improve CPD.

(7) Feasible Region: Moves a highly critical block to a random location inside the region which
geometrically shortens its timing path [94] to improve CPD.

Most of these moves are combined with a bounding range limit that controls how large/disruptive
the proposed perturbations are and gradually shrinks during the anneal. Early in the anneal this
range limit is applied around the target location computed by each move type as described above.
However, late in the anneal, the target location is used to determine a general direction towards
which the block is moved within the bounding range limit around its current location. This strategy
helps exploit the directedness of the moves without introducing quality oscillations.

8.3 Adaptive Placement Move Selection Using RL

The VTR flow needs to automatically adapt to different architectures and optimization goals, making
it difficult to determine a fixed probability distribution for selecting from the various placement
perturbations that will work well in all cases. Instead, the VIR 9 new placement engine, RLPlace,
incorporates an RL agent that decides which directed move to use (out of the seven introduced
in Section 8.2) and which block type (e.g., LB, DSP, BRAM) should be moved. The agent starts
each placement with no prior knowledge and considers all available actions (i.e., moves to select)
with equal probability. As optimization progresses, it learns that moving certain block types using
certain directed moves is more beneficial (has a greater cost reduction per CPU unit time), and
thus proposes the use of this pair (i.e., move and block type) more often. However, the agent still
continues to propose less productive actions with a reduced frequency so that it keeps exploring
the action space and can detect changes in productive move types during different stages of the
anneal. The RL agent design we use was developed and described in more detail in [36] and further
background on the application of RL to annealing-based placement can be found in [93, 95].

Combining this RL-based placement engine with the directed moves proposed in Section 8.2
improves both the placement QoR and runtime. Table 9 shows the geometric average WL, CPD,
and placement CPU time for three different benchmark suites, with the relative values compared
to VTR 8 in brackets. RLPlace consistently outperforms VTR 8 on all three benchmark suites,
reducing placement CPU time by almost 2X while improving WL by 2-3% and CPD by 1-3%.
Furthermore, RLPlace enhances the adaptability of the CAD flow so that it can efficiently target
highly heterogeneous FPGAs with new features; for example, FPGAs with embedded NoC routers
as studied in [36].

8.4 NoC Optimizations

As discussed in Section 4.1, VTR 9 supports architectural modeling of hardened NoCs in FPGA
fabrics. The SA-based placement engine maps logical (netlist) routers to physical (in the device
grid) routers at the same time that the other types of blocks are placed. The RL agent described in
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Table 9. Geometric Average of RLPlace Post-Placement QoR and Placement Runtime for the Large
(>10k Primitives) VTR, Titan23, and Koios Benchmark Suites, with Centroid Initial Placement

Benchmark Suite WL CPD (ns) CPU Time (s)
Large VIR 184,178 (0.98) 1471 (0.98) 42 (0.51)
Titan23 2,572,680  (0.97) 16.20  (0.99) 1,433 (0.58)
Koios 1,948,209 (0.98) 8.09 (0.97) 375 (0.46)

The results are normalized to VTR 8 between brackets.

Section 8.3 automatically adapts and learns how frequently it should move logical NoC routers
during the anneal. However, the placement cost function, packing attraction function, and the
placement move generator are all enhanced [30, 83] as described in this subsection.

8.4.1 NoC-Related Cost Terms. We augment the placement cost function to co-optimize NoC-
related metrics alongside the traditional (Cye;i5;) metrics of estimated programmable routing WL
and CPD, as shown in Equation (1). The three new terms added to the cost function (G, , C; .
and C(,,,,) capture the aggregate bandwidth used over all NoC links, NoC latency, and NoC link
congestion metrics. These metrics are normalized to equalize their magnitudes since bandwidth
and congestion are on the order of 10° bits per second and latency is on the order of 10~ seconds.
The w hyperparameter controls the weight of the NoC-related cost components; its default value
is 0.6 which means NoC optimization is 60% as important as the total (timing plus wiring) netlist

optimization components:

Crotal = Chetlist + @ X (Cllww +Cl + Coong)- (1)

lat cong

The NoC aggregate bandwidth cost term is the priority-weighted sum of the aggregate bandwidths
of the set of all traffic flows T in the user design (see Section 4.1.2) as formulated in Equation (2).
The aggregate bandwidth of a traffic flow T can be calculated as shown in Equation (3), where
BW(T) is the connection bandwidth of traffic flow T and Nj;us is the number of NoC links in the
routed path of the traffic flow. Minimizing Cp,, reduces the overall NoC bandwidth utilization by
avoiding long travel paths for traffic flows (i.e., fewer physical NoC routers and links are traversed
by a traffic flow):

Cpw = )| P(Ty) X BWagy(Ty). @)
T;eT
BWagg(T) = Niinks X BW(T). 3)

The NoC latency cost term is the priority-weighted sum of two components over all traffic flows
as formulated in Equation (4). The first component is the difference between the unloaded latency
Lat(T;) and the user-specified latency constraint LatConst(T;), which directs the optimization
towards satisfying latency constraints (i.e., ideally making Lat(T;) < LatConst(T;)). The second
component is the absolute unloaded latency of the traffic flow, which aims to minimize the latency
of the traffic flow in general. The two components are weighted using two empirically chosen
hyperparameters, & and 5. The unloaded latency of a traffic flow T is the latency of the traffic flow
assuming no other traffic over the NoC. It can be calculated as shown in Equation (5), where Njj,is
and Nyoyrers are the number of traversed links and routers on the routed path, and Ljjnx and Lyoyzer
are the link and unloaded router latencies, respectively.

Clat = ZP(Ti) x (a x max (0, Lat(T;) — LatConst(T;)) + f x Lat(T;) (4)
T;eT
Lat(T) = Nlinks X Llink + Nrouters X Lrouters (5)
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Fig. 10. The impact of NoC-aware packing and placement optimizations: (a) a design with three NoC
components placed in compromise locations after conventional clustering, (b) the three NoC components
kept separate during clustering and placed closer to their routers, (c) a router and the blocks connected to it,
and (d) the same router moved to a new location, stretching its connections to other blocks.
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The NoC congestion term is the sum of link bandwidth overutilizations across the set of all NoC
links L as formulated in Equation (6). LinkU (L;) is the bandwidth utilization of link L;. It can be
computed as shown in Equation (7), where 1(T;, L) is an indicator function specifying whether T; is
routed through L. The sum of all link bandwidth overutilizations is multiplied by a weighting factor,
¥, that controls the importance of this congestion term relative to other NoC-related cost terms.
The default values of @, f, and y are 0.6, 0.02, and 0.25, respectively, giving the highest priority to
meeting latency constraints and second priority to resolving congestion.

Ceong = ¥ X Z max (0, LinkU (L;) — BW(L;)) (6)
L;eL
LinkU(L) = Z 1(T;, L) x BW(T) )
T;eT

The placement engine updates these new NoC-related cost components only when the netlist
primitives moved are logical routers. To update these components, all the traffic flows originating
or terminating at the moved logical router(s) need to be re-routed to calculate their new aggregate
bandwidth, latency, and congestion. VIR supports a variety of packet routing algorithms for mesh
NoCs, including direction-ordered, XY, north-last, west-first, negative-first [96], and odd-even
[97]. It also supports routing for non-mesh topologies with a minimal breadth-first search routing
algorithm. The NoC placement optimization code is modular so that any new deterministic NoC
routing algorithm can be easily added and used in the placement cost function calculation.

8.4.2 NoC-Aware Packing. VIR’s packing algorithm tries to minimize the demand for routing
wires by capturing low fanout connections inside clustered blocks. The packing algorithm first
picks a primitive as the seed of a cluster and then adds other primitives that are connected to it
through low fanout nets to the same cluster. However, to avoid cluster resource underutilization,
the packing algorithm may use high fanout nets to find new candidate primitives to add to the
cluster. This reliance on high fanout nets to infer logical connectivity can lead to sub-optimality
in designs where modules communicate primarily through the NoC. For example, in Figure 3,
modules M2 and M3 do not share any netlist connections except for high fanout nets such as clock,
reset, and clock enable. If the packing algorithm uses high fanout connectivity to infer logical
relevance between primitives in M2 and M3 and groups them into the same cluster, the placement
engine needs to place clusters containing primitives that are connected to multiple NoC routers. As
shown in Figure 10(a), since physical NoC routers are relatively distant from each other, clusters
connected to multiple routers result in compromise placements where some logic is placed between
two routers with relatively long connections to both.
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To address this issue, VIR performs a breadth-first search on the primitive netlist with high fanout
nets removed to group netlist primitives into disjoint NoC components. The primitives in a NoC
component transitively connect to each other through the programmable routing fabric, while those
in different NoC components are connected only via the NoC or high-fanout connections; designs
that use the NoC to logically decouple modules will therefore contain multiple NoC components.
We have modified the VTR packer so that by default it will not cluster primitives from different
NoC components together. With this optimization, the placement engine can place NoC-attached
clustered blocks close to their NoC routers, as shown in Figure 10(b), with a negligible increase in
the number of clustered blocks.

8.4.3 NoC-Biased Centroid Move. Moving a router is more disruptive than moving most blocks,
as they typically connect to many other fabric blocks and their legal locations are relatively distant
from each other in the FPGA grid. Figure 10(c) shows a router that is connected to many fabric
blocks. When the router is moved to a new location, as shown in Figure 10(d), the other blocks
are still in their old locations, stretching the connections implemented using the programmable
routing. To increase the probability of these blocks moving closer to the router’s new location,
we introduce a NoC-biased centroid move that adjusts the computed centroid location for a block
toward the location of the router(s) associated with its NoC component. By gradually moving
blocks of a NoC-attached module toward their corresponding routers, this move type facilitates
optimization of entire NoC components.

8.4.4 Results. Table 10 summarizes the impact of VIR’s NoC-aware packing and placement
algorithms on the Hermes benchmark suite (see Section 5.3). For the most complex designs in this
suite, namely the four large MLP benchmarks, the NoC optimizations in VTR 9 reduce the total
used NoC bandwidth by 47% and the aggregate (summed over all traffic flows) latency by 37%, at no
cost in placement time or programmable routing WL, but with a CPD increase of 5%. In these MLP
benchmarks, the traffic flow bandwidths are low enough that there is no link congestion. For the
synthetic benchmarks with known ideal NoC placements, NoC-aware algorithms show similarly
large improvements in NoC aggregate bandwidth and latency. Unlike the MLP benchmarks, poor
NoC placement or low-quality traffic flow routing can lead to congestion in these circuits. Enabling
the congestion-aware NoC placement algorithm reduces congestion by 40% compared. NoC-aware
optimization for these designs does not increase CPD, but increases the routed programmable WL
by 8% and placement runtime by 17% compared to NoC-oblivious VTR. The peripheral interface
benchmarks present complex traffic flow patterns that make congestion resolution challenging.
Enabling VTR’s NoC-optimization algorithms reduces congestion by 99%, with no CPD increase
and a 9% programmable WL increase. Overall, the VTR 9 approach of co-optimizing the physical
implementation of the logic and the NoC routers of a design works well; NoC quality metrics are
significantly improved with modest impact on the design operating frequency and programmable
routing usage.

8.5 Floorplanning Constraints

VTR 9 introduces flexible constraints that can be used to control the placement of some or all of
a design, at various levels of detail. These constraints are useful for several purposes, including
manually controlling the optimization of timing-critical logic, floorplanning a design into disjoint
portions so that different members of a team can independently optimize a design and integrate
it physically later, and re-using pre-placed IP modules for rapid compilation flows. As shown in
Listing 6, primitives in the design are added by name to a partition; to make it easier to floorplan
large parts of the design these names can include regular expressions (e.g., the * wildcard) that
match entire hierarchies in the design. Each partition is assigned to a region on the device as
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Table 10. QoR and Runtime Results of VTR 9 on the Hermes Benchmarks Suite, with Default NoC
Optimization Settings and Odd—Even Packet Routing

Circuit Place Time (s) WL CPD (ns) | Agg. BW (Gbps) Agg. Latency (ns) Congestion Ratio
MLP1 4,462 (1.01) | 12,251,216 (1.00) 9.91 (1.03) | 12.33 (0.47) 1234 (0.47) 0.0 (-
MLP2 2,808 (0.99) 8,713,097 (1.00) 10.04 (1.09) | 21.53 (0.51) 2153 (0.51) 00 ()
MLP3 2,814 (1.00) 8,547,047 (0.98) 9.60 (1.03) | 2045 (0.59) 2045 (0.59) 0.0 ()
MLP4 1,889 (1.01) 6,336,483 (0.97) 10.03 (1.04) | 41.76 (0.56) 4176  (0.56) 00 ()
MLP Geomean | 2,857 (1.00) 8,719,750 (0.99) 9.89 (1.05) | 12.27 (0.53) 46.76  (0.63) 00 (-)
Synth. Geomean | 405 (1.17) 563,083 (1.08) 7.19 (0.99) | 152 (0.58) 411 (0.65) 0.78  (0.60)
Periph. Geomean | 894 (1.11) 1,179,616 (1.09) 7.16 (0.99) | 117 (0.30) 507 (0.44) 151 (0.01)

The numbers in brackets are the results normalized to VTR 9 with NoC optimizations disabled. The results for the MLP
benchmarks are averaged over five different seeds while the synthetic and peripheral interface benchmark results are
averaged over three seeds.
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Fig. 11. Floorplan regions corresponding to Listing 6.

illustrated by Figure 11. A region is a union of rectangles (for a 2D device) or rectangular prisms
(for a 3D device), which allows floorplanning to complex shapes like T-shaped or L-shaped areas or
even disjoint areas. The regions can also be as specific as a single location on the chip, by specifying
an area that covers only one tile on the chip, or even a single subtile in the case where there might
be multiple blocks (e.g., IOs or PLLs) at a single (x, y, layer) location.

Floorplanning constraints are specified on design primitives but the VTR placement engine
places clusters. This means that the packing engine needs to be aware of floorplan constraints as it
creates clusters, or they will usually be impossible to place. Figure 12(a) shows an example floorplan
with three regions (red, blue, and green); note that the red and blue regions partially overlap.
As the packing algorithm groups primitives together into cluster-level blocks (LBs, BRAMs), it
calculates a feasible region where the cluster could be placed by intersecting the floorplan regions
of all the primitives within the cluster. If adding a primitive to the cluster would lead to an empty
feasible region, the addition will be rejected as it would lead to an unplaceable cluster. Figure 12(b)
depicts an example in which the cluster being created contains primitives from both the red and
blue regions as well as unconstrained (white) primitives. Only primitives whose floorplan regions
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1 <vpr_constraints>

2 <partition_list>

3 <partition name="red_region">

4 <!-- Use wildcards to match everything in the processor's alu -->
5 <add_atom name_pattern="processor|alux">

6 <!-- Constrain to an L-shaped region (union of two rectangles) -->
7 <add_region x_low="2" y_low="1" x_high="3" y_high="6"/>

8 <add_region x_low="4" y_low="1" x_high="5" y_high="2"/>

9 </partition>

10 <partition name="blue_region">

11 <!-- Place the io_dgs primary input on a specific IO location -->
12 <add_atom name_pattern="io_dqgs">

13 <add_region x_low="0" y_low="4" x_high="0" y_high="4" sub_tile = "1"/>
14 </partition>

15 </partition_list>

16 </vpr_constraints>

Listing 6. Example of VTR placement constraints file.
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Fig. 12. Example of packing algorithm enhancements to respect floorplan constraints. (a) Three floorplan
regions. (b) A cluster being created. Primitives are color-coded to match their floorplan region constraints;
white primitives have no constraint. The intersection of the floorplan regions of its contained primitives
is shown in purple and a primitive floorplaned to the green region will not be added to the cluster even if
strongly connected to it. (c) The green floorplan region is overfilled, leading to the creation of an attraction
group and a clustering retry.

overlap the resulting purple intersection of regions will be considered as candidates to be added to
this cluster; the green register will not be considered despite being strongly connected to the cluster.
If several clusters need to be placed within a floorplan region they could still exceed the number
of placement locations within it, and therefore it can be beneficial to densely cluster primitives
that have the same floorplanning region to maximize the chance they can be legally placed. On
the other hand, forcing primitives with the same floorplan constraint to be packed as tightly as
possible will tend to increase wire use by making less natural clusters and by leaving no room
for other (unfloorplanned) primitives that may benefit from being in the same cluster due to their
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Table 11. Geometric Average QoR on the 27 Synthetic Designs from the Hermes NoC Benchmarks,
Normalized to the Unconstrained Placement Case

NoC Routers  Floorplan-Guided WL CPD Place NoC Agg. NoC
Locked Placement Time BW Cong.

X X 1.00 1.00 1.00 1.00 1.00

v X 1.03 1.00 0.86 1.00 1.00

v v 0.91 1.00 0.79 1.00 1.00

Results averaged over three placement seeds.

connectivity to it. To balance these conflicting goals, the VIR packer takes an adaptive approach as
illustrated in Figure 12(c). Initially it creates natural clusters where it will not add primitives that
have little connectivity to the cluster, even if that leaves a cluster only partially filled. As detailed
in [29] this reduces WL and CPD, but increases cluster count. Once a complete clustering is found,
the packer checks for overfilled regions in which the clusters assigned to the region outnumber the
tiles of the appropriate type within it. In Figure 12(c), for example, this natural clustering produces
three clusters that contain primitives that must be placed in the green region in Figure 12(a), but
the region contains only two tiles. For each overfilled region, an attraction group is created,; it acts
like a highly weighted virtual net connecting all the primitives assigned to the overfilled region
so they now see a strong attraction to each other. Clustering is attempted again with these new
attraction groups included in the clustering gain function in addition to the usual timing and WL
terms, and all regions that were overfilled will now be densely clustered. Up to five attempts at
clustering are allowed, but even difficult cases usually converge after two to three attempts.

After packing, clusters are placed so that they respect their floorplanning constraints at all times.
As detailed in Section 8.1, blocks with fewer legal locations (due to tighter floorplan constraints)
are placed first and must be placed within their floorplan region. Blocks for which there is no legal
location given their constraints and previously placed blocks will be marked as initial placement
failures. If there are any such failures, initial placement is retried with failed blocks placed first.
Once initial placement is complete, the annealer optimizes the placement by iteratively moving
blocks as described in Section 8.2. Moving blocks are checked against their floorplan regions
and the move is aborted if they would be moved outside their regions. To reduce the number
of aborted moves, which waste CPU time, most types of moves ensure legality by intersecting a
block’s target region with its floorplan region, ensuring that the proposed new location respects the
floorplan.

To demonstrate the utility of these new floorplanning constraints, we use them to guide the
placement of the 27 synthetic benchmarks from the Hermes suite of NoC-enabled benchmarks.
In this subset of the Hermes suite, design modules communicate internally using programmable
routing, but communicate with other large modules only over the NoC. We run VTR once with no
constraints, allowing it to find a placement for both NoC routers and the design logic. We then
run two constrained placement experiments. The first locks the routers down to the locations
found in the first compile. The second not only locks the routers in place, but also floorplans each
design module to a region that contains sufficient resources and the physical routers to which
the module connects. Table 11 summarizes the results, geometrically averaged over all 27 designs
and 3 placement seeds. Constraining the physical router locations saves 14% placement time as
the placement engine can re-use its NoC placement results from the first compile, but does not
improve result quality. Constraining the physical router locations and floorplanning the design
logic achieves a larger 21% placement time reduction and reduces WL by 9% without degrading
CPD, showing that well-chosen floorplan constraints can improve result quality.
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8.6 3D Place and Route

The placement and routing engines have both been generalized to target any 3D-stacked device
described in the architecture file. As discussed in Sections 8.2 and 8.3, the VTR SA-based placement
engine uses various types of moves to alter the location of a block. We generalize each of these
types of moves to operate in three dimensions; for example, the centroid move that previously
proposed moving a block near the 2D-centroid (x,, y.) of its connections to other blocks [93] now
attempts to move it near its 3D-centroid (x,, y., layer.). The functions that estimate wiring and
delay cost during placement are similarly updated to support 3D devices, and automatically adapt
to the delay values and 3D interconnect style specified in the architecture file.

The routing engine is also updated in several ways. Firstly, the RR graph generator is generalized
to add programmable routing switches and additional routing wires representing solder bumps or
direct metal attachments between dice as specified by the architecture file. Secondly, before the
net router begins, the router lookahead computation runs several all-destination Djikstra shortest
path searches to profile the routing architecture and stores the results as a function of the routing
node being examined and the 3D distance to the net sink. This enables fast 3D-architecture-aware
lookups of the expected remaining wiring and timing costs as nodes are being examined by the
subsequent routing path searches in the main routing algorithm. Thirdly, die crossing can be a
choke point in 3D architectures where only a subset of the block output pins have programmable
switches enabling them to cross dice, a style of architecture with attractive electrical properties
[31]. Thus, we modified the router to sort the sinks of each net so that die-crossing connections are
routed first for multi-fanout nets, ensuring the use of output pins with connectivity to the other die.
The routing to other (same-layer) sinks of such a net then branches off the partial routing formed
to reach the cross-layer sinks, which greatly improves router convergence.

To validate the QoR of VTR 9 when targeting 3D FPGAs, we evaluate a device with two identical
FPGA fabrics stacked on top of each other in comparison to a 2D device with similar resource count
and architecture (i.e., a single die that is twice as large) using the Koios benchmarks. We use the
architecture from [21], which has Agilex-like DSP blocks and a Stratix-IV-like routing architecture.
A key parameter in 3D-stacked architectures is the pitch between inter-die connections, as it
determines the die-to-die interconnect density and has important manufacturing implications. We
experiment with architectures under two different assumptions: a 5 pm pitch which represents
state-of-the-art commercial 3D-stacking technology using direct metal attachment (i.e., hybrid
bonding), and a more aggressive 1 pm pitch that is still in the research phase [98]. With a 5 um
pitch size, only 60% of the output pins of each LB can have programmable switches that enable
connection to the other layer, while with a 1 pm pitch size all block output pins can connect to the
other die. Inter-die connections have a delay of 75 ps [31], which is in the same range as same-die
inter-block routing wires. For the scenario in which only 60% of the output pins can access the
other die, we perform light packing where we constrain the VTR packer to use no more than 60% of
the block output pins (using the command line option --target_ext_pin_util) to ensure there
are always enough inter-die connections available during routing.

As shown in Table 12, when all block outputs have programmable switches to the other die, the
CPD and WL are reduced by 3% and 2%, respectively compared to a 2D architecture with similar
resources. Light packing increases the number of LBs needed by a design by 3% on average, but
improves both 2D and 3D runtime and QoR by making the packing problem easier. Comparing the
light packing results shows that a 3D architecture with only 60% of output pins connecting across
layers also improves result quality vs. a 2D architecture, reducing CPD by 3% and WL by 4%. These
early 3D results give us confidence that VIR 9 is optimizing for 3D devices well, but only scratch
the surface of the architecture options that can be explored.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 18, No. 3, Article 39. Publication date: August 2025.



39:34 M. Elgammal et al.

Table 12. VTR 9 Geometric Average Results over the Koios Benchmark Suite on 3D Architectures
Normalized to a 2D Architecture with a Similar Number of Resources

Default Packing Light Packing
2D 3D 2D 3D
Inter-Die Connectivity - 100% OPins - 60% OPins
LB Count 1.00 1.00 1.03 1.03
Routed CPD 1.00 0.97 0.98 0.95
Routed WL 1.00 0.98 0.98 0.94
Runtime 1.00 1.02 0.73 0.8

8.7 Run-Flat: Unified Intra- and Inter-Cluster Routing

The VTR AIR is a PathFinder-based router with several enhancements to reduce CPU time using
incremental routing techniques [65]. At its core, the PathFinder negotiation-based algorithm routes
a design by iteratively ripping up and re-routing nets to resolve congestion [99]. VIR internally
models the RRs within an FPGA as an RR graph in which nodes represent block pins and routing
wires, while edges represent the programmable switches connecting them. Previous VIR versions
perform routing in two stages: intra-cluster and inter-cluster routing. During the packing stage,
intra-cluster routing is performed to route the nets between primitive pins and cluster pins using
the local RRs in a cluster [28]. Then, after placement, the router performs inter-cluster routing only
between clusters. This two-stage approach reduces the routing problem size (since the number of
clusters is significantly less than the number of primitives) and as a result is simpler and faster;
however, it has two major drawbacks.

First, the intra-cluster routing algorithm is not timing-driven, which may degrade the QoR.
Second, having a 2-stage algorithm can lead to sub-optimal results on architectures where there is a
switching network inside the cluster-level blocks that provides some flexibility, but not a complete
crossbar between groups of cluster-level pins. In this case, the inter-cluster router is forced to use
the cluster-level pins chosen by the packer (i.e., it cannot treat groups of pins as swappable), which
means the flexibility of the intra-cluster routing network can be underutilized. Such architectures
are becoming more popular as they reduce switch counts and wire loads compared to intra-cluster
networks that use full crossbars between groups of pins [100] and they are employed in the most
recent AMD and Intel FPGAs [87, 101].

To address these shortcomings, VTR 9 introduces the run-flat algorithm [32], which routes all
connections between primitive pins in one step. While this improves QoR for FPGAs with sparse
intra-cluster routing networks, it introduces several algorithmic and scalability challenges. Firstly,
it expands the RR graph by adding intra-cluster pins and switches; the RR graph is the largest data
structure in VTR so this impacts its memory footprint. Secondly, run-flat routes all connections
between primitives, while the second phase of the two-stage router did not route the connections
that are fully absorbed in a cluster. Thus, run-flat explores more nodes and edges as it routes nets
to/from primitive pins within the cluster hierarchy rather than to/from pins on a cluster, which
increases router runtime. Thirdly, we found that certain interconnect patterns within clusters create
bottlenecks (which we denote as choke points) where traditional negotiated congestion approaches
do not efficiently resolve congestion. Run-flat incorporates several new optimization techniques to
address these challenges, as detailed below.

8.7.1 Optimizing Memory Footprint. Previously, the RR graph generator considered only the
target FPGA architecture; it created nodes for every routing wire and I/O pin in the device and
edges between those that can be connected via programmable switches. To enable run-flat, the
straightforward approach would be to add nodes and edges corresponding to all the elements
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Fig. 13. An RR graph optimization example for unified inter- and intra-cluster routing. The intra-cluster part
of the RR graph is generated after placement so that the usage of each physical cluster is known, and only
the RR nodes and edges needed within each cluster are created. Fanout-free node chains are then collapsed
into single nodes.

within each cluster for all its hierarchical levels, as described in the input architecture file. The RR
graph would be further expanded to include all the operating modes of each level of hierarchy.
For example, as illustrated on the left side of Figure 13, a fracturable 6-LUT has one mode with
a single 6-LUT and another mode with two 5-LUTs sharing all inputs. The generated RR graph
would include 16 nodes corresponding to the inputs of a 6-LUT and two 5-LUTs although only one
of the two modes could be used for each fracturable LUT. Run-flat reduces the RR graph memory
footprint in two ways. First, building of the intra-cluster portion of the RR graph is deferred until
after placement. At this point, the portion of each cluster-level block that is used and its mode of
operation (for each hierarchy level) is known and hence only the nodes and edges corresponding
to these used modes are included in the RR graph, as shown at the top right of Figure 13. For the
Titan23 benchmarks targeting the VTR Stratix-IV-like architecture, this reduces the number of
nodes and edges in the RR graph by 8x and 5X, respectively. The second technique further simplifies
the RR graph by collapsing chains of nodes (and the edges connecting them) that are unnecessary
to evaluate whether a routing is legal or not. Directly building the intra-cluster RR graph from
the architecture description results in an input pin and output pin per hierarchy level inside a
cluster. However, often these pins have only one fanout, and hence a fanout-free-chain of such
nodes can be replaced by a single node with delay equal to the total delay of the chain, as illustrated
at the bottom right of Figure 13. Any routing which does not overuse the single remaining node is
guaranteed to have a direct mapping back to the chain. Chain collapsing reduces the RR graph size
by 15% for the largest seven VTR benchmarks on the VTR comprehensive architecture.

8.7.2 Optimizing Runtime. AIR uses a directed path search where the cost of a RR node is
a function of its known cost from the source of the connection in addition to its predicted (i.e.,
lookahead) cost to the sink of the connection [65]. The router lookahead must automatically adapt
to the target routing architecture to maintain VTR’s flexibility, and to keep the path search efficient,
it should accurately predict the future cost to reach the target sink from the current node. However,
it must also be fast to compute and memory-efficient as it will be called every time a new node is
explored by the router (i.e., pushed to the heap). The two-stage router in VIR uses a Dijkstra-flood
algorithm to create a delay and congestion cost table storing the predicted cost to reach a given
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Choke Point -.

Fig. 14. A choke point example in a fracturable LUT.

sink based on the type of the current node and the its relative distance (Ax, Ay, Alayer) to the sink.
In addition to the inter-cluster lookahead table, run-flat also constructs an additional intra-cluster
lookahead table for each cluster type. This table stores the predicted delay and congestion cost to
reach a target sink from a node within the same cluster and is only used when the path search enters
the destination cluster. When the path search is still outside of the destination cluster, run-flat
approximates the intra-cluster lookahead cost by using the pre-computed minimum predicted cost
for the destination cluster type. Across different FPGA architectures, this enhanced hierarchical
lookahead reduces CPU time for run-flat by 64-83% compared to using the original VTR lookahead.

8.7.3 Resolving Choke Point Congestion. The primitives and interconnect inside a cluster are
often finely tuned by FPGA architects to efficiently implement some use cases. Some of these
structures have only a few legal routing solutions, making legality more challenging to achieve
using traditional congestion negotiation techniques. Figure 14 shows an example of a fracturable
4-LUT that can be split into two 3-LUTs with one shared input. Only one of the five inputs of the
fracturable LUT can reach both 3-LUTs, so any successful routing must map the net that fans out to
both 3-LUTs on this pin. Because negotiated-congestion-based algorithms route one connection at
a time, they lack a net-level view of the problem, leading to poor convergence. In our experiments,
when using run-flat with traditional congestion negotiation, over half of the designs targeting
fracturable LUTs fail to find a legal routing at all. We solve this problem in a general way by finding
choke points in the intra-cluster routing where fanout to multiple destinations is possible, and
biasing the router to use these choke point nodes preferentially for nets with matching fanout
needs. More specifically, at the start of routing, we identify potential net choke points where a net
has more than one sink inside a cluster. Next, a reachability analysis in the RR graph determines
the number of sinks that can be reached from each cluster input pin. Each RR graph node that
can reach multiple sinks is considered a possible choke point cp, for which we store the number
of reachable sinks Nj;pn (cp). During routing of connections associated with net choke points, we
divide the usual congestion cost of a node n by 2Nsi= (") wwhen n is in the set of node choke points.
This leads to faster legality convergence as it provides the router with a whole-net view of each
connection, biasing it to use pins that can reach multiple sinks for multi-fanout nets.

8.7.4 Results. Table 13 evaluates run-flat on three different architectures: (1) the Stratix-IV-
like architecture capture which has a full crossbar in LBs (an overestimation of the intra-cluster
connectivity provided by the commercial Stratix IV architecture) and a partial crossbar in BRAMs,
(2) the VTR comprehensive architecture which has a 50% depopulated crossbar inside LBs and no
crossbars in the hard blocks, and (3) our 7-series-like architecture capture (Section 6.2). The full
crossbar in the LBs of the Stratix-IV-like architecture is more friendly for the two-stage router, as
all the LB inputs can be modeled as equivalent (i.e., swappable). However, the BRAM input pins
cannot be modeled as equivalent due to the partial crossbar, so the two-stage router cannot fully
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Table 13. Run-Flat Results on Stratix-1V-like, VTR Comprehensive, and 7-Series-Like Architectures Relative to
the Two-Stage Router

Stratix-IV-Like VTR Comp. 7-Series-Like
Benchmarks Titan23 VTR VTR
LB Local Routing Full xbar 50% xbar Irregular
Hard Block Local Routing Partial xbar None None
Min. Channel Width (Fixed W = 300) 0.86 (Fixed W, = 190)
Routed WL 0.94 0.88 0.89
Routed CPD 0.99 0.98 0.92
Route Time 1.36 2.70 1.84
Total Time 1.16 1.29 1.16
Max. Memory 2.84 1.26 1.21

exploit it. On this architecture, run-flat reduces the average WL by 6% and CPD by 1% over the
Titan23 benchmarks. The benefits are more pronounced with the VIR comprehensive architecture
since the LBs also have depopulated crossbars. On this architecture, run-flat reduces WL by 12%
and CPD by 2% on average across the VIR benchmarks. The 7-series has (non-crossbar) local
routing in its LBs which the flat router can exploit much better than the 2-stage router, leading to
an 11% reduction in WL and an 8% CPD reduction. Run-flat increases memory footprint to 1.21X -
2.84X that of the 2-stage router, with the smallest overhead for the 7-series-like and the largest for
the Stratix-IV-like architecture. Run-flat increases route time to 1.36x - 2.7x that of the 2-stage
router, but this translates to a more limited overall VIR flow runtime increase of 16—29%. These
increases are due to the larger RR graph and larger number of connections to route within it, and
hence run-flat presents a quality-runtime tradeoff. For architectures with partial local interconnect
flexibility, the QoR gains generally justify the additional runtime.

8.8 Parallel Router

In previous VTR versions, the routing engine (AIR) was single-threaded, routing one connection
at a time. VTR 9 introduces two parallel routers (baseline and net-decomposing) that use spatial
bi-partitioning to route different nets or different portions of the same net in parallel. Spatial
partitioning for parallel routing has been previously used in several works [102-104]. A key
differentiator of the VTR 9 parallel routers is that as they are built on top of AIR [65], and hence
inherit its incremental techniques that greatly reduce the number of operations performed during
routing. In addition, the net-decomposing router uses a new technique to sub-divide nets into
components to extract more spatial parallelism [105].

8.8.1 Baseline Parallel Router. The first router is a baseline implementation of spatial bi-partition-
ing, where the device grid is recursively divided into two regions by choosing partition lines. After
the nets crossing the partition line are routed, the sides of the partition line are now decoupled from
each other in terms of cost updates, and nets on each side can be routed in parallel. An example of
the parallelism exploited by the baseline router is shown in Figure 15(a), with the bounding box of
each net illustrated on the left. The algorithm chooses cutlines to recursively divide the FPGA grid;
this forms a partition tree (shown on the right side of Figure 15(a)) in which all nodes in the same
level of the partition tree can be routed in parallel as they consist of nets which do not overlap
and hence will not compete for the same RRs. The position of the cutline at each level is chosen to
minimize expected execution time (i.e., the sum of routing time of the parent partition node and the
slower of its two children), where the runtime of a partition node is estimated as proportional to
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Fig. 15. Spatial partitioning and the resulting partition trees for both parallel routers. All nodes (sets of nets)
at the same level of a partition tree can be routed in parallel.

the number of connections (sinks) it must route. In Figure 15, net N1 would be routed first at the L1
partition level using one thread. The nodes in the next level of the partition tree (L2) can be routed
in parallel, so nets N3 and N6 would be concurrently routed on two threads. Similarly, the L3 level
of the partition tree contains four nodes and thus allows four threads to route nets in parallel.

8.8.2  Net-Decomposing Router. FPGA designs almost always contain some high-fanout nets that
span a large area of the chip and contain many connections. Unfortunately, this means that they
usually cross the first partition line and take significant time to route, and therefore they limit the
parallel speedup attainable by assigning different partition tree nodes to different cores. To achieve
higher speedups, VTR 9 includes a net-decomposing parallel router as shown in Figure 15(b). When
a medium or high fanout net crosses a partition line, this router decomposes it into portions that will
be routed at different levels of the partitioning tree. In the Figure 15(b) example, net N1 crosses the
first cutline. Instead of routing all its connections in the root partition node on one processor, the
net-decomposing router chooses a small subset of its sinks to pre-route at the first partition level.
The remaining sinks are divided into two groups (those on the left and the right of the first cutline),
and their routing is completed in parallel in two partition nodes in the L2 partitioning level. The
left and right nodes in the second partitioning level are passed the portion of the pre-routing of
net N1 that lies within the left and right spatial partitions, respectively. They can complete the
routing of the remaining sinks of net N1 in parallel by each branching off only from the portion of
the pre-routing they were passed, which is guaranteed to be spatially disjoint. If a net has enough
sinks, this decomposition process continues further; additional sinks of net N1 are pre-routed on
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Fig. 16. Runtime per routing iteration for the LU230 circuit from the Titan benchmarks.

two cores in the second partition level (pre-route N1; and N 1) and the remaining sinks are divided
into four groups that are routed in parallel in the L3 partition level (N111, N112, N1y, and N1,)).

8.8.3  Per-Iteration Tasks. After routing nets in each iteration, the VIR router has to perform
additional tasks such as total WL computation, RR node historical congestion cost updates, and
timing analysis. Since the AIR router keeps most of the routing results from previous iterations,
there is very little time spent routing nets in the final iterations. This makes the runtime spent in
per-iteration tasks significant. These operations are also now parallelized in VTR 9. Parallel timing
analysis was previously implemented in [106] but was disabled due to non-deterministic results; we
have made it deterministic and re-enabled it as part of the engineering work for the parallel router.

8.8.4 Results. The parallel router is evaluated on a machine running Ubuntu 22.04 on an AMD
7950X3D processor' and 96 GB of RAM. We used the Titan benchmarks with the default VTR
settings in the titan_quick_gor task for evaluation. Figure 16 shows the runtime per iteration for
the serial router, the baseline parallel router with four threads, and the net-decomposing router
with four threads on a representative design (LU230) from the Titan benchmark suite. The AIR
algorithm (on which all three routers are based) minimizes the number of connections that are
re-routed each iteration; only congested or timing-compromised portions of routed nets are ripped
up in each routing iteration. Hence, most of the work is performed in the earlier routing iterations,
and in these iterations the net-decomposing router is approximately 3x faster than the serial router.
Later iterations do much less work but still consume non-negligible time; the parallel routers are
still slightly faster in this regime due to the per-iteration operations being parallel, but the speedup
over the serial router is smaller.

Table 14 summarizes the overall runtime and quality of the different routing algorithms for
both the two-stage and flat (see Section 8.7) cases. For two-stage routing, the baseline parallel
router achieves a 2.1X speedup at eight threads with virtually no loss in QoR. The net-decomposing
router has a speedup of 2.4x, albeit with 2.1% worse CPD and 0.7% higher WL due to the additional
constraints imposed on the router by net decomposition. The results for flat routing are similar.
The baseline parallel router with eight threads achieves a 2X speedup over the serial router with
no effect on WL and a 1.5% increase in CPD, while the net-decomposing router achieves a 2.2X
speedup but degrades CPD and WL by 2.3% and 0.9%, respectively.

!The processor has eight cache and eight frequency cores. VIR processes were pinned to the cache cores.
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Table 14. Runtime and Quality Comparison of Serial and Parallel Routers with Eight Threads,
Geometrically Averaged over the Titan Benchmarks and Normalized to the Serial Router with
the Same Routing Method

Router  Per-Iteration Tasks Net Routing Runtime CPD WL
Two-Stage Serial Serial 1.000 1.000  1.000
Two-Stage Parallel Serial 0.757 1.000  1.000
Two-Stage Parallel Parallel (Baseline) 0.468 1.000  1.000
Two-Stage Parallel Parallel (Net-Decomposing) 0.421 1.021  1.007

Flat Serial Serial 1.000 1.000  1.000
Flat Parallel Serial 0.801 1.000  1.000
Flat Parallel Parallel (Baseline) 0.503 1.015 1.000
Flat Parallel Parallel (Net-Decomposing) 0.464 1.023  1.009

9 Software Engineering and Developer Utilities

VTR is a large open source project, and therefore requires considerable software engineering and
documentation work to enable contributions and effective collaboration between various teams
from both academia and industry. In the following sections, we list some of the features added in
VTR 9 to improve its usability and software engineering practices.

9.1 VTR Utility and APl Documentation

The VTR project contains several custom data types (e.g., N-dimensional matrices, bidirectional
maps, and strongly typed identifiers) and utility functions (e.g., for logging, assertions, and runtime
measurement). It also includes useful APIs for parsing, querying, and dumping key data structures
such as RR graphs, circuit netlists, FPGA tile grids, and so on. For VIR developers, using these
utilities and APIs can enhance their productivity and lead to a more maintainable code base with
consistent program output formats. However, due to a lack of documentation, developers often did
not know of the existence of these utilities or were unaware of how to best use them. VIR 9 adds
extensive web-based documentation that is automatically built from Doxygen comments in the
code base; Figure 17 shows an example. This documentation helps developers efficiently explore
the available utilities and APIs, which is increasingly important as the number of contributors
(currently over 150) to the VTR project continues to increase.

9.2 Batch VTR Runs Using SLURM

In many cases, evaluating new FPGA architecture features or CAD algorithms requires launching a
large number of VTR runs using multiple seeds and different benchmark suites. These experiments
consume significant CPU time and memory and are ideally dispatched on powerful compute
clusters. For this reason, VIR 9 includes an interface to the open source SLURM job scheduler [107],
which is widely used in cloud platforms such as Google Cloud and the Digital Research Alliance of
Canada [108]. This interface allows batching many VTR runs using different benchmarks, FPGA
architectures, and CAD parameters for transparent parallel dispatching on a cluster of servers.

9.3 Graphical Debugging of Optimization Algorithms

Debugging the behavior of a new CAD algorithm during its implementation and tuning can be
a major challenge. These algorithms typically involve many operations/steps (e.g., block moves
in SA-based placement), and could have not only bugs in their implementation but also flaws in
the high-level algorithmic logic (e.g., optimization cost function). In many cases, these problems
are only observable in certain benchmark designs or in later stages of an algorithm and therefore
are difficult to investigate using conventional techniques such as code debuggers and logging. To
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Fig. 17. The web-based documentation of VTR utilities and APIs.

facilitate algorithm debugging and tuning, we add a new feature to the VIR GUI that allows users to
set algorithmic breakpoints in the placement and routing engines to pause execution when a specific
condition is met and visualize the current optimization state. For example, the user can pause the
placement optimization after a specific number of moves, at specific annealing temperatures, or
when a specific block is moved, as shown in the left side of Figure 18. Similarly, the user can pause
the router after a specific number of router iterations or when routing a specific net. The user can
set more complex conditional breakpoints by combining various conditions with logical operations
as shown in the right side of Figure 18.

9.4 User-Guided Placement Optimization

As discussed in Section 8.2, smart placement moves can greatly enhance the placement quality
and reduce runtime. VIR 9 allows users to interactively propose placement perturbations in
the GUIL this can be used in conjunction with the algorithm breakpoints discussed in Section
9.3 to test new placement move ideas. As shown in Figure 19, the graphical interface allows
the user to propose relocating a certain block (specified by block ID or name) to a new grid
location, evaluate the impact on the placement cost (estimated WL and CPD), and decide whether
to accept or reject the move. This enables CAD developers to efficiently experiment with various
move strategies, evaluate their effectiveness, and understand the reasons if they do not work as
expected.
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Fig. 18. The VTR graphical debugging interface allowing users to specify simple breakpoints during certain
steps of the placement and routing optimizations (left) or advanced breakpoints using variable names and
logical expressions (right).
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Fig. 19. Interactive user-guided placement optimization. The VTR GUI now allows the user to propose a
certain move (left), evaluate its effect, and decide to accept or reject it (right).

9.5 Continuous Integration and Testing

The VTR project has become a key enabler for FPGA architecture and CAD academic research and
the core of several commercial CAD systems [109-111]. Therefore, thoroughly testing its many
flows, supported architectures, and optimization algorithms has become ever more important for
maintainability and scalability. To this end, VIR 9 greatly expands test coverage and enhances
test automation. It includes both unit tests that validate specific classes and sub-algorithms, and
system-level tests that check the entire flow completes and achieves the expected QoR on various
benchmark sets, architectures and use cases. Other tests also automatically check compatibility with
a wide range of compilers and verify that no memory access errors/bugs are flagged by valgrind
or code sanitization tools. All of these tests are launched automatically on each pull request to
the main branch and must pass before a change can be merged. The tests use a combination of
GitHub-hosted and Google-Cloud-hosted machines running in parallel so that over 500 CPU hours
of tests are completed in 6 hours.

10 Overall Flow Result Quality

All results were collected on an unloaded system with two Intel Xeon gold 6146 CPUs (12 cores
each with a base frequency of 3.9 GHz) and 768 GB of RAM. VTR was compiled with its default
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build settings: GCC 9.4 with full optimization (-O3) with inter-procedural optimization and profile-
guided optimization using a profile generated from single runs of the stereovision1 and neuron
benchmarks. All experiments are run with three different placement seeds for each circuit and the
results averaged to reduce CAD noise. In Sections 10.1 and 10.2, VTR is run on a single core (serial
mode), while Section 10.3 explores the impact of using multiple CPU cores.

10.1 Logic Synthesis Evaluation with Koios Designs

Firstly, we evaluate the effect on QoR of using Parmys in comparison to Odin II for logic synthesis in
VTR. In this experiment, the output of both logic synthesis flows is consumed by the same physical
implementation flow with all the enhancements described in Section 8. We use 37 out of the 40 Koios
benchmarks for this evaluation; the three excluded benchmarks are written in SystemVerilog, which
is not supported by Odin-II. We target the k6FracN10LB_mem20K_complexDSP_customSB_22nm.
xml FPGA architecture [35] with a channel width of 300. In this architecture, the logic, RAM, and
DSP blocks are Intel-Agilex-like but the routing architecture is similar to Stratix IV and delays
come from COFFE [112] simulations of a 22 nm technology node.

Table 15 shows the key runtime and QoR metrics for Parmys, with the relative value of each
metric compared to Odin-II in brackets. Odin-II failed to synthesize 14 of the 37 designs due to
its limited Verilog language support.” On the other hand, Parmys can successfully process all the
Koios designs. Parmys reduces synthesis time by 33% on average; while not shown in the table, it
also reduces the memory utilization of synthesis by 12%. Parmys also improves quality metrics,
primarily due to its better area optimization. The number of primitives required to implement a
design drops by 11% on average, leading to 7% smaller auto-sized FPGAs (i.e., fewer device tiles).
Routed WL and CPD are reduced by 5% and 4% on average, respectively.

10.2 Full Flow Evaluation

In this subsection, we evaluate the results of the overall VTR 9 flow in comparison to the previous
VTR 8 release using the VIR and Titan23 benchmark suites.

10.2.1 VTR Benchmarks. Table 16 shows the results of the VIR 9 flow on the large (>10k
primitive) VTR benchmarks targeting the VIR comprehensive architecture. The flow in this case
searches for the minimum channel width for each design and then routes with a low stress channel
width 30% above the minimum; all the quality and runtime statistics are from this low stress routing
run. The overall flow time, resource usage, WL, and CPD are all very similar to those of VTR 8.
The runtime of the placement and routing engines in VTR 9 is reduced by 24% and 21% vs. their
VTR 8 equivalents, but on these smaller designs much of the runtime is spent in synthesis and in
generating architecture data structures such as the RR graph, so there is only a 7% overall runtime
improvement. Memory footprint has increased by 16% but since the VTR designs are of moderate
size the absolute memory footprints are still very reasonable, with the largest design requiring 2.24
GB of memory.

10.2.2  Titan23 Benchmarks. The Titan benchmarks are larger and more complex than the VTR
benchmarks, making them a better suite for evaluating the algorithmic enhancements in VIR 9.
We target VTR’s Stratix-IV-like architecture capture with a channel width of 300, which roughly
matches the commercial device. Note that the Titan flow uses Quartus for logic synthesis, so only
the physical implementation portion of the VIR 9 improvements affect these results. Table 17
shows that VTR 9 requires only 51% of the place time and 51% of the route time of VTR 8, leading

2The VTR 8 release had even more limited Verilog language coverage, so it cannot process most of the Koios designs and
hence a quality comparison to VTR 8 cannot be made.
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Table 15. Parmys Results on the Koios Benchmarks (Normalized to Odin-II between Brackets) Averaged over
Three Different Placement Seeds

Circuit Synth Time (s) VTR Time (s) Primitives  Device Tiles WL  CPD (ns)
attention_layer 64 (1.82x) 1,013 (0.92X) | 36,457 (0.78x) 21,904 (1.0X) 544351 (0.9x) 8.8 (0.7X)
bnn 170 (1.17x) 979 (0.86X) | 154,384 (0.86x) 7,569 (1.1x) | 1,246,157 (1.05x) 8.6 (1.07X)
bwave_like.fixed.large 249 (V) 1,509 (V) 44,026 (v) 38,416 (V) 2,038,544 (V) 11.1(v)
bwave_like.fixed.small 33 (V) 535 (V) 12,990 (V) 9,604 (V) 423,448 (V) 9.2(v)
bwave_like.float.large 7,119 (v) 16,688 (v) 236,120 (V) 102,400 (V) 5,821,981 (V) 12.1 (V)
bwave_like.float.small 562 (V) 1,624 (V) 64,124 (v) 10,816 (v) 1,124,557 () 8(v)
clstm_like.large 29,877 (0.61x) 34,191 (0.62X) | 803,453 (0.87x) 40,000 (0.65x) | 4,567,072 (0.79x) 8.7 (0.83X)
clstm_like.medium 14,193 (0.65x) 16,932 (0.65x) | 538,767 (0.85X) 28,224 (0.67X) | 2,788,060 (0.78x) 7.7 (0.89x)
clstm_like.small 3,239 (0.62x) 4,442 (0.63X) | 274,104 (0.81X) 14,400 (0.62x) | 1,255,624 (0.75X) 7.1 (0.85x)
conv_layer 107 (0.42x) 214 (0.55%) | 28,067 (0.92x) 3,136 (1.0x) | 234,630 (0.96x) 2 (0.94X)
conv_layer_hls 47 (1.16x) 289 (0.38x) | 14,381 (1.0x) 10,816 (0.96X) | 94,405 (1.03X) 5.8 (0.94x)
dla_like.large 35,627 (0.62x) 51,907 (0.72X) | 967,150 (0.9x) 92,416 (0.91x) | 9,639,251 (0.88X) 8.6 (0.96X)
dla_like.medium 4,976 (0.56x) 9,873 (0.74x) | 332,889 (0.86x) 23,104 (0.88X) | 2,632,449 (0.92x) 7.9 (1.33X)
dla_like.small 1,013 (0.56x) 3,123 (0.87X) | 139,473 (0.84x) 7,744 (0.96x) | 871,178 (0.91x) 5.9 (1.08x)
dnnweaver 1,034 (v) 5,149 (V) 128,693 (V) 37,636 (V) 2,699,139 (V) 12.9 (v)
eltwise_layer 14 (0.31x) 90 (0.68%) | 12,199 (1.02x) 3,136 (1.0x) | 191,778 (0.99%) 1.8 (0.98x)
gemm_layer 524 (0.74x) 849 (0.82x) | 53,584 (1.01x) 13,924 (1.0X) | 920,994 (1.21x) 5.1 (0.85x)
lenet 2,571 (V) 2,716 (V) 23,218 (V) 1,600 (V) 220,552 (V) 9.6 (V)
lstm 525 (0.04x) 3,438 (0.22x) | 171,173 (0.84x) 225,00 (0.53X) | 1,701,414 (0.81X) 8.9 (0.97x)
proxy.1 1,341 (v) 10,412 (V) 208,677 (V) 69,696 (V) 4,103,559 (V) 9.2 (v)
proxy.2 10,752 (v) 18,210 (v) 327,941 (V) 35,344 (V) 3,418,297 (V) 8.4(v)
proxy.3 4,646 (v) 6,846 (V) 258,328 (V) 26,896 (V) 2,442,888 (V) 11.6 (V)
proxy. 4 4,405 (V) 20,671 (V) 285,267 (V) 49,284 (V) 4,486,209 (V) 10.7 (v)
proxy.5 1,584 (V) 3,271 (V) 107,988 (v) 18,496 (V) 1,176,576 (V) 9.8 (V)
proxy.6 638 (V) 8,022 (V) 138,484 (V) 19,044 (v) 1,723,354 () 7.6 ()
proxy.7 2,260 (V) 5,758 (V) 176,403 (V) 19,044 (v) 2,027,499 (V) 9.1(v)
proxy.8 1,837 (V) 3,378 (V) 107,878 (V) 23,104 (V) 1,182,351 (V) 9.1(v)
reduction_layer 34 (1.51x) 104 (1.02x) | 14,146 (0.89x) 1,444 (1.0x) | 170,821 (0.92x) 7.2 (1.03x)
robot_rl 34 (0.86x) 143 (0.38x) | 23,015 (0.81x) 2,704 (1.0x) | 173,867 (0.78x) 6.4 (0.91X)
softmax 28 (3.21x) 113 (1.08x) | 11,781 (1.0x) 2,916 (0.87X) 126,129 (1.0x) 9.3 (1.06x)
spmv 32 (1.39x) 171 (0.81x) | 14,407 (1.0x) 7,056 (1.0X) | 219,926 (1.03X) 5.9 (0.97x)
tdarknet_like.large 16,638 (0.4x) 23,591 (0.44x) | 278,862 (0.82x) 108,900 (0.79%) | 4,115,729 (1.01X) 12 (0.7x)
tdarknet_like.small 2,936 (0.48x) 21,164 (1.28x) | 127,288 (0.92X) 285,156 (2.25x) | 4,110,706 (1.51x) 20.2 (1.25X)
tpu_like.large.os 1,590 (0.81x) 3,257 (0.45x) | 60,173 (0.98X) 69,696 (1.0x) | 2,036,045 (0.95X) 2.7 (0.99x)
tpu_like.large.ws 875(0.7x) 2,607 (0.31x) | 57,273 (0.77X) 69,696 (1.0X) | 962,221 (0.96X) 3 (1.0x)
tpu_like.small.os 112 (0.64x) 459 (0.55x) | 18,471 (0.97x) 18,496 (1.0x) | 391,873 (0.97x) 2.4 (1.02x)
tpu_like.small.ws 107 (0.62X) 505 (0.52%) | 20,285 (0.82x) 18,496 (1.0X) | 265,961 (0.96x) 2.9 (0.95x)
Geomean 596 (0.67x) 2,374 (0.62x) | 83,514 (0.89x) 18,499 (0.93X) | 1,068,031 (0.95x) 7.1 (0.96X)

v: The design failed synthesis with Odin-II.

to an overall VTR 9 runtime of 55% of the VTR 8 runtime while achieving slightly improved quality
(4% less WL and almost the same CPD). VIR 9 increases memory footprint by only 4% compared to
VTR 8 despite its more flexible 3D architecture model. Overall VIR 9 has equivalent performance to
VTR 8 on smaller designs (as indicated by the VTR benchmarks) and significantly faster runtimes
on larger circuits (as shown by Titan results).

10.3 Parallel Results

The results presented in the previous subsection compare the single-threaded mode of both VTR 8
and VTR 9 (i.e., running on one CPU core). However, VTR 8 can parallelize timing analysis across
multiple threads, while VTR 9 can parallelize both timing analysis and routing, as described in
Section 8.8.

Figure 20 shows the geometric average results over the Titan23 benchmarks, normalized to the
results of single-threaded VTR 8. VIR 8 and 9 have similar CPD values in this test, but VIR 9
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Fig. 20. QoR comparison of VTR 9 and VTR 8 using one and four threads on the Titan23 benchmarks. All
results are normalized to the single-threaded VTR 8 and averaged over three placement seeds.

reduces WL by 4% vs. VIR 8. QoR is not degraded by parallelism in either version, as WL and CPD
are essentially the same as thread count changes. Enabling parallel timing analysis reduces VIR
8’s runtime by 13%, while enabling parallel timing analysis and (baseline) parallel routing reduces
VTR 9’s overall runtime by 18%. Overall, VIR 9 has significantly reduced the runtime of different
physical implementation stages; the serial VIR 9 algorithms reduce runtime by 45% vs. serial VTR
8, while in parallel mode VTR 9 has 49% less runtime than VTR 8. The gains are largest on the two
most CPU-intensive algorithms: the VIR 9 baseline parallel router and placement engine with
parallel timing analysis are 4x and 2.2x faster than the VIR 8 equivalents run in parallel mode,
respectively.

11 Conclusion

The VTR 9 release enhances this open source CAD tool suite in several major ways. The new
Parmys synthesis engine combines the strong language coverage of Yosys with architecture-aware
hard block optimizations. This not only improves synthesis quality but also enables VTR to im-
plement a wider variety of benchmarks that make use of advanced Verilog constructs. The VIR
physical implementation stages (i.e., packing, placement, and routing) have also been enhanced
in several ways. The placement engine now features a smarter initial placement and a variety of
targeted placement perturbations dynamically selected by an RL agent. The VTR router has been
enhanced so that it can perform intra- and inter-cluster routing in a single (flat) stage, improving
its ability to optimize for recent FPGAs with less flexible local interconnect. The routing algorithm
has also been made parallel through a spatial partitioning and net decomposition approach; this
not only reduces routing time by 2.4X but also makes a well tested parallel routing infrastructure
available to the community for future algorithmic experimentation. VIR now includes flexible
floorplanning constraints that both the packer and placer respect; this allows end users to con-
trol design implementation details and to experiment with divide-and-conquer CAD flows that
could reduce compile time. Overall, these major enhancements reduce the flow’s runtime by 48%
(a 1.93x speed up) on average across the Titan23 benchmark suite, with equal or better CPD and
WL optimization.

Additionally, the VTR architecture description language has been extended to model more general
programmable routing architectures with varying channel widths and complex (e.g., L-shaped,
T-shaped) wires. These enhancements enable architecture captures of the Intel/Altera Stratix 10
and AMD/Xilinx 7-series FPGAs, which are included in this release so researchers can use them as
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a baseline onto which new architecture ideas can be overlaid. VIR 9 can now model and optimize
for multi-layer 3D-stacked FPGAs and FPGAs with embedded NoCs, enabling a broad range of new
architecture investigations.

12  Future Work

There are many directions for future extensions of VTR. One is to continue to improve the CAD
algorithms to increase result quality, reduce runtime and add additional automation to keep
designers productive despite ever-larger FPGA designs. Recent work has shown that generating a
primitive-level analytic placement [113] that is then refined by VTR’s annealer leads to a better
solution than either analytic techniques or annealing alone [92]. However, the work in [92] has
limited architectural flexibility; integrating a mixed analytic/annealing placement engine that is
fully data-driven and can target the wide range of VIR architectures would benefit the community.
Another direction to improve runtime is to leverage parallelism; VIR 9 already contains parallel
routers and a parallel timing analysis engine, but other CPU-intensive phases such as logic synthesis,
packing, and placement could be also made parallel. A third approach is to extend the floorplanning
constraints discussed in Section 8.5 to also control routing, enabling research into CAD flows
and architectures that facilitate the stitching of pre-placed and routed design components. The
floorplanning constraints in VTR 9 are mandatory; they are always obeyed by the placement engine.
Future research could investigate the utility of also allowing hints by designers, for example by
using floorplanning constraints to guide packing and the early stages of placement, but allowing
them to be violated later in the anneal if it would improve timing or WL. Currently to use NoCs in
the VTR flow a designer must instantiate NoC access points (logical routers) in the design, thereby
specifying which communication occurs on the NoC. Future work could explore automatically
moving latency-insensitive communication to a NoC when it is beneficial, and leaving it in the
programmable fabric when that provides a better match to that traffic flow’s latency and bandwidth
needs.

A second large area for research is to explore the very wide range of architectures VIR 9 now
supports. While prior research [114, 115] has shown the value of hard NoCs on FPGAs, much work
remains to find the best NoC topologies and NoC link bandwidths to support the high traffic flow
bandwidths, particularly near I/O interfaces, in recent FPGA designs. The NoC-aware algorithms in
VTR 9 and the NoC benchmarks in the Hermes suite enable work in this direction. As Moore’s
law has slowed down, systems have moved more functionality to hardened components and have
turned to die stacking to overcome I/O bottlenecks. The 3D architecture capabilities of VIR 9
allow FPGA architects to explore die stacking ideas, while its support for embedded NoCs enables
investigations into FPGAs with NoC-attached domain-specific accelerators [116]. Finally, scaling
the FPGA fabric itself faces major challenges; shrinking interconnect increases resistance, and the
SRAM cells heavily used in FPGA LUTs and programmable routing muxes are not scaling well.
VTR 9 has the capabilities needed by architects to explore new interconnect and logic structures
that better suit next-generation manufacturing technologies.

As VTR has become the implementation CAD tool for some commercial and several fabricated
academic FPGAs, a third future direction is to add utilities to the VTR flow that benefit those
implementing FPGA designs, as well as those researching new FPGAs. The Interactive Path
Analysis (IPA) tool developed by QuickLogic® creates a user-friendly interactive timing path
viewer that maintains a live connection to VIR’s timing analyzer and router to extract and view
timing paths. The FASM tool developed by Google enables creation of a programming bitstream

3The IPA tool is available at https://github.com/w0lek/IPAClient.
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for novel FPGAs. We believe there are opportunities to create many other utilities to ease design
creation, floorplanning, and analysis in the VTR ecosystem.

This release of VTR combines the work of many research groups around the world, and we look
forward to seeing the new investigations enabled by its features.
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