
A Software-Programmable Neural Processing Unit
for Graph Neural Network Inference on FPGAs

Taikun Zhang*†, Andrew Boutros*, Sergey Gribok†, Kwadwo Boateng†, Vaughn Betz*

*Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
†Programmable Solutions Group, Intel Corporation

{taikun.zhang, andrew.boutros}@mail.utoronto.ca, {sergey.gribok, kwadwo.boateng}@intel.com, vaughn@eecg.utoronto.ca

Abstract—Graph neural networks (GNNs) are a widely-used
class of deep learning (DL) models for learning latent representa-
tions of graph-structured data for a variety of node/graph-level
prediction tasks, some of which require real-time low latency
inference. Most existing GNN accelerators rely on preprocessing
input graphs on a host/embedded CPU to parallelize compu-
tations on different sub-graphs, making them unsuitable for
real-time use cases. Others are extremely specialized streaming
pipelines for only a specific type of GNN and therefore suffer
from long FPGA bitstream compile times when the model is
updated and cannot be used in applications that combine GNNs
with other classes of DL models. In this work, we enhance
the neural processing unit (NPU) FPGA overlay architecture,
instruction set, and software stack to support a variety of GNN
models. We achieve this without sacrificing the NPU flexibility;
our enhanced NPU can be programmed purely through software
to accelerate different GNNs or any of its originally supported DL
workloads (e.g. MLPs, RNNs, GRUs, LSTMs). In addition, this
flexibility enables our NPU software compiler to generate GNN
kernels with different performance targets (throughput-optimized
vs. latency-optimized) by exploiting different dimensions of com-
pute parallelism on the same overlay architecture. Besides the
flexibility benefits, our NPU implemented on an Intel Stratix 10
NX (14nm) FPGA can process 7.8× more graphs per second
at a similar latency on average compared to a state-of-the-art
model-specific FPGA accelerator targeting real-time applications
on an AMD Ultrascale+ same-generation FPGA. It also achieves
5.8× higher throughput compared to an Nvidia RTX A6000 GPU
(8nm) and 2.6× lower latency than a state-of-the-art accelerator
that combines CPU-based graph preprocessing with AMD Versal
(7nm) fabric and AI engine compute. Finally, we present a
case study for using our enhanced NPU in real-time GNN-
based multi-input multi-output (MIMO) antenna scheduling,
highlighting that it meets the latency requirements of this task
in 5G communication networks.

I. INTRODUCTION

Many of the applications that we use daily are now powered
by deep learning (DL) such as voice-controlled assistants, home
surveillance systems, and automated customer service. Therefore,
specialized accelerators are being widely deployed both in data-
centers and at the edge to improve inference latency and energy
efficiency, and keep up with the ever-increasing compute demands
of DL models. Graph neural networks (GNNs) are DL models that
can extract patterns and infer high-level trends in graph-structured
data [1]. For example, they can classify a graph based on the
structure and connections between its nodes, predict the likelihood
of forming future connections between nodes, or label new graph
nodes based on a pre-labeled subset of nodes. Graphs are ubiquitous
in many applications; graph nodes can represent users in a social
network or customers/products in an online retail, while graph edges
can describe the relations or interactions between them. GNNs are
already widely used in production for travel time prediction in
Google Maps [2], customer response prediction in DiDi [3], user
engagement prediction in Snapchat [4], and many other use cases.

Other applications of GNNs are evolving in various domains such
as detecting fraudulent financial transactions [5], 3D object detection
from LiDAR point clouds in autonomous vehicles [6], classifying
collected data in particle physics colliders [7], and multiple-input
multiple-output (MIMO) scheduling in wireless communication net-
works [8]. Typically, these use cases have stringent latency con-
straints. In addition, the GNN inference is only a part of a bigger
system that interfaces with diverse sensors for data acquisition and
executes different post-inference operations based on the prediction
outcome. In such applications, field-programmable gate arrays (FP-
GAs) can offer significant benefits. The flexibility of FPGAs enables
customization of the compute pipeline and memory sub-system to
minimize the end-to-end processing latency, and their diverse IOs
allow direct interfacing with a variety of sensors and actuators in a
complete system [9].

However, most prior FPGA-based GNN accelerators are either
not optimized for low latency real-time applications [10] or require
heavy pre-processing of the input graphs which is not feasible for
such use cases [11]. Alternatively, other FPGA solutions targeted
at low latency GNN inference [12] rely on extreme specialization
by generating custom streaming hardware that can only accelerate
a specific GNN and process a single input at a time (i.e. batch-
1). These solutions suffer from long compile times to generate a
new bitstream every time the GNN is modified. They also cannot
accelerate other types of DL models, prohibiting their standalone
use for applications that combine spatial GNNs with other temporal
models such as recurrent neural networks (RNNs), gated recurrent
units (GRUs), or long short-term memories (LSTMs) [13], [14].
In addition, batch-1 inference is not always the optimal solution
in practice, especially in cases where an action is taken based on
predictions on multiple inputs from different sensors (e.g. processing
inputs from multiple LiDARs in an autonomous vehicle [15], or
scheduling users to multiple sub-bands of massive MIMO antennas
in 5G networks [8]). In such cases, processing a small number of
inputs simultaneously can achieve lower end-to-end latency than
multiple batch-1 inferences in sequence.

In this work, we extend the architecture, instruction set, and
software stack of the neural processing unit (NPU) to support all the
operations required in a variety of GNN types. The NPU was orig-
inally designed as a software-programmable specialized processor
(i.e. overlay) for low latency inference of memory-bound sequence
models (e.g. RNNs, GRUs, LSTMs) and multi-layer perceptrons
(MLPs) [16]. It was later re-architected to exploit the new artificial
intelligence (AI) tensor blocks in the DL-optimized Intel Stratix 10
NX devices, achieving best-in-class results for these models with an
order of magnitude higher performance than same-generation DL-
optimized Nvidia GPUs [17]. We demonstrate that it is possible to
maintain the flexibility of the NPU overlay while achieving similar
or lower latency GNN inference than prior works specialized only
for GNN acceleration. Our enhanced NPU can be programmed
purely through software to accelerate not only different widely-
used types of GNNs, such as graph convolutional networks (GCNs),
graph attention networks (GATs), and graph isomorphism networks
(GINs), but also the models it was originally designed for such
as RNNs, GRUs, LSTMs, and MLPs. Furthermore, this flexibility

allows for accelerating GNNs with different performance objectives
(i.e. latency-optimized or throughput-optimized) depending on the
target application. Finally, we present a case study for using our
enhanced NPU in real-time acceleration of massive MIMO antenna
scheduling using GNNs. This paper’s contributions include:
• NPU architecture, compiler, and toolchain enhancements to accel-

erate GNNs without sacrificing the overlay’s flexibility.
• Compiler enhancements to exploit different parallelism levels in

GNNs for latency- vs. throughput-oriented use cases.
• Performance comparisons of our enhanced NPU to state-of-the-

art FPGA solutions and GPUs across various GNNs.
• A case study on real-time GNNs for MIMO antenna scheduling

in 5G communication networks.

II. BACKGROUND & RELATED WORK

A. GNN Models
GNNs are a class of neural networks that can extract patterns and

perform predictions on graph-structured data. A graph G = (V,E)
consists of a set of |V | nodes and |E| edges. Each node and edge in
the graph has a feature vector, which represents different properties
of this node/edge depending on the target application. A GNN takes
as an input the feature vectors of all nodes and edges as well as the
structural information of the graph, and learns a new more expressive
representation of the graph nodes known as node embeddings. These
embedding vectors capture information about the node itself, its
neighbors, connections, and context within the graph. After that, the
embedding vectors generated by the GNN can be used to perform
different node-level tasks such as node labeling and classification,
or can be all combined to generate a graph embedding to perform
graph-level predictions. Using a given GNN, nodes with similar
features and connections will have similar node embeddings and
similar graphs will have similar graph embeddings.

A GNN performs this representation learning by processing the
input graph using a number of message passing layers, each of
which executes two main steps: aggregation and transformation. In
the aggregation stage, the nodes of the graph exchange messages;
each node receives the states (i.e. intermediate embeddings) of all its
direct neighboring nodes and combines them using an aggregation
function. Then, the aggregated state is used to update the state of
the node itself before progressing to the next layer. This can be
formulated mathematically as:

h
(l+1)
u = U(l)

(
h
(l)
u ,m

(l)
N (u)

)
(1)

m
(l)
N (u)

= A(l)
(
{h(l)

v , ∀v ∈ N (u)}
)

(2)

such that for layer l, h(l)
u is the state of node u, the set N (u) contains

the direct neighbors of node u, m(l)

N (u) is the aggregated message
from the neighbors of node u, and U and A are differentiable update
and aggregate functions respectively. This means that after the first
layer, the state of each node captures information about itself and its
immediate neighbors. Then, after the second layer, it also captures
information about its neighbors’ neighbors, and so on. Finally, the
node states calculated after L layers are the learned embedding
vectors. Different variants of GNNs follow the same formulation and
overall execution but use different update and aggregation functions.

Graph convolutional networks (GCNs) extend the concept of
convolutions from vision networks to graphs [18]. In this type of
GNN, the state of each node in the graph is calculated by aggregating
the states of neighboring nodes multiplied by edge weights, in a
manner analagous to a convolution kernel aggregating values of
neighboring pixels in an image. Thus, its aggregate function A is:

m
(l)
N (u)

=
∑

v∈N (u)

eu,v√
d̂ud̂v

h
(l)
v (3)

where eu,v is the edge weight between nodes (u, v) and d̂u is the
summation of all edge weights of node u plus one to avoid division
by zero (d̂u = 1+

∑
v∈N (u) eu,v). Another flavor of GCNs uses the

GraphSAGE operator from [13], which calculates the aggregated
message as the mean of the neighboring node states:

m
(l)
N (u)

= mean({h(l)
v , ∀v ∈ N (u)}) (4)

Graph attention networks (GATs) use a self-attention mecha-
nism, similar to that commonly used in transformer networks [19], to
assign different importance to the states of neighboring nodes during
aggregation [20]:

m
(l)
N (u)

=
∑

v∈N (u)

αu,vh
(l)
v (5)

αi,j =
exp

(
LReLU

(
a⊤
s Wh

(l)
i + a⊤

t Wh
(l)
j

))
∑

j′∈N (i)

exp
(
LReLU

(
a⊤
s Wh

(l)
i + a⊤

t Wh
(l)
j′

)) (6)

where αi,j is the softmax-normalized attention weight between
nodes (i, j), as/at are learnable attention vectors for the source/des-
tination node features, W is a learnable weight matrix for linear
transformation of the node states, and LeakyReLU is the leaky
rectified linear unit non-linear activation function.

Graph isomorphism networks (GINs) are used to generate
an embedding for the whole graph. It combines the states of all
graph nodes in a layer using a permutation invariant function C(l)

(e.g. summation or pooling) and then concatenates the results of all
layers to generate the final graph embedding hG [21]. Its node-level
aggregate function combines the state of a neighboring node with
the edge feature vector connecting to it as follows, where ei,j is the
feature vector of the edge between nodes (i, j):

m
(l+1)
N (u)

=
∑

v∈N (u)

ReLU
(
h
(l)
v + eu,v

)
(7)

h
(l+1)
u = MLP(l)

(
(1 + ϵ(l)) . h

(l)
u +m

(l+1)
N (u)

)
(8)

hG = CONCAT
({

C(l)({h(l)
v ,∀v ∈ G})

})
(9)

Across these GNN variants with different aggregation functions,
the update function U can also be a simple function such as mean
or max, a linear transformation (i.e. matrix-vector multiplication), a
feed-forward MLP network, or even a temporal GRU network [22].
Our enhanced NPU overlay can flexibly accelerate all the GNN vari-
ants briefly explained in this section (in addition to other DL models
such as RNNs, GRUs, LSTMs and MLPs) by executing different
sequences of instructions programmed purely through software.

B. GNN Acceleration
Many prior works have introduced specialized hardware for infer-

ence acceleration of different types of GNNs in recent years [23].
However, there are several limitations in existing solutions, espe-
cially for low latency real-time use cases.

Firstly, many accelerators such as AWB-GCN [24], GCNAX [25],
and I-GCN [26] focus only on GCNs where computations can
be condensed into large sparse matrix multiplication (SpMM) and
general matrix multiplication (GEMM) operations. Others such as
GraphACT [27], HyGCN [28], H-GCN [29], and VersaGNN [30]
apply graph preprocessing to exploit optimizations such as data lo-
cality or graph partitioning to reduce the computational complexity.
The data layout transformations or preprocessing techniques used
in these works are not suitable for real-time applications in which
there is a strict constraint on the latency between receiving an input
graph and obtaining a prediction result. In contrast, our enhanced
NPU does not perform any pre-processing operations and operates

directly on graph node/edge embedding vectors without the need for
any data layout transformation.

Secondly, these accelerators do not support edge embeddings
which capture additional information about connections between
nodes and have been shown to increase the model accuracy on
several tasks [31]. Supporting edge embeddings requires executing
edge-specific operations in each GNN layer which cannot be mapped
to SpMM and GEMM operations, increasing the complexity of
the accelerator architecture. Our enhanced NPU can process edge
embeddings at no additional hardware cost since it does not rely on
refactoring GNN computations as SpMM and GEMM operations.

Finally, most of these accelerators do not have the flexibility to
support non-trivial aggregation functions that cannot be formulated
as matrix multiplications such as max, min, mean, and standard
deviation. In GATs for example, calculating the aggregated message
is dependent on scaling the features of a given node and those of
its neighbors (see Eq. 5). These aggregation weights are calculated
dynamically on-the-fly at each layer and thus cannot be expressed as
matrix multiplication operations. Our enhanced NPU provides such
flexibility and enables accelerating more complex GNNs.

The current state-of-the-art FPGA-based GNN acceleration tar-
geting low latency workloads is FlowGNN [12]. It is an open-source
framework that can generate specialized dataflow architectures for
a wide variety of GNNs and also addresses the limitations of prior
GNN accelerators described previously. Although it can achieve low
latency inference suitable for real-time applications, it sacrifices the
flexibility of the accelerator architecture. To accelerate a different
type of GNN, it requires compiling a new bitstream and program-
ming the FPGA with a specialized processing pipeline that can only
accelerate this GNN type. This approach is only suitable for use
cases where only a specific type of GNN is needed with very infre-
quent updates. Their extreme specialization also limits the FlowGNN
architecture to processing only one input at a time, possibly making
it sub-optimal for applications in which multiple inference results
on different inputs from different sensors are needed for executing a
specific action. For instance, applying the brakes in an autonomous
vehicle based on inferences of several point clouds from several
LiDARs [15] requires processing of multiple inputs simultaneously.
In this work, we take a different approach by building a software-
programmable overlay architecture that can achieve similar or better
performance without sacrificing flexibility. Our enhanced NPU can
execute different GNN types as well as other DL models (e.g. RNNs,
GRUs, LSTMs, MLPs) on the same architecture just by executing
different instruction sequences. This flexibility also enables us to
map computations to the in-fabric tensor blocks in different ways
for latency-optimized or throughput-optimized GNNs by exploiting
compute parallelism across nodes from one or multiple graphs,
respectively.

GraphAgile [11] is another FPGA-based overlay that is software
programmable for the GNN domain-specific workloads. Several
techniques are used by the GraphAgile compiler to optimize the
computational complexity, operation scheduling, and external mem-
ory communication. However, it does not support edge embeddings
and many of its compiler optimizations involve preprocessing opera-
tions such as graph partitioning and computation reordering, making
it unsuitable for low-latency use cases. In addition, it is a GNN-
specific overlay and does not support other types of DL workloads.

C. The Neural Processing Unit (NPU) Overlay
The NPU is a state-of-the-art FPGA-based very-long-instruction-

word (VLIW) processor architecture designed for low-latency DL
inference workloads using pre-trained and quantized int8 models,
specifically RNNs, GRUs, LSTMs, and MLPs [16]. It keeps all
model weights persistent in the on-chip memories of the FPGA
and exploits the massive parallelism of DL models to initiate the
execution of thousands of operations with a single instruction, sig-
nificantly reducing the per-operation energy and area overhead of

software programmability. As shown in Fig. 1, its pipeline consists
of a chain of coarse grained units. Each unit has its own instruction
decoder that decodes a field within the VLIW instruction and issues a
series of SIMD micro-instructions. The matrix-vector multiplication
unit (MVU) consists of T compute tiles, each of which has D
groups of C dot-product engines (DPEs) of size L multiplication
lanes. The rest of the NPU pipeline also has L SIMD lanes. Vector
operands are broadcast from C vector register files (VRFs) to all
DPE groups in a tile, while persistent model weights are fed from
the matrix register files (MRFs) shared between C DPEs in a group
(i.e. C cores). The MVU is followed by an external VRF (eVRF)
that is used to skip the MVU in case an instruction does not start
with a matrix-vector operation. In the original NPU architecture,
the eVRF feeds two identical multi-function unit (MFU) blocks that
implement vector elementwise operations commonly used in DL
models, such as activation functions (e.g. sigmoid, tanh, ReLU),
addition/subtraction, and multiplication. The final stage is the loader
which can write back results to any of the processor architecture
states (i.e. VRFs) for further processing, and also can communicate
with external components (e.g. other FPGA modules or a network
interface) through input/output FIFOs.

The most recent version of the NPU [17] targets the DL-optimized
tensor blocks that replace the conventional DSP blocks in the Intel
Stratix 10 NX FPGAs [32]. In their highest compute density mode,
each one of these tensor blocks implements three dot-10 operations
with restrictions on the inputs of these operations; one input vector
is broadcast to all three dot products in the tensor block and the other
set of three operands are fed from three internal data reuse registers.
These data reuse registers are also double-buffered to enable loading
a new set of vectors while using the current set for computation.
Thus, to make the best use of the compute capabilities of the tensor
blocks, each set of MVU DPEs and corresponding core process three
inputs simultaneously (i.e. batch-3 per core), for an overall batch size
of 3×C. To program the NPU, DL application developers do not
need to know any of these architecture details. They can write their
models using a subset of the Tensorflow Keras API [33] and then use
the NPU compiler to generate the VLIW instructions to be executed
on the FPGA overlay.

III. NPU ENHANCEMENTS FOR GNNS

In this work, we enhance the NPU architecture to support all
the operations needed for the different types of GNNs described in
Section II-A. In this section, we will describe the details of our NPU
enhancements (highlighted in red in Fig. 1).

A. Numerical Precision
In the baseline NPU implementation, the MVU used int8 pre-

cision which is natively supported in the tensor mode of operation
of the Stratix 10 NX tensor blocks, while the rest of the NPU
pipeline used a higher int32 precision. Prior work has shown
that int4/int8 quantization of GNN models reduces memory
footprint and speeds up inference while having comparable accuracy
to fp32 [34]. However, many GNN aggregation operators and other
operations such as softmax in GATs require using higher-precision
numerical representations to maintain accuracy. Therefore, we keep
the MVU int8 precision and modify the rest of the NPU pipeline
to use Google’s 16-bit Brain floating-point precision (bfloat16)
which was shown to provide similar inference accuracy to single-
precision floating-point precision [35]. In addition, each tensor block
in the Stratix 10 NX device can be configured to implement three
independent bfloat16 additions/subtractions and with additional
soft logic, it can also implement three bfloat16 multiplications.

The inputs/outputs of our enhanced NPU are streamed in/out in
bfloat16 precision. The vectors written by the loader to the MVU
VRFs are converted from bfloat16 to int8 using a precision
adapter on the VRF write path. Then, we implement another pre-
cision adapter in the eVRF to convert the int32 MVU outputs to

Fig. 1: The enhanced NPU overlay architecture with the newly added functionalities highlighted by a red border. The units highlighted in
yellow are modified to use bfloat16 precision, while the grey units use int8.

Fig. 2: Stable softmax unit internal architecture. Since each NPU core
operates at batch-3, sets of three scalar registers are used to store the
running maximum of the input vectors (Rmax 0-2) and the reduced
and accumulated softmax denominator values (Rdenom 0-2).

bfloat16 for further processing. These precision adapters have
negligible impact on overall performance since they only introduce
5-6 cycles of latency to the processing pipeline, and increase the
utilized soft logic resources by less than 5%. Most of these cycles
can also be hidden by other operations such as reading from the
register file in the eVRF block. For the elementwise operations
in the MFU, we implement additions and multiplications using a
mix of tensor blocks and soft logic resources, and use bfloat16
implementations of tanh and sigmoid generated by Intel’s DSP
builder tool [36].

B. Stable Softmax Unit (SSU)
As shown in Eq. 5, GATs require a softmax operation to normalize

the attention weights (α) across neighbouring nodes. Therefore, we
implement a numerically stable softmax unit (SSU) and integrate
it into the NPU pipeline after the first MFU. The SSU implements
Eq. 10, which is commonly used in DL applications to maintain nu-
merical stability [37]. It can process a vector x of any length N and
supports interleaved batch-3 execution to match the rest of the NPU
core pipeline. This softmax formulation is considered numerically
stable since we subtract the maximum value in the vector from all its
elements, producing a vector of only non-positive elements that will
be used as exponents. This avoids overflow for large vector elements
and guarantees that at least one element exponentiation will evaluate
to e0 = 1 to avoid a vanishing denominator.

softmax (x)i =
exi−max(x)∑N
j=1 e

xj−max(x)
forx = (x1, ..., xN) (10)

The internal architecture of the SSU is illustrated in Fig. 2. It con-
sists of 7 compute units that implement the following functionalities:

(1) Max: finds the maximum values in the interleaved batch-3 input
vectors and stores them in the 3 Rmax scalar registers, (2) Subtract:
subtracts the maximum values stored in the Rmax registers from the
corresponding input vectors, (3) Exp: performs a vector elementwise
exponentiation operation, (4) Reduce: sums up vector elements
into a scalar, (5) Accumulate: adds reduction outputs over multiple
time steps and stores the results in the Rdenom scalar registers,
(6) Reciprocal: calculates the inverse of the accumulation results
stored in the Rdenom registers, and (7) Mult: performs elementwise
multiplication between a vector and the reciprocal scalar value. All
compute units are controlled by a micro-instruction word to either
execute their operations on their inputs or pass their inputs directly
to their outputs (i.e. bypass).

In case the length of the input vector of the softmax function
is higher than the native dimension (i.e. SIMD width) of the NPU
pipeline, the vector is split into chunks that are fed sequentially to
the pipeline blocks. Since the processing pipeline operates at batch-
3, these chunks are interleaved such that the first chunk of all 3
inputs are received first before progressing to the next chunk (i.e.
A0, B0, C0, A1, B1, C1, ...). This means that the softmax is calcu-
lated over multiple passes since it involves operations that require
all the vector elements, such as max and denominator summation.
Thus, the SSU includes 3 internal registers to store the partial max
and sum values of the 3 interleaved inputs in a batch. The bottom part
of Fig. 2 highlights the used compute units in each pass. In the first
pass, all vector chunks flow through the SSU and are written back
to the eVRF by the loader to calculate the maximum value in each
vector. In the second pass, the same vector chunks again flow through
the SSU to subtract the calculated maximum value from all vector
elements and perform the elementwise exponentiation, followed by
reduction and accumulation of the exponentials for calculating the
denominator. In this pass, the accumulation scalar results are stored
in the internal Rdenom registers and the exponentiation vector
results are also passed to the output of the SSU to be again written
back to the eVRF by the loader. In the third and final pass, the
accumulation results stored in the internal registers are reciprocated
and then the vectors flow through the SSU to be multiplied by
the reciprocal values, producing the final results of the softmax
operation. These passes are automatically scheduled by the compiler
for any vector size with no explicit programming from the user.

Unlike other FPGA GNN accelerators such as [38] and [39], we
do not approximate the exponentiation operation by using lookup
tables or changing the exponentiation base to 2 instead of e as
these changes can degrade inference accuracy. The exponentiation
compute unit in our SSU provides accuracy within three units in last
place (ULPs) of the bfloat16 baseline software implementation.

C. Enhanced MFUs
Compared to the NPU’s original target workloads, GNNs require

many new elementwise vector operations. For example, GATs use
the LeakyReLU activation function (see Eq. 5) and GCNs [40]
involve operators such as division and square root when edge weights
are not unity (see Eq. 3). Other types of GNNs contain multiple

Fig. 3: Attention weight calculations using the MVU and instruction-
controlled BRAM accumulator to accumulate results across multiple
MVU operations.

aggregation methods such as mean, min, max, and standard devi-
ation [41]. Therefore, to have a general overlay that can support
commonly-used GNN aggregation functions, we extended the MFU
functionality to support these operations with minimal effect on
performance. We added min and max operations to the add/subtract
stage and maximized hardware reuse by adding multiplexers in front
of one of the two inputs of the elementwise multiplication stage.
These multiplexers enable executing elementwise multiplication,
LeakyReLU, or mean operations by selecting between inputs from
the original VRF, the LeakyReLU constant, or a read-only memory
storing pre-calculated values of 1/n where n ∈ {1, ..., Nmax} and
Nmax is the maximum number of nodes supported by the NPU,
respectively. We also add square root and reciprocal compute units
generated by Intel’s DSP builder [36] to only one of the two MFUs as
they are less commonly used, and adding them to both MFUs would
result in underutilized hardware and an unnecessary increase in the
processing pipeline latency.

D. Instruction-Controlled BRAM Accumulators

As shown in Eq. 5, to calculate the attention weights in GATs,
the embedding vectors of all nodes (h vectors) go through a linear
transformation using the weight matrix W. Then, the next step in
the computation is to perform a dot product between the attention
vectors (as/at) and the transformed embedding vectors of each pair
of neighboring nodes (Whi/Whj). This step can be formulated as
a matrix vector operation as illustrated at the top of Fig. 3 for node 1
with three neighbors. However, mapping this computation as a single
matrix-vector multiplication operation would require replicating the
input vector in many different permutations for calculating the
attention weights when nodes 2, 3, and 4 are the source nodes, which
can be prohibitive due to limited on-chip memory capacity.

Instead, we split this operation into multiple smaller matrix-vector
operations as shown in the bottom of Fig. 3. This mapping allows
us to store the transformed embedding vectors once and flexibly
reuse them with different matrix column blocks depending on which
source node attention weight we are calculating. However, this
split requires accumulating the results of multiple MVU operations,
which could only be performed by the MFU addition unit in the
baseline NPU architecture. This requires the result vector of each
MVU operation to go through the whole NPU pipeline and be written
back by the loader to the VRF of the MFU add/subtract unit to be
accumulated to the next result vector, creating a major performance
bottleneck. The MVU of the baseline NPU architecture already
included a BRAM-based accumulator (i.e. scratchpad) to interleave
the accumulation of batch-3 partial results within a single large
matrix-vector multiplication [17]. However, this BRAM accumulator
was not exposed to the NPU ISA and compiler, and thus can-
not be used for accumulating results across different matrix-vector
multiplications mapped to the MVU. To alleviate this performance
bottleneck, we change the NPU microarchitecture and ISA to expose
the BRAM accumulator to the NPU compiler. This enables the

Fig. 4: Broadcast of scalar values to vectors in the NPU eVRF.

Fig. 5: Exploiting graph-level or node-level parallelism in the NPU.

compiler to control when and how to accumulate different MVU
outputs depending on the workload.

E. Scalar Vector Support
The baseline NPU pipeline only supported vector elementwise

operations. However, GNNs require scalar-vector operations such as
vector scaling. These scalars are also not constant values that can be
pre-stored in the NPU VRFs in vector format. They are dynamically
calculated in the GNN compute graph as a vector, and then each
element of the vector becomes the scaling factor of other vectors
in subsequent operations. Therefore, we add a new scalar-to-vector
transformation block to the NPU eVRF that operates as illustrated
in Fig. 4. For a vector read from the VRF, this block can select
an element and broadcast it as a vector for subsequent elementwise
operations. The specific element of the input vector and the number
of duplicated broadcast vectors (for scaling vectors that are longer
than the pipeline SIMD width) is controlled by the eVRF instruction.

F. Compiler and Toolchain Enhancements
We extend the NPU ISA to introduce new instructions for con-

trolling the newly introduced hardware blocks. We also enhance the
compiler frontend to enable describing GNN workloads purely in
software using PyTorch Geometric [42] or an NPU domain-specific
language. Although these enhancements are an essential component
of our work, we leave out their details for space constraints.

IV. EXPLOITING PARALLELISM IN GNNS

In the workloads supported by the baseline NPU of [17], there is
a single input vector per MLP inference or RNN/GRU/LSTM time
step. Since each tensor block in the Stratix 10 NX fabric has 3 dot-
product units that share an operand, it was necessary to increase the
processing batch size to 3 inputs per core to best utilize the tensor
block compute capabilities. Unlike these conventional workloads, a
single GNN input is a complete graph consisting of many node/edge
feature vectors, which presents different parallelization opportunities
to be exploited for different performance targets.

A. Graph-level Parallelism
The same form of parallelism used by the baseline NPU can still

be exploited by simultaneously processing nodes from 3 different

input graphs per NPU core. This would result in a throughput-
optimized implementation which is useful for applications that can
tolerate batching a few inputs or when the final prediction outcome
depends on processing multiple inputs from multiple sources at the
same time. In this case, the compiler maps embedding vectors of
nodes/edges from different input graphs (that have the same topol-
ogy) to be multiplied by the same weight matrix in GNN aggregate
and update functions that can utilize the MVU as illustrated on the
left side of Fig. 5. The transformed node/edge embedding vectors
are then processed by the rest of the NPU pipeline in a sequential
interleaved manner. Since the NPU only supports persistent infer-
ence where all the node/edge feature vectors and model weights are
stored in the on-chip memory (similar to FlowGNN [12]), graph-
level parallelism can limit the size of processed graphs as it requires
storing 3 different graphs during inference.

B. Node/Edge-level Parallelism
Unlike the conventional NPU workloads, GNNs also contain

many independent operations that can be performed in parallel on
different nodes or edges of the same graph. For example, each node
can perform the linear transformation of the embedding vectors of its
neighboring nodes during aggregation or the update operation of its
own embedding vector independently from other nodes in the graph.
Therefore, the compiler can exploit this parallelism by mapping the
embedding vectors of different nodes/edges from the same graph to
be multiplied by the same linear transformation matrix as shown in
the right side of Fig. 5. This node/edge-level parallelism results in
a more latency-optimized implementation compared to graph-level
parallelism, since all the compute capabilities of the tensor blocks are
dedicated to process a single graph instead of three. It also enables
the NPU to process larger graphs since the register file memory
resources are not split between multiple graphs.

These different approaches of exploiting GNN parallelism high-
light a unique benefit of the NPU overlay flexibility; it allows users
to not only implement different DL models on the same architec-
ture purely through software but also to instruct the compiler to
exploit different parallelism approaches and optimize for different
performance targets (throughput-optimized vs. latency-optimized)
depending on the application requirements.

V. EXPERIMENTAL RESULTS

A. Methodology and Experimental Setup
1) Performance Comparisons: We evaluate our enhanced

NPU using 3 common GNN types: GATs, GINs, and GCNs. We
perform inference on the same models used in [12], to allow a
direct comparison to FlowGNN, the current state-of-the-art GNN
accelerator targeted at low latency real-time applications (using
int16 precision) on AMD Ultrascale+ (TSMC 16nm) FPGAs. We
also compare to the GPU implementation results presented in [12]
for an Nvidia RTX A6000 GPU (TSMC 8nm) which is one process
technology node ahead of the Stratix 10 NX FPGA (Intel 14nm) we
target. The GNN workloads running on the GPU are implemented
using PyTorch Geometric and the results are averaged across 5
inference runs to reduce measurement noise. For throughput com-
parisons, we use the batch size that achieved the best throughput for
the GPU and for latency comparisons, we use batch-1 GPU results.
Finally, we compare the NPU to other GNN accelerators [29], [43]
that utilize the AI engines in the AMD Versal architecture (TSMC
7nm) [44]. These accelerators do not support edge embeddings and
also rely on preprocessing the input graphs to exploit sparsity and
map sub-graphs to different SpMM/GEMM units in parallel.

2) Workloads and Datasets: For GCNs and GINs, we run 5
layers with node/edge embedding dimensions of 100, global mean
pooling, and one linear output layer with an output size of 10. For
GATs, we run 5 layers with a node embedding dimension of 16
and no edge embeddings (to match FlowGNN), 4 attention heads,

TABLE I: The graph datasets used for evaluation.

Dataset Graphs Avg. #Nodes Avg. #Edges Edge Embed.
MolHIV 41,127 25.5 55.6 Yes

MolPCBA 437,929 26 59.3 Yes
Hep10K 10,000 49.1 785.3 Yes

Cora 1 2,708 5,429 No
CiteSeer 1 3,327 4,732 No
PubMed 1 19,717 44,348 No

global mean pooling, and one linear output layer with an output
size of 10. Table I shows the 6 graph datasets that we used for
evaluation. We use MolHIV and MolPCBA which are two molecular
datasets from the Open Graph Benchmark [45] and the Hep10k
dataset generated by [12] from the high-energy physics top quark
tagging reference dataset [46]. These 3 datasets include edge features
and contain small graphs on the order of 10-200 nodes which are
suitable for the real-time GNN inference applications targeted by
both our NPU and FlowGNN. We also evaluate the NPU on 3 larger
publication datasets, Cora, Citseer, and PubMed [47], to showcase
the high performance of the NPU on standard datasets that other
GNN accelerators typically use to evaluate performance.

For the MolHIV and MolPCBA datasets, the graphs are small
enough to store all the node/edge embedding feature vectors for
a batch size of 3 inputs per NPU core. Thus, we use them to
study the performance tradeoff between our throughput-optimized
and latency-optimized GNN kernels explained in Section IV. The
NPU operates at batch-9 (3 cores × batch-3 per core) and batch-
3 (3 cores × batch-1 per core) for the throughput-optimized and
latency-optimized modes, respectively. For the other four datasets,
the graphs have significantly more nodes/edges, as shown in Table I.
This requires operating the NPU at only batch-1 where the compute
units of only one core are enabled and the VRF on-chip memory
resources of the other cores are re-purposed as an extension to the
enabled core’s VRF to accommodate these large graphs.

3) NPU Performance and Power Measurements: We mea-
sure the NPU compute latency on a Stratix 10 NX development
kit using hardware performance counters that record the number of
cycles starting from popping the first input vector from the input
FIFO until pushing the last output vector to the output FIFO. We
also add the latency for transferring the input graph and sending
back the inference output, assuming that the NPU receives/sends
inputs/outputs directly over 100 Gbps Ethernet. The network transfer
latency results we used are based on real measurements for differ-
ent network payload sizes from [17]. This is a more constrained
input/output bandwidth compared to the 128 Gbps PCIe interface
used by FlowGNN on the AMD Alveo U50 card. For throughput
results, we can overlap the processing of one input graph with the
loading of the next. Therefore, we use the higher latency value
between the input/output transfer and compute when calculating the
NPU throughput (i.e. data-transfer-bound vs. compute-bound). In all
the cases we experimented with, the input/output loading was never
the throughput bottleneck. The NPU power consumption results are
obtained by measuring the power of the Stratix 10 NX development
kit using a high resolution power meter in room temperature ambient
without any special cooling solutions (only air-cooled heat sink).

B. FPGA Implementation Results
The RNN, GRU, and LSTM workloads used to evaluate the

baseline NPU had input vectors with sizes ranging from 512 to 1792
elements. However, the GNN workloads that we evaluate here have
much smaller node/edge embedding vector sizes (100 for GCNs and
GINs, 16 for GATs). As a result, the original NPU configuration
with 2 cores, 7 MVU tiles, 40 DPEs and 40 lanes (2C-7T-40D-40L)
would result in significant hardware underutilization since an input
vector would be padded by zeros to fit the architecture’s native input
dimension (7 tiles × 40 lanes = 280). In addition, the inputs to these
GNN workloads (entire graphs) have a higher memory footprint

2.3 2.8 3.6 2.3 2.7 3.5 1.9 2.4 3.0 31.9 5.1 64.3 5.2

Fig. 6: Throughput and latency results comparison between Nvidia RTX A6000, FlowGNN on AMD Alveo U50, and our enhanced
throughput/latency-optimized NPU on Intel Stratix 10 NX.

TABLE II: Resource utilization of our enhanced NPU on the Stratix
10 NX device (TBs: tensor blocks, ALMs: adaptive logic modules).

TBs ALMs BRAMs
Available 3,960 (100%) 702,720 (100%) 6,847 (100%)
Total 2,061 (52%) 343,620 (49%) 5,438 (79%)
|− MVU 1,800 (45%) 112,705 (16%) 2,930 (42.8%)
|− eVRF - 28,141 (4%) 435 (6.4%)
|− MFU0 99 (2.5%) 66,815 (9.5%) 753 (11%)
|− SSU 63 (2%) 75,031 (10.7%) 246 (3.6%)
|− MFU1 99 (2.5%) 54,351 (7.7%) 750 (11%)
|− Loader - 4,867 (0.7%) 150 (2.2%)
|− Inst.Decoders - 1,710 (0.2%) 174 (2.5%)

and require deeper VRFs compared to those of the conventional
workloads (sequence vectors). Therefore, we perform a design space
exploration by sweeping different values for the NPU architecture
parameters and we find that an architecture with 3 cores, 3 tiles, 40
DPEs and 40 lanes (3C-3T-40D-40L) achieves the best tradeoff be-
tween hardware utilization, processing latency, and FPGA resource
utilization across all workloads and datasets in our evaluation. By
reducing the number of tiles, it also reduces the amount of on-
chip memory resources allocated to MVU MRFs and allows us to
implement deeper VRFs to store the larger GNN inputs. This new
NPU configuration with smaller but more cores in addition to all
the hardware features added for GNN support achieves 36% higher
latency but improves throughput by 6% on average for the original
MLP/RNN/GRU/LSTM NPU workloads. If a user is interested in
only a subset of workloads, this latency overhead can be completely
eliminated by customizing the NPU configuration for the workloads
of interest [48]. We use Intel Quartus 22.4 to synthesize, place and
route our enhanced NPU on the Intel Stratix 10 NX device [32]. Our
NPU achieves a maximum operating frequency of 300 MHz and its
resource utilization results are presented in Table II.

C. Comparison Results vs. FlowGNN and GPU
Fig. 6 shows the throughput and latency comparison results be-

tween our enhanced NPU and both FlowGNN and the Nvidia RTX
A6000 GPU across 5 datasets and 3 different GNN models. Our NPU
running throughput-optimized GNN kernels for the MolHIV and
MolPCBA dataset achieves the highest throughput; it can process
7.8× and 5.8× more graphs per second on average compared to
FlowGNN and the GPU, respectively. On these datasets, the latency-
optimized kernels running on our enhanced NPU are 1.6× faster
for GINs, but 50% and 5% slower for GATs and GCNs compared
to FlowGNN. The latency results of both FlowGNN and our NPU
are significantly better than that of the RTX A6000, highlighting
that FPGAs are a better match for real-time GNN inference. The
results on MolHIV and MolPCBA also highlight a unique benefit
of the NPU overlay architecture; it can programmed purely through

TABLE III: Energy efficiency (in million graphs/kJ) of our NPU,
FlowGNN, and RTX A6000 GPU on the MolHIV dataset. The NPU
results are for latency-optimized / throughput-optimized kernels.

Workload NPU FlowGNN RTX A6000
GAT 2.4 / 5.1 2.3 0.0054
GIN 4.4 / 5.5 0.73 0.0045
GCN 2.8 / 5.9 0.88 0.0035

Fig. 7: Batch-1 latency of the NPU on an Intel Stratix 10 NX (14nm)
and the Chen et al. accelerator [43] on an AMD Versal (7nm) for
GCN, GraphSage (GS), GIN, and simplified graph convolution (SGC)
models on the Cora, CiteSeer, and PubMed datasets.

software to run different sequences of instructions executing the
same GNN model to target either a latency- or throughput-optimized
implementation depending on the target application. On average,
the latency-optimized GNN kernels can achieve 1.6× lower latency
than the throughput-optimized ones. On the other hand, throughput-
optimized kernels have 1.8× higher throughput on average.

For the three other datasets (Hep10K, Cora, and CiteSeer), our
NPU can only run the latency-optimized kernels with batch-1 to
accommodate the larger input graph sizes. For both Cora and Cite-
Seer, even the latency-optimized kernels running on our enhanced
NPU can achieve 1.6× and 8.8× higher throughput than FlowGNN
and the GPU, respectively. In addition, it can achieve similar
GAT latency and 1.8× lower GIN and GCN latency compared to
FlowGNN. On the Hep10K dataset, our NPU performs slightly better
on GINs but falls behind on GAT and GCN workloads compared to
FlowGNN. This can be attributed to the nature of this dataset, in
which each node has 16 neighbors. In such cases, the NPU MFUs
are the bottleneck when executing the aggregation functions.

Table III compares the energy efficiency of our NPU to FlowGNN
and the RTX A6000 GPU on the MolHIV dataset as an example. The
NPU processes 3.6× and more than 900× more graphs/kJ compared
to FlowGNN and the GPU, respectively.

D. Comparison Results vs. Versal-based GNN Accelerator

Chen et al. [43] develop a high-performance accelerator that
formulates GNNs as GEMM/SpMM operations and exploits the
heterogeneous nature of the AMD Versal architecture [44] which
combines an FPGA fabric with general-purpose ARM CPU cores
and an array of vector processors with programmable bus-based
interconnect (i.e. AI engines). The host CPU first preprocesses the
input graphs by partitioning them into smaller submatrices for paral-
lel execution. During runtime, an analyzer and a scheduler running
on the on-chip ARM Cortex-A72 CPU maps the computation kernels
of GNNs to GEMM or SpMM primitives (based on their data
sparsity), which are then computed using the AI engines or FPGA
fabric, respectively.

Although the AMD Versal architecture has a process technology
advantage over the Intel Stratix 10 NX (7nm vs. 14nm), we directly
compare the end-to-end performance of an instance of our NPU
overlay with 1 core, 1 tile, 20 DPEs, and 20 lanes to the GNN
accelerator from [43]. Fig. 7 presents the latency results of both
accelerators for GCN, GIN, GraphSage and simplified graph con-
volution (SGC) models on the Cora, CiteSeer, and PubMed datasets.
For the Chen et al. [43] accelerator, we add the preprocessing time
and the actual compute time for a fair comparison to our NPU
that does not require any preprocessing. For the Cora and CiteSeer
datasets across all four models, the NPU achieves 3.4-11.7× lower
latency due to the significant preprocessing overhead in [43]. The
PubMed dataset contains graphs with 7× more nodes than Cora
and CiteSeer, which benefits more from the parallelization across
different SpMM and GEMM engines in the Chen et al. accelerator.
Despite the process technology gap, our NPU can still achieve 0.66-
0.95× the performance of [43] on the PubMed dataset. This compar-
ison shows the advantage the NPU accrues from not requiring any
preprocessing operations, and how it makes the NPU more suitable
for embedded real-time applications, especially on smaller graphs.
In addition, the accelerator from [43] does not support GNNs with
complex aggregation functions or edge embeddings due to formulat-
ing workloads as a series of GEMM/SpMM operations. Although
the I-GCN accelerator [26] achieves the highest performance for
GCN workloads, we were not able to directly compare the NPU to
it since I-GCN’s preprocessing overhead (which is key to its high
performance) is not disclosed in the paper.

VI. CASE STUDY: GNN-BASED MIMO ANTENNA
SCHEDULING IN 5G COMMUNICATION NETWORKS

With advances in wireless communication networks, there is an
ever-increasing demand for communication infrastructure that can
serve more user equipments (UEs) with higher bandwidths and
lower latencies. Multi-antenna transmission, commonly referred to
as massive multi-input multi-output (MIMO), is used in modern 5G
networks to transmit different data streams between a base station
and multiple UEs simultaneously [49]. This can be achieved using
a large antenna array that can be split into multiple sub-arrays
to direct multiple beams over a range of horizontal and vertical
angles, and thus spatially multiplex frequency sub-bands over a
given time slot between multiple UEs. In such massive MIMO
systems, the base station needs to determine the best subset of UEs to
group together for transmission within a given time slot (i.e. MIMO
antenna scheduling) based on the current channel state and set of
active UEs. These transmission time slots are typically ∼1ms in 5G
networks [50], requiring extremely low latency scheduling.

Classic approaches used greedy scheduling algorithms, which
achieve sub-optimal results and do not scale well with the number
of active UEs. Therefore, recent approaches deploy DL models to
perform the MIMO scheduling task, and more specifically GNNs [8].
In this approach, a given network is represented as 3 graphs, where
the nodes are a single sub-band and multiple UEs (or data streams

Fig. 8: GNN-based MIMO antenna scheduling latency using an NPU
with 8 cores, 1 tile, 20 lanes, and 20 DPEs for 24 sub-band inferences
and a varying number of active UEs (i.e. graph nodes).

within UEs) with weighted edges between them. One graph is fully-
connected with edge weights representing inter-UE interference. The
other two are star graphs with edges between the sub-band nodes and
all the UE nodes where the edge weights capture UE fairness scaling
and UE selection scores. The MIMO antenna schedule is inferred
using a 4-layer GNN, where each layer is the combination of a GAT
and two GCN layers applied to the three graphs. This approach was
shown to achieve high-quality schedules while reducing complexity
by about 90% compared to traditional greedy algorithms [8].

This represents a realistic application for GNNs which requires:
(1) low latency and high-throughput real-time GNN inference due
to batched graph processing for scheduling multiple sub-bands si-
multaneously, (2) flexibility to execute multiple GNN layer types in
the same workload, and (3) energy-efficient embedded deployment
in a wireless base station without the opportunity to preprocess input
graphs beforehand. Unlike all existing GNN acceleration solutions,
our enhanced NPU overlay can satisfy all three requirements for this
use case. Fig. 8 presents the latency results for an 8C-1T-20D-20L
NPU instance running inference of the MIMO antenna scheduling
GNN from [8] on network graphs with varying number of active
UEs (i.e. nodes). It shows that our NPU can infer the schedule for 24
sub-bands (8 cores × batch-3) simultaneously with 100 UEs/nodes
each in only 80µs, which is well below the 1ms transmission time
slot in 5G networks.

VII. CONCLUSION

In this work, we enhance the architecture, instruction set, and
software stack of the NPU overlay to support low latency GNN
inference.We modify the architecture of the NPU to use higher
numerical precision (bfloat16) for the vector operations, include
a stable softmax unit, and add vector functional units for common
operations in GNNs (e.g. mean/max/min, square root, reciprocal).
We also upgrade the software stack to enable users to describe their
GNNs in software and compile it to NPU instructions. The software
programmability of the NPU not only allows users to run different
DL models and GNN types on the same accelerator, but also enables
the compiler to generate GNN codes for different performance
targets (throughput-optimized vs. latency-optimized) by exploiting
different parallelism dimensions on the same underlying hardware.

Without sacrificing the overlay flexibility, our enhanced NPU
implemented on a 14nm Intel Stratix 10 NX FPGA can achieve
7.8× higher throughput and similar latency on average compared
to the state-of-the-art model-specific streaming hardware on same-
generation FPGAs. It also does not require any input graph pre-
processing and thus achieves 2.6× lower latency on average com-
pared to GNN overlays that rely on preprocessing and target a
newer-generation 7nm AMD Versal architecture with AI engines.
Compared to an 8nm Nvidia RTX A6000 GPU, our NPU can
achieve 5.8× higher throughput,19× lower latency, and 900× more
energy efficient while being software-programmable. Finally, we
presented a case study for using our enhanced NPU in real-time
GNN-based multi-input multi-output (MIMO) antenna scheduling
in 5G networks. This use case showed that, unlike other existing
GNN acceleration solutions on FPGAs, our NPU can run on practical
models that combine multiple GNN types and also meet real-time
latency requirements.

ACKNOWLEDGMENTS

This work was funded by the Intel/VMWare Crossroads 3D-
FPGA Academic Research Centre and NSERC. The authors thank
Rishov Sarkar from the FlowGNN team for helpful answers about
its design and performance.

REFERENCES

[1] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun, “Graph Neural Networks: A Review of Methods and
Applications,” AI open, vol. 1, pp. 57–81, 2020.

[2] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “ETA Prediction
with Graph Neural Networks in Google Maps,” in ACM International
Conference on Information & Knowledge Management (CIKM), 2021.

[3] W. Luo, H. Zhang, X. Yang, L. Bo, X. Yang, Z. Li, X. Qie, and J. Ye,
“Dynamic Heterogeneous Graph Neural Network for Real-time Event
Prediction,” in ACM International Conference on Knowledge Discovery
& Data Mining (KDD), 2020.

[4] Y. Liu, X. Shi, L. Pierce, and X. Ren, “Characterizing and Forecast-
ing User Engagement with In-App Action Graph: A Case Study of
Snapchat,” in ACM International Conference on Knowledge Discovery
& Data Mining (KDD), 2019.

[5] M. Lu, Z. Han, S. X. Rao, Z. Zhang, Y. Zhao, Y. Shan, R. Raghunathan,
C. Zhang, and J. Jiang, “BRIGHT: Graph Neural Networks in Real-Time
Fraud Detection,” in ACM International Conference on Information &
Knowledge Management (CIKM), 2022.

[6] W. Shi and R. Rajkumar, “Point-GNN: Graph Neural Network for
3D Object Detection in a Point Cloud,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[7] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph Neural Networks in
Particle Physics,” Machine Learning: Science and Technology, vol. 2,
no. 2, 2020.

[8] O. Orhan, V. N. Swamy, M. Rahman, H. Nikopour, and S. Talwar,
“Graph Neural Networks to Enable Scalable MAC for Massive MIMO
Wireless Infrastructure,” in IEEE International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), 2023.

[9] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progres-
sion,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29,
2021.

[10] Z. Tao, C. Wu, Y. Liang, K. Wang, and L. He, “LW-GCN: A Lightweight
FPGA-based Graph Convolutional Network Accelerator,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 16,
no. 1, pp. 1–19, 2022.

[11] B. Zhang, H. Zeng, and V. Prasanna, “GraphAGILE: An FPGA-based
Overlay Accelerator for Low-latency GNN Inference,” IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 2023.

[12] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “FlowGNN:
A Dataflow Architecture for Real-Time Workload-Agnostic Graph Neu-
ral Network Inference,” in IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2023.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” Advances in Neural Information Processing
Systems (NeurIPS), 2017.

[14] D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Liò, “Graph Neural
Networks with Adaptive Readouts,” Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[15] T.-H. Kim and T.-H. Park, “Placement Optimization of Multiple LiDAR
Sensors for Autonomous Vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 5, pp. 2139–2145, 2019.

[16] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar et al., “Why Compete When
You Can Work Together: FPGA-ASIC Integration for Persistent RNNs,”
in IEEE International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2019.

[17] A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz,
and M. Langhammer, “Beyond Peak Performance: Comparing the Real
Performance of AI-Optimized FPGAs and GPUs,” in IEEE International
Conference on Field-Programmable Technology (FPT), 2020.

[18] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional Networks on Graphs
for Learning Molecular Fingerprints,” Advances in Neural Information
Processing Systems (NeurIPS), 2015.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,” Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[20] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in International Conference
on Learning Representations (ICLR), 2018.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are
Graph Neural Networks?” in International Conference on Learning
Representations (ICLR), 2018.

[22] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated Graph
Sequence Neural Networks,” in International Conference on Learning
Representations (ICLR), 2016.

[23] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón,
“Computing Graph Neural Networks: A Survey from Algorithms to
Accelerators,” ACM Computing Surveys (CSUR), vol. 54, no. 9, pp. 1–
38, 2021.

[24] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo,
S. Che, S. Reinhardt, and M. Herbordt, “AWB-GCN: A Graph Con-
volutional Network Accelerator with Runtime Workload Rebalancing,”
in IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020.

[25] J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A Flexi-
ble and Energy-Efficient Accelerator for Graph Convolutional Neural
Networks,” in IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2021.

[26] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M. Herbordt, Y. Lin,
and A. Li, “I-GCN: A Graph Convolutional Network Accelerator with
Runtime Locality Enhancement Through Islandization,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2021.

[27] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN Training on
CPU-FPGA Heterogeneous Platforms,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2020.

[28] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “HyGCN: A GCN Accelerator with Hybrid Architecture,”
in IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020.

[29] C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Lit, and D. Tao,
“H-GCN: A Graph Convolutional Network Accelerator on Versal ACAP
Architecture,” in IEEE International Conference on Field-Programmable
Logic and Applications (FPL), 2022.

[30] F. Shi, A. Y. Jin, and S.-C. Zhu, “VersaGNN: A Versatile Accelerator
for Graph Neural Networks,” arXiv:2105.01280, 2021.

[31] L. Gong and Q. Cheng, “Exploiting Edge Features for Graph Neural
Networks,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[32] M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, “Stratix
10 NX Architecture and Applications,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2021.

[33] F. Chollet et al., “Keras,” https://keras.io, 2015.
[34] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:

Quantization-aware training for graph neural networks,” arXiv preprint
arXiv:2008.05000, 2020.

[35] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen et al.,
“A Study of Bfloat16 for Deep Learning Training,” arXiv:1905.12322,
2019.

[36] Intel Corp., “DSP Builder for Intel FPGAs Advanced Blockset Hand-
book (HB DSPB ADV),” 2023.

[37] E. Kloberdanz, K. G. Kloberdanz, and W. Le, “Deepstability: A
study of unstable numerical methods and their solutions in deep
learning,” in 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, may 2022, pp. 586–597. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3510003.3510095

[38] W. Yan, W. Tong, and X. Zhi, “FPGAN: An FPGA Accelerator
for Graph Attention Networks with Software and Hardware Co-
optimization,” IEEE Access, vol. 8, pp. 171 608–171 620, 2020.

[39] T. Yang, L. Hu, C. Shi, H. Ji, X. Li, and L. Nie, “HGAT: Heterogeneous
Graph Attention Networks for Semi-Supervised Short Text Classifica-
tion,” ACM Transactions on Information Systems (TOIS), vol. 39, no. 3,
pp. 1–29, 2021.

[40] T. N. Kipf and M. Welling, “Semi-supervised Classification with Graph
Convolutional Networks,” arXiv:1609.02907, 2016.

https://keras.io
https://doi.ieeecomputersociety.org/10.1145/3510003.3510095

[41] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal
Neighbourhood Aggregation for Graph Nets,” Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[42] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with
PyTorch Geometric,” arXiv:1903.02428, 2019.

[43] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna,
“Exploiting On-chip Heterogeneity of Versal Architecture for GNN
Inference Acceleration,” in IEEE International Conference on Field-
Programmable Logic and Applications (FPL), 2023.

[44] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx Adaptive
Compute Acceleration Platform: Versal Architecture,” in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
2019.

[45] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open Graph Benchmark: Datasets for Machine Learn-
ing on Graphs,” Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[46] G. Kasieczka, T. Plehn, J. Thompson, and M. Russel, “Top
Quark Tagging Reference Dataset,” 2019. [Online]. Available: https:
//doi.org/10.5281/zenodo.2603256

[47] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective Classification in Network Data,” AI magazine, vol. 29,
no. 3, pp. 93–93, 2008.

[48] A. Boutros, E. Nurvitadhi, and V. Betz, “Specializing for Efficiency:
Customizing AI inference processors on FPGAs,” in IEEE International
Conference on Microelectronics (ICM), 2021.

[49] P. von Butovitsch, D. Astely, A. Furuskär, B. Göransson, B. Hogan,
J. Karlsson, and E. Larsson, “Massive MIMO for 5G networks (Ericsson
White Paper BNEW-23:004809UEN),” 2023.

[50] Y. Chen, Y. Wu, Y. T. Hou, and W. Lou, “mCore: Achieving Sub-
Millisecond Scheduling for 5G MU-MIMO Systems,” in IEEE Con-
ference on Computer Communications (INFOCOM), 2021.

https://doi.org/10.5281/zenodo.2603256
https://doi.org/10.5281/zenodo.2603256

	Introduction
	Background & Related Work
	GNN Models
	GNN Acceleration
	The Neural Processing Unit (NPU) Overlay

	NPU Enhancements for GNNs
	Numerical Precision
	Stable Softmax Unit (SSU)
	Enhanced MFUs
	Instruction-Controlled BRAM Accumulators
	Scalar Vector Support
	Compiler and Toolchain Enhancements

	Exploiting Parallelism in GNNs
	Graph-level Parallelism
	Node/Edge-level Parallelism

	Experimental Results
	Methodology and Experimental Setup
	Performance Comparisons
	Workloads and Datasets
	NPU Performance and Power Measurements

	FPGA Implementation Results
	Comparison Results vs. FlowGNN and GPU
	Comparison Results vs. Versal-based GNN Accelerator

	Case Study: GNN-based MIMO Antenna Scheduling in 5G Communication Networks
	Conclusion
	References

