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Object detection and classification is a key task in many computer vision applications such as smart surveil-

lance and autonomous vehicles. Recent advances in deep learning have significantly improved the quality

of results achieved by these systems, making them more accurate and reliable in complex environments.

Modern object detection systems make use of lightweight convolutional neural networks (CNNs) for feature

extraction, coupled with single-shot multi-box detectors (SSDs) that generate bounding boxes around the

identified objects along with their classification confidence scores. Subsequently, a non-maximum suppres-

sion (NMS) module removes any redundant detection boxes from the final output. Typical NMS algorithms

must wait for all box predictions to be generated by the SSD-based feature extractor before processing them.

This sequential dependency between box predictions and NMS results in a significant latency overhead and

degrades the overall system throughput, even if a high-performance CNN accelerator is used for the SSD

feature extraction component. In this paper, we present a novel pipelined NMS algorithm that eliminates

this sequential dependency and associated NMS latency overhead. We then use our novel NMS algorithm to

implement an end-to-end fully pipelined FPGA system for low-latency SSD-MobileNet-V1 object detection.

Our system, implemented on an Intel Stratix 10 FPGA, runs at 400 MHz and achieves a throughput of

2,167 frames per second with an end-to-end batch-1 latency of 2.13 ms. Our system achieves 5.3× higher

throughput and 5× lower latency compared to the best prior FPGA-based solution with comparable

accuracy.
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1 INTRODUCTION

Object detection involves identifying multiple objects in an input image or video frame, classifying

them into different classes, and generating a bounding box with the detection confidence score

around each object. Modern computer vision systems use object detectors powered by deep

learning algorithms in various applications such as autonomous vehicles, traffic monitoring,

manufacturing, robotics, image search, and smart surveillance [36]. Most of these applications

require not only high detection accuracy, but also low-latency real-time performance. For example,

low latency is of crucial importance when detecting a pedestrian or an obstacle and applying

the brakes in an autonomous vehicle. As such, an efficient implementation of high-performance

low-latency object detection is necessary for the deployment of such computer vision systems.

Object detection consists of feature extraction followed by localization and classification

of objects, as illustrated in Figure 1. Deep neural networks, and more specifically convolu-

tional neural networks (CNNs), have recently been used as universal feature extractors that

result in improved detection accuracy, compared to classical hand-crafted feature extraction

approaches [30]. After that, a single-shot detector (SSD) has been adopted in many modern

systems for detection and localization of objects [19]. An SSD typically consists of a number of

convolution layers followed by a sequence of data pre-processing operations and non-maximum

suppression (NMS). The SSD convolution layers use the features extracted by the CNN to gen-

erate predictions of bounding boxes and scores for the detected objects at different scales. These

predictions go through a series of pre-processing operations. Then, the NMS module sorts all

bounding boxes, eliminates partially overlapping boxes and selects the bounding box with the

highest confidence score per class. To reduce the overall computational complexity, compact

lightweight CNNs (e.g., MobileNet-V1 [13]) are commonly used for low-latency feature extraction.

Hence, an SSD coupled with a MobileNet-V1 as its feature extractor, commonly known as SSD-

MobileNet-V1, is a popular object detection pipeline which is aggressively optimized for real-time

applications. This workload is selected as one of the MLPerf key inference workloads [23] for

benchmarking deep learning hardware accelerators.

The dataflow of this workload, as well as any other SSD-based object detection, imposes a strictly

sequential dependency between the convolution layers and the NMS module. The NMS component

must wait for all bounding boxes to be produced before processing them, resulting in a substantial

latency overhead and throughput degradation for the overall system. To address this, our recent

work in [2] introduces a novel NMS algorithm that eliminates the strict sequential dependency

and enables pipelining the execution of the convolution layers with the NMS components. We

implement an end-to-end FPGA-based object detection system that uses our novel NMS algorithm

to reduce the latency overhead and improve system throughput compared to traditional sequential

implementations, with no effect on detection accuracy.

In this work, we further improve our NMS hardware implementation by interleaving the pro-

cessing of multiple images within the NMS module (i.e., multi-threading). In addition, we improve
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Fig. 1. Overview of the processing in SSD-based object detection.

the end-to-end object detection latency by implementing a piece-wise linear approximation

for non-linear functions (e.g., sigmoid, exponential) instead of the more expensive floating-

point-based implementation. Our end-to-end FPGA-based object detection system integrates

HPIPE [11], a state-of-the-art deeply pipelined CNN accelerator, with our new fully-pipelined and

multi-threaded NMS module. Our solution outperforms all existing FPGA-based object detection

systems, with a throughput of 2,167 frames per second (FPS) and an end-to-end latency of only

2.13 ms based on actual hardware measurements on an Intel Stratix 10 FPGA.

Our key contributions can be summarized as follows:

• We present a novel pipelined NMS algorithm that eliminates the sequential dependency on

the preceding convolution layers in SSD-based object detectors.

• We implement a fully-pipelined multi-threaded NMS hardware module that exploits our new

NMS algorithm and interleaves the processing of multiple images to match the throughput

of the layer-pipelined backbone CNN accelerator (HPIPE).

• We implement an end-to-end FPGA object detection system that outperforms prior FPGA

systems with comparable accuracy and achieves 5.3× higher throughput and 5× lower

latency compared to the only FPGA-based submission in 2021 MLPerf [23] for SSD-based

object detection systems.

2 BACKGROUND

2.1 Object Detectors

Object detection is a fundamental task in many computer vision applications which involves

the localization and classification of multiple objects within an image. The outputs of an object

detection system are predictions of the coordinates of bounding boxes around the detected objects,

as well as confidence scores for the classification of each of the localized objects (bounding boxes)

into a number of pre-determined classes. Traditionally, two-stage detectors [15] were commonly

used. The first stage of these detectors, known as the region proposal network, performs object

localization and is then followed by a classifier to identify the class of the localized object.

R-CNN [10] for instance, is a two stage detector which first generates bounding boxes based

on a segmentation map of the image, and then a conventional CNN performs inference on each
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of the generated boxes. Since CNN classification is applied on each of the generated regions of

proposal (i.e., bounding boxes), this type of detector has a high computational complexity. A

highly-accurate and optimized version of a VGG-16 R-CNN two-stage detector was presented

in [26]. However, it could process only 5 images per second on an NVIDIA K40 28nm GPU,

highlighting that two-stage object detectors are unsuitable for real-time applications.

More recently, one-stage detectors were introduced as a solution for the high computational

complexity of two-stage detectors. This type of detector performs both localization and classi-

fication in a single forward pass of the model. The improvements of one-stage detectors over

two-stage detectors arise from the use of a fixed set of pre-calculated boxes of varying dimensions

and positions in the feature map. These boxes are known as priors or anchor boxes and are

predefined based on the object sizes in the training dataset. One-stage detectors such as SSD [19],

YOLO [24], and YOLOv3 [25] use anchor boxes to predict the bounding box of the detected objects

in an input image. In our work, we focus on one-stage detectors, more specifically SSDs, since it is

a popular choice for object detection pipelines and is used in the SSD-MobileNet-V1 model from

the MLPerf benchmark suite. A final post-processing step known as non-maximum suppression

(or NMS for short) is commonly used in YOLO/SSD-based object detectors to remove redundant

bounding boxes around a localized and classified object.

2.2 CNN-Based Feature Extraction

CNNs have been widely used to perform image classification with high accuracy on complex

datasets [12]. CNNs for image classification are typically composed of several convolution layers

for feature extraction followed by a few fully-connected layers for classification. As they result

in higher accuracy compared to classical hand-crafted feature extractors, SSDs commonly use

the feature extraction layers of pre-trained image classification CNNs. Recently, a new class of

CNN-based feature extractors called MobileNets [13] have become very popular due to their

reduced computational cost compared to prior CNNs. This is achieved by replacing the traditional

convolution operations by depthwise convolutions followed by pointwise convolutions [7]

(collectively called depthwise separable convolutions). This reduces the total number of model

parameters and operations with minimal impact on accuracy. Therefore, MobileNets have become

favorable candidates for real-time applications, especially on mobile platforms with limited

compute capabilities and power budgets. In this work, we use MobileNet-V1 [13] which has 4.2

million parameters and can fit in the on-chip memory of most modern FPGAs [3, 21].

2.3 Single-Shot Detectors

In SSD models, the feature extractor is followed by a series of SSD convolution layers that in-

clude box prediction and class prediction layers. As shown in Figure 1, the SSD convolutions are

performed on intermediate feature maps of various scales, which allows the SSD model to detect

objects of different sizes in an image. Feature maps produced by intermediate layers of the back-

bone feature extractor CNN are processed by pairs of SSD convolutional layers to predict both

the coordinates of bounding boxes relative to the predefined priors (anchor boxes) as well as the

classes of the objects inside these boxes. In this work, we use the COCO dataset [18] with 91 object

classes, which is used in the MLPerf benchmarks.

The convolution layers of SSD-MobileNet-V1 produce outputs with (width × height × output

channel) dimensions of (19 × 19 × 12), (10 × 10 × 24), (5 × 5 × 24), (3 × 3 × 24), (2 × 2 × 24) and

(1×1×24). For the first layer, each location of the 19×19 channels has 3 pre-defined boxes against

which a box will be matched. Hence, this layer has 19 × 19 × 3 = 1, 083 box predictions. Similarly,

the other 5 box prediction layers will have 6 pre-defined boxes per location, which results in 600

(10 × 10 × 6), 150 (5 × 5 × 6), 54 (3 × 3 × 6), 24 (2 × 2 × 6), and 6 (1 × 1 × 6) box predictions
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ALGORITHM 1: Baseline NMS algorithm

Data: scores, boxes, IOUthr

Result: detected_objects

1 detected_objects = {};

2 for each class do

3 detected_class_objects = {};

4 indexes = argSort(scores, class);

5 while indexes not empty do

6 index = indexes[0];

7 best = {boxes[index], scores[index]};

8 detected_class_objects.append(best);

9 scores.erase(index); boxes.erase(index);

10 IOUval = calculate_IOU(best, boxes);

11 indexes = filter(IOUval , IOUthr );

12 detected_objects.append(class_selected_boxes)

per layer. In total, the combined SSD layers will generate 1, 917 prediction boxes per image. These

box predictions are calculated as an offset from the stored priors or anchor boxes. On the other

hand, the six class predictor layers generate class prediction scores (out of 91 classes) for each of

the 1, 917 generated boxes, each of which is described with their center co-ordinates, width, and

height as {cx,cy,w,h}.

Since the co-ordinates of the valid predicted boxes are currently in the form of an offset, they

are compared against the stored anchor boxes and then are converted to actual co-ordinates in

the NMS pre-processing step. The center and the size of the predicted boxes {cx,cy,w,h} are

used to generate boundary co-ordinates {xmin,ymin,xmax,ymax}. Additionally, a sigmoid activation

function is applied to the list of 91 class scores for each of the 1, 917 boxes. However, many of these

predictions are then filtered out by comparing their confidence score against a pre-determined

threshold. Only the boxes that pass this threshold are considered as valid boxes. Subsequently, the

generated co-ordinates of the valid boxes along with their confidence scores are sent as candidates

for further processing by the NMS stage.

2.4 Non-Maximum Suppression (NMS)

The baseline algorithm for NMS is shown in Algorithm 1. For every class in the dataset, the indexes

of the boxes are sorted based on the descending order of the score using the argSort function.

While the list of the sorted indexes is not empty, the confidence score of the box corresponding

to the first index in the sorted list (i.e., the current best candidate) is added as a selected box for

this class. Then, the intersection over union (IOU) ratio is calculated, as shown in Equation (1),

between the current best candidate and all remaining boxes in the list.

Intersection Over Union (IOU ) =
Area of Overlap

Area o f Union
(1)

If the IOU exceeds a pre-determined threshold (i.e., high overlapping area between two boxes),

then both boxes likely contain the same object. Hence, the boxes with IOU values above the

pre-determined threshold are discarded by deleting them from the list of candidates. This process

continues until all boxes are either selected or discarded for a specific class. Then, the selected

boxes for this class are added to the list of all selected boxes before proceeding to the next

class.
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The sorting operation at the beginning of baseline NMS requires all candidate boxes to be ready

for the storing to be performed. This requires a large amount of intermediate storage and imposes

a strictly sequential dependency between the execution of the convolution layers and NMS compu-

tations, resulting in increased latency and reduced throughput for the overall system. In addition,

this algorithm and its pre-processing steps have a complex control flow that does not readily lend

itself to an efficient hardware implementation (e.g., data format manipulations, erasing elements

from a list) and they are typically offloaded to the host CPU in prior works [6]. In our previous

work [2], we introduced a novel implementation of the NMS algorithm that eliminates the

sequential dependency, reduces intermediate storage requirement and simplifies the control flow,

enabling a pipelined end-to-end hardware implementation on the FPGA with significantly reduced

latency overhead. Despite this highly optimized unit, NMS remained as the bottleneck in the

object detection pipeline; in this work we overcome this bottleneck and enhance the end-to-end

object detection throughput by 3× with minimal resource cost. Due to the layer-pipelined nature

of HPIPE, it can be working on multiple images at the same time and therefore can still exceed

the consumption rate of our NMS module. To match the throughput, we can either instantiate N
independent NMS modules, each working on a different image, or multi-thread the NMS module

to interleave the processing of prediction boxes from N images. We show that multi-threading

the NMS unit is much more resource efficient than replicating it, and that a multi-threading factor

of 3 (i.e., N = 3) is sufficient to match the throughput of the HPIPE backbone CNN.

3 RELATED WORK

While many FPGA-based object detection systems have been introduced in the literature, a

number of such systems [6, 20, 32] use software implementations of the NMS pre-processing

and NMS stages due to their complex control flow. In contrast, our work introduces a novel

pipelined NMS algorithm that allows implementation of the entire end-to-end object detection

system on the FPGA. The authors of [34] presented a YOLOv3 [25] object detection system

with DarkNet-53 [25] model as its backbone. They implemented an NMS hardware module

using bubble sorting for only 3, 000 bounding box predictions on an Intel Arria 10 FPGA with

a latency of 21 μs just for the NMS pre-processing and NMS components only. In contrast to

this implementation, we completely eliminate the need for sorting in our novel NMS algorithm

which significantly simplifies the NMS hardware implementation. In addition, our system handles

174, 447 bounding box predictions (1, 917 boxes for each of the 91 classes) with a total end-to-end

latency (including the CNN feature extractor) of 2.1 ms.

An FPGA-based architecture for SSDLite-MobileNet-V2 was also presented in [8]. This model

has a bottleneck residual block (BRB) layer [27], which stacks a depthwise convolution layer

between two pointwise convolution layers to significantly reduce the number of model parame-

ters and compute operations. Their work proposes a fused BRB scheme where the intermediate

results of the convolutions are stored in on-chip memory. Their solution implemented on a Xilinx

Zynq ZC706 FPGA achieves 65 FPS throughput with 20.3 mean average precision (mAP) on

the COCO dataset, which does not meet the MLPerf accuracy criteria of achieving at least 22 mAP.

Our implementation achieves a significantly higher throughput of 2, 167 FPS with an enhanced

mAP of 22.8.

The work in [28] presented a custom ASIC implementation of NMS using TSMC 28nm CMOS

technology. For 1, 000 bounding box predictions, it achieves a latency of 12.7 μs for the NMS

pre-processing and NMS stages. This implementation focuses mainly on reducing on-chip mem-

ory utilization by storing intermediate box information in a compressed form. In contrast, our

work processes bounding boxes as they are generated by the CNN layers in a streamlined fashion

without needing intermediate storage for all boxes (i.e., we only store the final selected boxes).
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Zhao et al. [35] present another custom hardware implementation for NMS on a Xilinx Virtex-7

FPGA. In this work, the authors implement the traditional NMS algorithm (listed in Algorithm 1)

in hardware and combine it with an implementation of MnasNet [31] for feature extraction.

This implementation achieves 23 FPS throughput with 22.8 mAP accuracy on the COCO dataset.

Compared to this work, we present a novel sort-less hardware-friendly NMS algorithm that

enables the implementation of a fully-pipelined end-to-end object detection system that achieves

∼100× higher throughput at the same mAP.

4 HPIPE FOR BACKBONE CNN ACCELERATION

As shown in Figure 1, SSD-MobileNet-V1 consists of the backbone MobileNet-V1 CNN, SSD con-

volutions, NMS pre-processing, and NMS. The backbone CNN portion of our object detection

system dominates computations; thus, we leverage the high-performance sparsity-aware CNN

inference accelerator, HPIPE [11], to accelerate CNN computations. Although we focus on the

SSD-MobileNet-V1 model from the MLPerf benchmark suite in this work, changing the backbone

CNN to newer MobileNet versions which are supported by HPIPE [11, 29] is also possible without

any additional changes. HPIPE outperforms prior FPGA-based CNN inference accelerators and the

NVIDIA V100 GPU. For ResNet-50 with a batch size of 1, HPIPE achieves 3.7× higher FPS than the

NVIDIA V100 GPU [22], and 10× higher throughput the Microsoft Brainwave [9] and the Intel

Deep Learning Accelerator [1] FPGA overlays.

4.1 HPIPE Accelerator Architecture

HPIPE is a dataflow accelerator coupled with a network compiler that constructs a unique hard-

ware unit for every layer in a CNN and stitches them via latency-insensitive FIFO interfaces, and

coarse-grained back pressure signals between those layers to ensure correct operation. HPIPE is

deeply-pipelined as it allows arbitrary pipelining between the different layers as well as within

every layer’s hardware unit. It can also exploit weight sparsity by skipping zero-weight computa-

tions, which results in a considerable reduction in memory requirements and compute operations.

Customized per-layer hardware leads to high efficiency in utilizing hardware resources, while

deep pipelining achieves high operating frequency, leading to high throughput. HPIPE supports

a variety of CNN layers, including standard, depthwise, pointwise and sparse convolutions, as

well as pooling layers, and multiple activation functions such as rectified linear unit (ReLU)

and hyperbolic tangent (tanh). The HPIPE compiler takes in a high-level CNN description and

automatically generates a set of Verilog modules implementing the accelerator and memory ini-

tialization files to store the CNN weights in the FPGA on-chip block RAMs (BRAMs).

Layer Pipelining. In order to allow all layers to perform computations simultaneously, the hard-

ware of a layer in HPIPE prioritizes computing the rows that will enable a downstream layer to

start processing. While pipelining CNN computations achieves high performance in HPIPE, it re-

quires the weights of all layers to fit persistently in the on-chip memory of the FPGA. In this work,

we accelerate SSD-MobileNet-V1 which contains 4.2M parameters and can easily fit in the on-chip

memory of most modern FPGAs. Pipelining the computations acts as an extra dimension of paral-

lelism in the CNN in the sense that all the layers are executing simultaneously on different parts

of an image or different images, which significantly contributes to HPIPE’s high performance.

Compute Parallelism. HPIPE parallelizes computations across three dimensions in convolutional

layers: output width W , input channels Ci , and output channels Co . While HPIPE fully unrolls

the computations across the W dimension, its compiler automatically decides on the Ci and Co

parallelism factors to maximize the pipeline throughput while not exceeding the available FPGA

resources.
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Fig. 2. Throughput balancing between layers in HPIPE.

4.2 HPIPE Compiler

HPIPE generates a unique accelerator for every CNN, which necessitates a high level compiler

that translates a CNN into a set of pipelined hardware units. The compiler is written in Python

and takes as inputs both a TensorFlow graph describing the network and a budget for each type

of FPGA resources. The compiler first parses the graph and performs some optimizations such

as merging and swapping nodes to transform the graph to a format consumable by the following

stages. Next, the compiler statically splits the hardware resources, mainly DSP blocks, amongst the

different layers to maximize throughput. Since HPIPE is a pipeline of layers, the pipeline is as fast

as its slowest stage. Thus, the compiler progressively allocates more hardware to the slowest layers

in the CNN to balance layer latencies and achieve maximum throughput while making the best

use of the available FPGA resources. Figure 2 shows an example of the latencies of the different

convolution layers in SSD-MobileNet-V1 before and after the resource allocation stage. Before this

stage, the default parallelism is assigned for all the layers and this results in some layers having

high latencies (grey bars in Figure 2), which limits the overall throughput of the pipeline. On the

other hand, after the compiler allocates more resources to the slower layers, the pipeline is well

balanced where all layers have very similar latencies (colored bars in Figure 2), and thus the overall

throughput is maximized. Finally, the compiler generates a set of Verilog and memory initialization

files that implement a customized accelerator for the given CNN model.

5 NOVEL HARDWARE-FRIENDLY NMS ALGORITHM

Our novel NMS algorithm is shown in Algorithm 2. A traditional NMS algorithm waits until all

predicted boxes and class scores are produced for an image, then sorts them based on their con-

fidence values, and finally selects the best boxes and class scores. Instead, our algorithm avoids

sorting entirely by considering all incoming box predictions as valid candidates for comparison

as soon as they are generated by the SSD convolution layers. This weakens the sequential depen-

dency on the SSD convolution layers; we can pipeline processing of box selection as soon as some

box predictions are available, and process them in the order they are generated. Sorting is indeed

an expensive operation in hardware, so we improve the compute efficiency of a direct sort with

the compare and select logic in Algorithm 2.

Our algorithm uses a list of selected_boxes to keep track of the bounding boxes that we select as

final output predictions for each image. We replace the sorting routine in the conventional NMS

algorithm with iterative comparison and replacement of entries in selected_boxes. Each incoming

box prediction is associated with a box_inserted flag that shows whether it has been inserted in

ACM Trans. Reconfig. Technol. Syst., Vol. 17, No. 1, Article 1. Publication date: January 2024.



High Throughput FPGA-Based Object Detection via Algorithm-Hardware Co-Design 1:9

ALGORITHM 2: Novel NMS Implementation

Data: input_boxes for each image, IOUthr

Result: selected_boxes for each input image

1 //Pipeline the processing of multiple images

2 for each image do

3 Instantiate selected_boxes list of empty boxes

4 for each box in input_boxes do

5 box_inserted = False

6 for each sbox in selected_boxes do

7 if !box_inserted then

8 box_inserted = replaceIf(box, sbox, IOUthr )

9 else

10 deleteIf(box, sbox, IOUthr )

11 Output selected_boxes list of this image

12 replaceIf (box, sbox, threshold) is

13 if sbox is empty then

14 sbox = box

15 return True

16 IOU = calculateIOU(box, sbox)

17 if areSameClass(box, sbox) & IOU > threshold then

18 if box.score > sbox.score then

19 sbox = box

20 return True

21 return False

22 deleteIf (box, sbox, threshold) is

23 IOU = calculateIOU(box, sbox)

24 if areSameClass(box, sbox) & IOU > threshold & box.score > sbox.score then

25 delete sbox

the list of selected boxes or not. For each incoming box prediction, we loop over the list of selected

boxes and compare the prediction score, class, and IOU of each stored box (if it exists in the list)

to that of the new incoming box. If (1) the class matches, (2) the IOU of the new box is higher than

the pre-determined threshold, and (3) the prediction score of the new box is better than that of

the stored one, then we replace the stored box with the new box and set the box_inserted flag to

indicate that it is not a candidate for further insertion.

However, if the prediction score of the new box is less than that of the stored one, this means

that we already have a higher-confidence box for the same object. Therefore, we do not replace the

current entry in selected_boxes but still mark the new box as box_inserted so it is not considered

for insertion anymore. For the remaining loop iterations over the rest of the selected_boxes list

where box_inserted is true, we perform the same comparisons with each of the stored boxes. If the

same class, IOU and score conditions mentioned above are satisfied for a stored box, we delete it

as we have already inserted a box with a higher prediction score that bounds the same object. Our

implementation of the NMS algorithm eliminates the need for sorting box predictions, reducing

the algorithmic complexity to O (CN ) compared to O (CN logN ) in traditional implementations,

where C is the number of classes and N is the number of box predictions per class.
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Fig. 3. Block diagram of NMS pre-processing and NMS modules.

As mentioned earlier, our NMS algorithm processes the generated box predictions one at a time

in a streaming fashion as soon as they are produced, instead of waiting for all boxes to be generated

first. This approach can be exploited to overlap the execution of NMS with the convolution layers

to reduce latency and improve the overall performance. Our earlier work in [2] first introduced

this algorithm but it was limited to processing one image at a time, forcing the HPIPE convolu-

tion units to remain idle until the NMS processing of a given image finished before starting a new

image. In this work, we enhance our NMS algorithm and its hardware implementation to exploit

multi-threading by interleaving the processing of multiple images concurrently. This new imple-

mentation avoids stalling the convolution units in our end-to-end FPGA system and improves the

overall object detection throughput by ∼3×.

6 SSD AND NMS HARDWARE IMPLEMENTATION

The overall architecture of the NMS pre-processing and NMS hardware implementation is shown

in Figure 3. The box and class prediction convolution layers produce the box coordinate and

score predictions corresponding to the 91 different classes of the COCO dataset [2]. Then, these

predictions are fed to the NMS pre-processing module which includes a decode module and a

threshold module. The decode module contains units for non-linear operations such as sigmoid

and exponentiation to convert predictions to actual box co-ordinates and scores. Next, the

threshold module discards box predictions with score predictions below a certain pre-determined

threshold. Finally, the NMS module consists of top-level control logic and a chain of processing

elements (PEs) to implement our novel NMS algorithm explained in Section 5.

6.1 Data Formatting

The state-of-the-art CNN accelerator we use in this work generates outputs in the HCW format.

It produces a complete row of the feature map (W ), followed by the same row from all output

channels (C) before moving across the height dimension of the feature map (H ). This data format

allows high parallelism in the HPIPE convolution engine, but does not match the format consumed

by our NMS engine which requires all outputs across the C dimension (width, height, x and y
offset values) to start processing a box prediction (i.e., HWC format). We eliminate the need for

any permute operations on box predictions by storing the SSD convolution outputs on-the-fly

in blocks of 4 × 4 circulant matrices which are circularly rotated at every row as shown in the

lower half of Figure 4, similar to [16]. To achieve this, we concatenate n columns of dummy values

(zeroes) to the outputs of the SSD convolution layers, such that n +W is divisible by 4. For each

box prediction, we need four pieces of data {x_offset,y_offset,w,h}, Therefore, we group the
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Fig. 4. Original (top) vs. modified (bottom) memory data arrangement to store anchor boxes and intermedi-

ate convolution results. Cells with same color represents a set of {x,y,h,w} for a bounding box prediction.

Each column maps to one RAM block.

data for four box predictions in a 4×4 circular matrix as shown in Figure 4. This allows us to read

all four pieces of data for a box prediction in one cycle in parallel from four different RAM blocks.

We also use a similar padding plus circulant matrix technique to parallelize access to class scores

for each box. The pre-defined 1, 917 anchor boxes are first split into six groups for the six SSD box

prediction convolution layers and pre-processed offline to match the same address locations as

their corresponding box predictions, simplifying RAM control. In total, we need 104 M20K BRAMs

to store both box predictions and class predictions from all SSD convolution layers.

6.2 Thresholding

Typically, thresholding of the score predictions is done at the end of NMS pre-processing (Figure 1).

However, in our implementation, we push the thresholding stage before the decoding stage. We

directly sample the convolution score predictions based on a modified threshold, and only the

boxes with score predictions that exceed the new modified threshold are further processed by

the decoding module. This minimizes the storage requirements for intermediate data in the NMS

pre-processing. It also reduces the number of non-linear computations executed since only a maxi-

mum 200 out of 174, 447 box predictions are expected to be valid candidates for NMS in the COCO

dataset. To achieve this, we map the original threshold value using an inverse sigmoid function to

obtain the correct threshold for our approach. For example, a threshold value of 0.3 at the output

of the sigmoid function corresponds to a threshold value of −0.84 at the convolution output.

6.3 Decoding

The {x,y,w,h} values of the box predictions that pass the score threshold are coupled with their

corresponding anchor boxes. These are then used to calculate the final {xmin,ymin,xmax,ymax} coor-

dinates of the boxes that are given as input to the NMS module. These calculations involve a series

of multiplication, constant division, and exponentiation operations. We convert the constant di-

visions to multiplications to reduce complexity and use highly-optimized vendor-supplied IPs for

arithmetic operations such as multiplications, additions, and exponentiation. We have six different

instances of the decoding module that work on the output of the six SSD box prediction convo-

lution layers in parallel. Figure 5 compares the conventional NMS pre-processing architecture to

our optimized implementation shown in Figure 5(a) and 5(b), respectively. We avoid the need for

multiple read/write operations by eliminating the explicit permute and reshape operations, and

we also process less box predictions by pushing the threshold operation before the decode stage.
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Fig. 5. NMS pre-processing implementations for (a) the conventional scheme and (b) our optimized

scheme.

Fig. 6. Hardware implementation of piece-wise linear approximation of non-linear functions.

6.4 Piece-wise Approximation for Non-Linear Operations

The decoding module includes exponential and sigmoid non-linear operations. In our previous

work [2], we had implemented these modules using Intel’s floating-point IPs. In this work, we use

piece-wise linear approximation to implement the non-linear functions. Our hardware implemen-

tation for the piece-wise linear approximation is shown in Figure 6. In this approach, non-linear

functions are approximated by representing them with a number of line segments. For any given

input, we first identify the line segment that the input lies on. Then, we calculate the approxi-

mate value of the function for this input using the equation of its corresponding line segment

f (x ) = m(x − x ′) + c , where x ′,m and c are the interval start point, slope and y-intercept of the

line, respectively. In our implementation, Sigmoid is approximated for the range [−10, 10] with

81 linear segments, and exponentiation is approximated for the range [−4, 4] with 129 linear seg-

ments. The full range is split into intervals with a power-of-two width and thus, a simple shift

right operation (instead of division) can be used to determine the interval used for approximation.

This shift operation produces the address for reading the corresponding x ′, m, and c values that

are pre-computed for each approximated function and stored in a small look-up table. Replacing

the floating-point IPs with piece-wise approximation saves 175 DSP blocks, 36 BRAMs and 5, 000

ALMs. Additionally, it improves the operating frequency, and reduces the latency of these opera-

tions from 72 to only 4 cycles. This reduces end-to-end latency by 0.27 ms with no negative impact

on overall object detection accuracy.

6.5 Pipelined NMS

We build a custom NMS module, that implements our novel NMS algorithm explained in Section 5.

It consists of a number of chained processing elements (PEs) that accept boxes as inputs and

process them to filter out the redundant boxes and store the final boxes using Algorithm 2. For our

implementation, we empirically determine that no image in the COCO dataset contains more than
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Fig. 7. Custom hardware implementation of our pipelined NMS algorithm (a) from our previous work [2],

in comparison to (b) our multi-threaded implementation in this work. All new or changed components are

highlighted in red.

65 objects and thus we use a chain of 65 PEs. In our previous work [2], the NMS PEs had registers

to store the selected box predictions of a single image as shown in Figure 7(a). Therefore, the

backbone CNN running on HPIPE had to stall until NMS processing of a given image is finished

to avoid mixing box predictions from different images in the NMS PE chain, degrading the overall

system throughput. In this work, we multi-thread the NMS execution by adding buffering and

control logic to interleave the processing of box predictions from different images, as illustrated in

Figure 7(b). In case of the SSD-MobileNet-V1 model, HPIPE can exploit pipeline parallelism across

at most three images. Therefore, each PE has a small (BRAM-based) buffer with a depth of 3 to

store selected box predictions from three different images. However, our NMS module is param-

eterizable; it can interleave the processing of more images to match the throughput of the feature

extraction CNN implementation if needed. Each PE has its own local control logic to perform

all the checks and decide if it should keep the input box, ignore the input box, or delete one of

its stored boxes.

The NMS module begins processing as soon as an input box from the SSD convolution and data

formatting layers is available, without waiting for all layers to complete for a given image. Each of

the input boxes is concatenated with address bits that identify which in-flight image it corresponds

to (Image ID), and an Insert Flag that specifies whether a prediction box was stored/inserted

in a previous PE in the pipeline. The control logic at each PE processes the input boxes as

follows:

— First, the image address bits are used to fetch the already stored box (if any) from the local

buffer.

— Simultaneously, the control logic checks the incoming insert flag and moves to either the

insertion or non-insertion state if it is set to 0 or 1, respectively.

— In the insertion state, the input box replaces the stored box if (1) the classes match, (2) the

IOU passes the threshold of 0.6, and (3) the new score is higher than the stored one. After

a replacement, the box_inserted flag is updated to 1. If either the class match or IOU thresh-

old test fails, the stored box is kept and the box_inserted flag remains 0. However, if these

conditions are satisfied but the score of the stored box is higher, the stored box is kept and

the box_inserted flag is updated to 1 to reflect that the incoming box should no longer be

considered for insertion (i.e., a better box is already stored). Then, the input box is fed to the

next PE.
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Fig. 8. Object detection timing diagrams for (a) our previous implementation in [2], and (b) the proposed

multi-threaded NMS processing in this work.

— In the non-insertion state, the stored box is deleted if (1) the class comparison is true, (2) the

score of the input box is greater than the stored box, and (3) the IOU passes the threshold of

0.6. Otherwise, the stored box is kept. Then, the input box is fed to the next PE in the chain.

Since we are not sorting the stored boxes, the final output boxes can be scattered along the

PE chain. Therefore, once the NMS module finishes processing all boxes from an image, the

output boxes stored in the corresponding location of the PE RAM are drained out of the chain.

These will be the final output boxes in the form of {xmin,ymin,xmax,ymax} that are converted to

{xmin,ymin,w,h} to match the output format of the software implementation, and are then written

to the system’s output FIFO.

7 END-TO-END OBJECT DETECTION SYSTEM

We leverage the same HPIPE CNN accelerator that we implemented in our prior work in [2]. Com-

pared to the original HPIPE implementation from [11], we added support for the SSD convolutions

that generate class and box predictions. Moreover, we modified the interfacing modules such that

outputs from different convolution layers of HPIPE can be fed to the NMS pre-processing unit.

Figure 8 illustrates the timing diagrams for both our prior work in [2] (Figure 8(a)) and our

proposed multi-threaded NMS processing in this paper (Figure 8(b)), respectively. Most of our

prior work’s operations were overlapping, with 97% of the NMS processing time overlapping at

least some execution in the HPIPE convolution engines. However, large gaps still existed between

the SSD convolution outputs of different images because the NMS block was designed to handle

the computations of only one image. HPIPE on the other hand pipelines multiple images and some
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Fig. 9. Overview of the end-to-end object detection system.

of its early SSD layers would stall, as their output buffers are filled with data for image i + 1 while

the NMS unit is still processing image i . These SSD layers would in turn back-pressure prior HPIPE

convolution layers, ultimately leading to many idle functional units and some complete pipeline

stalls. These factors resulted in a significant under-utilization of the HPIPE hardware, leading to

lower performance.

In this work, we alleviated this bottleneck, and as shown in Figure 8(b), the NMS computations

of multiple input images are interleaved resulting in better overlap of backbone CNN and NMS pro-

cessing. We eliminated the gaps between the outputs of the SSD convolutions by multi-threading

the NMS module to handle multiple images simultaneously. As shown in the last three rows of

Figure 8(b), our NMS unit pipelines three images in order to fully keep up with HPIPE and avoid

any stalls. This also necessitates some additional buffering within the NMS processing elements

(instead of a single register) to ensure that they can begin processing image i +1 without overwrit-

ing data for image i that is still in use. The enhancements we make in this work to both the NMS

pre-processing and NMS modules come at a low cost of 9, 510 ALMs (1%) and 224 BRAMs (2%).

8 RESULTS

8.1 Experimental Setup

Figure 9 shows a high level overview of our end-to-end object detection system. Our end-to-end

system runs on a Terasic DE10-Pro board with an Intel Stratix 10 GX2800 FPGA. The board

is connected as a PCIe accelerator card to an Intel E5-2650 server with 12 two-way-threaded

cores and 94 GB of RAM. We utilize Intel Quartus Prime Pro 19.4 for synthesis, placement and

routing, and we use Synopsys VCS to perform RTL-level simulations for functional verification

and performance estimation. For power estimation, we use the Quartus Power estimation tool

to perform vectorless power estimation. In our setup, the host CPU streams input images to our

accelerator and reads back the output predictions via the PCIe link. To verify the functionality of

our system, we stream 4, 800 images from the COCO validation dataset and measure the accuracy

of our system’s predictions. We compute our system’s performance by measuring the time it

takes our system to process all 4, 800 images, including the communication time between the host

CPU and the FPGA over PCIe.

8.2 Implementation Results

Table 1 lists the resource utilization of the three main components of our system: HPIPE, the NMS

pre-processing and the NMS module. Figure 10 shows the chip planner view of our system when

ACM Trans. Reconfig. Technol. Syst., Vol. 17, No. 1, Article 1. Publication date: January 2024.



1:16 A. Anupreetham et al.

Table 1. Breakdown of FPGA Resource Utilization (NMS-PP: NMS

Pre-Processing Module)

ALMs DSPs M20K BRAMs

Full System 618,828 (66%) 5,009 (87%) 7,883 (67%)

HPIPE 504,612 (53.8%) 4,434 (77%) 7,179 (61%)

NMS-PP 35,556 (3.8%) 90 (1.6%) 389 (3.3%)

NMS 60,658 (6.5%) 485 (8.4%) 260 (2.2%)

Fig. 10. Chip planner view of our accelerator blocks after being synthesized, placed and routed by the Intel

Quartus tool.

Fig. 11. Resource utilization breakdown of the NMS pre-processing and NMS modules for the baseline from

our previous work [2], when replicating the NMS module to match the backbone CNN throughput, and our

multi-threaded NMS from this work.

placed and routed by Quartus on the Intel Stratix 10 GX2800 FPGA. Similar to our prior work [2],

HPIPE uses most of the FPGA resources compared to the NMS modules, which consume <10% of

the available resources. Our system continues to be DSP-bound with nearly 90% DSP utilization.

Figure 11 presents the resource breakdown of the NMS pre-processing (NMS-PP) and NMS

modules for three design cases: (1) the baseline NMS from our previous work [2], (2) instantiating

multiple NMS module to keep up with the backbone CNN throughput, and (3) using the multi-

threaded NMS module proposed in this work. The resource breakdown is reported in equivalent

ALMs (eALMs) assuming BRAMs and DSP blocks are equivalent to 40 and 33 ALMs respectively

(based on their relative silicon areas) as in [5]. Since our new NMS pre-processing uses piece-wise

approximation units for the non-linear functions, it utilizes 175 fewer DSP blocks compared to

our prior implementation in [2], resulting in a 20% reduction in resource utilization for the NMS

pre-processing module. Our proposed multi-threaded module can match the throughput of the

backbone CNN while being 2× more area efficient compared to the alternative naïve approach of

instantiating multiple NMS modules, as shown in Figure 11.
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Table 2. Comparison of our Work to Prior FPGA-Based Object Detection Systems on the COCO Dataset

Fan et al. [8] Wu et al. [33] Mobilint [23] Cai et al. [6]
Anupreetham

et al. [2]
This Work

Feature Extraction1 M-V2 [27] M-V1 [13] M-V1 [13] M-V1 [13] M-V1 [13] M-V1 [13]

Object Detector SSDLite SSD SSD SSD SSD SSD

# Parameters 2.79M 4.2M 4.2M 4.2M 4.2M 4.2M

FPGA Device Zynq ZC706 Zynq ZU9 Alveo U250 Arria 10 Stratix 10 GX2800 Stratix 10 GX2800

Process Technology 28nm 16nm 16nm 20nm 14nm 14nm

Power (W) 9.9 – – – 55 81

Energy Eff. (FPS/W) 6.6 – – – 11.1 26.8

Frequency (MHz) 100 333 250 – 350 400

Throughput (FPS) 65 124 410 108 609 2,167

Latency (ms) 15.43 – 10.64 – 2.4 2.13

mAP 20.3 16.2 23.028 16.8 22.5 22.8

1M-V1 = MobileNet-V1, M-V2 = MobileNet-V2.

8.3 Performance and Accuracy Results

Despite utilizing most of the available FPGA resources, our system still achieves a high frequency

of 400 MHz as we deeply pipeline all our system components. Due to this high operating frequency

and the fully-pipelined nature of our system, it achieves 2, 167 FPS and an end-to-end latency of

only 2.13 ms. It also scores a mean average precision (mAP) score of 22.8, which is above the 22.0

mAP score threshold set by MLPerf [23] for the COCO validation dataset with SSD-MobileNet-

V1. Using the Quartus power analyzer with vectorless analysis, we estimate our system’s power

consumption to be 81 W, which represents an energy efficiency of 26.8 FPS/W.

8.4 Comparison to Prior Works

Table 2 shows a comparison between our system and other FPGA-based object detection accel-

erators. Our object detection system achieves the highest throughput, lowest latency, and best

energy-efficiency compared to all prior works. This comes at no cost in terms of detection accu-

racy; in fact, our system scores the second highest mAP among all compared accelerators.

We first compare our new accelerator to our previous accelerator from [2]. Our new accelerator

uses the same backbone CNN accelerator along with the multi-threaded version of the NMS unit as

well as piece-wise approximation for the non-linear functions. It achieves 3.6× higher throughput

than our prior work. The majority of this improvement is attributed to interleaving the processing

of multiple images in the multi-threaded NMS unit. In addition, the overall operating frequency of

our accelerator increased from 350 MHz in [2] to 400 MHz in this work due to the more efficient

implementation of the non-linear functions. The end-to-end latency for a single image is also im-

proved due to the higher accelerator frequency and the reduced latency of the new non-linear func-

tion approximations. Although the estimated power consumption increases, our system improves

the overall energy-efficiency because of the much higher increase in accelerator throughput.

Another interesting comparison is against Mobilint [23]. They accelerate SSD-MobileNet-V1 on

a same generation Xilinx FPGA, but they do not disclose the full details of their implementation.

Our new accelerator achieves 5.3× higher throughput and 5× lower latency, while maintaining a

similar accuracy (0.2 lower mAP score). Wu et al. [33] implemented a specialized high-performance

CNN processor on a Xilinx Zynq ZU9 FPGA. Since they are using a smaller device than ours, we

scale their reported performance up by a factor of 2.3, which accounts for the difference in the

number of utilized DSPs. After scaling, our system still achieves 7.6× higher throughput and 6.6

more mAP points for the COCO validation dataset. Their accuracy degradation can be in part

because their accelerator is using an 8-bit fixed-point precision, while ours uses 16-bit fixed-point

precision.
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Although Fan et al. [8] accelerated the SSDLite-MobileNet-V2, which has less computational

complexity than SSD-MobileNet-V1, our accelerator achieves a much higher performance and bet-

ter detection accuracy. The device they are using is an older generation FPGA with fewer resources

than ours. However, even if we optimistically scale their performance by a factor of 6.4 to account

for the difference in DSP resource counts between devices, we still achieve 5.2× higher throughput

and 1.13× lower latency while attaining higher accuracy.

9 CONCLUSION AND DISCUSSION

In this paper, we presented our end-to-end fully pipelined FPGA-based object detection system,

which accelerates one of the MLPerf benchmarks, SSD-MobileNet-V1. We introduced a novel

NMS algorithm that eliminates the sequential dependency on the preceding convolution layers

of the feature extractor and SSD. This allows overlapping the execution of the front-end (feature

extractors and SSD layers) and back end (NMS preprocessing and NMS), reducing the overall

latency and improving throughput. We implemented a multi-threaded NMS module that exploits

our novel algorithm and allows interleaving the processing of multiple images concurrently

to match the throughput of our CNN accelerator and prevent any unnecessary stalls. We also

implemented piece-wise linear approximation modules for the non-linear operations used in the

NMS pre-processing to reduce FPGA resource usage compared to our prior work. Our deeply

pipelined FPGA system runs at 400 MHz, and achieves state-of-the-art performance of 2, 167 FPS

and an end-to-end latency of only 2.13 ms with a 22.8 mAP score on the COCO validation dataset.

These results represent a 5.3× throughput improvement compared to the best performing prior

work and the only MLPerf submission on FPGA-based object detection.

We see two vectors for further performance improvements. Firstly, multiple network-attached

FPGAs could form a larger hardware accelerator; [14] has recently shown near-linear performance

scaling of HPIPE to multiple such FPGAs. Secondly, the recent Stratix 10 NX FPGA includes tensor

blocks optimized for deep learning that provide much more multiply accumulate performance [4,

17]. A newer version of HPIPE using these tensor blocks has been recently developed, resulting in

more than 8× improvement in throughput on the image classification MobileNet-V1 [29] network.

Extending our state-of-the-art object detection system to use multiple tensor-enhanced FPGAs is

a very promising direction for future research.
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