
UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 1

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without
notice, after which this version may no longer be accessible.

ar
X

iv
:2

40
4.

10
07

6v
1 

 [
cs

.A
R

] 
 1

5 
A

pr
 2

02
4



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 2

Field-Programmable Gate Array Architecture for
Deep Learning: Survey & Future Directions

Andrew Boutros, Member, IEEE, Aman Arora, Member, IEEE, Vaughn Betz Fellow, IEEE,

Abstract—Deep learning (DL) is becoming the cornerstone
of numerous applications both in large-scale datacenters and
at the edge. Specialized hardware is often necessary to meet
the performance requirements of state-of-the-art DL models,
but the rapid pace of change in DL models and the wide
variety of systems integrating DL make it impossible to create
custom computer chips for all but the largest markets. Field-
programmable gate arrays (FPGAs) present a unique blend of
reprogrammability and direct hardware execution that make
them suitable for accelerating DL inference. They offer the ability
to customize processing pipelines and memory hierarchies to
achieve lower latency and higher energy efficiency compared
to general-purpose CPUs and GPUs, at a fraction of the
development time and cost of custom chips. Their diverse and
high-speed IOs also enable directly interfacing the FPGA to
the network and/or a variety of external sensors, making them
suitable for both datacenter and edge use cases.

As DL has become an ever more important workload, FPGA
architectures are evolving to enable higher DL performance.
In this article, we survey both academic and industrial FPGA
architecture enhancements for DL. First, we give a brief
introduction on the basics of FPGA architecture and how its
components lead to strengths and weaknesses for DL applications.
Next, we discuss different styles of DL inference accelerators on
FPGAs that achieve state-of-the-art performance and productive
development flows, ranging from model-specific dataflow styles
to software-programmable overlay styles. We survey DL-specific
enhancements to traditional FPGA building blocks including the
logic blocks, arithmetic circuitry, and on-chip memories, as well
as new DL-specialized blocks that integrate into the FPGA fabric
to accelerate tensor computations. Finally, we discuss hybrid
devices that combine processors and coarse-grained accelerator
blocks with FPGA-like interconnect and networks-on-chip, and
highlight promising future research directions.

Index Terms—FPGA, architecture, deep learning, acceleration

I. INTRODUCTION

For many years, computing machines were used to solve
problems by efficiently executing sequences of simple and
repetitive operations at very high speeds. A human would
think of an algorithmic approach to solve a given problem
and then use a programming language to precisely describe
its steps. However, some tasks that are easy for the human
brain to perform are very difficult to describe algorithmically.
Detecting a human in an image is one example of such
a task. The high dimensionality of the input and the large
number of variations in body pose, size within the image,

A. Boutros and V. Betz are with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mails:
andrew.boutros@mail.utoronto.ca; vaughn@eecg.utoronto.ca). A. Arora is
with the School of Computing and Augmented Intelligence, Arizona State
University, Tempe, AZ 85281, USA (e-mail: aman.kbm@asu.edu).

Fig. 1: Comparison between the classic ML approach using hand-
crafted features to train a statistical classifier (top), and DL models
trained directly on input data to perform both feature extraction and
classification (bottom).

clothing, image-capture angle, and lighting conditions make it
impossible to formulate a set of conditions whose satisfaction
implies a human is in the image. Therefore, solving such
tasks classically required a domain expert to hand-craft a set
of (lower dimensional) features that can be extracted from
the high-dimensional input. Then, these features are used to
train a statistical classifier with many examples and their
corresponding output predictions [1]. This approach, typically
referred to as classical machine learning (ML), requires
designing a new feature extractor for each use case and its
achieved accuracy is highly dependent on how well these
hand-crafted features capture the key relevant data patterns
from the original high-dimensional input.

With the abundance of training data and the continuous
improvement of compute capabilities in recent years, it
became feasible to train large artificial neural networks using
theory and algorithms that have been formulated back in the
1980s [2]. These neural networks are typically composed
of a deep cascade of layers, and therefore are referred
to as deep learning (DL) models. Each layer contains a
number of neurons performing a weighted sum of their
inputs. As illustrated in Fig. 1, the key distinction from
classical ML methods is that DL models can learn to extract
features and classify them directly from the input training
data instead of relying on features hand-crafted by a domain
expert, resulting in better accuracy and wider applicability
to different domains. Since deep neural networks (DNNs)
first demonstrated their superior quality of results in 2012
on visual recognition and image classification tasks [3], there
has been an avalanche of innovations in building better DL
models that can achieve higher accuracy in many different



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 3

domains such as natural language processing (NLP) [4],
recommendation systems [5], and content generation [6].
Nowadays, DL models enable a myriad of day-to-day end
user applications [7]–[9], facilitate software development [10],
boost computer chip design productivity [11], and push
the boundaries of human knowledge by discovering more
efficient computational algorithms [12] and solving long-
standing scientific problems [13].

However, this comes at the cost of a significantly higher
computational complexity and memory footprint compared
to classical ML methods [14]. Google has estimated that
if their users perform voice search for only 3 minutes per
day using DL-based speech recognition on general-purpose
CPUs, it would require doubling their datacenters’ compute
capacity [15]. A recent report [16] estimates that ChatGPT,
OpenAI’s conversational DL model, costs around $0.7M in
compute hardware costs per day to serve a small fraction
of queries compared to those processed by the Google
search engine. These DL compute demands are rapidly
growing, challenging the capabilities of conventional general-
purpose compute platforms. Therefore, application-specific
(ASIC) accelerators are deployed in both datacenters and edge
devices to increase the efficiency of DL computation [15].
In addition, with DL being such a pervasive workload, it
is also driving architectural innovations in almost all forms
of general-purpose compute platforms to improve their DL
compute efficiency. For example, Intel’s fourth generation
Xeon (Sapphire Rapids) central processing units (CPUs)
support more efficient DL-targeted tensor instructions [17]
and next-generation AMD Ryzen 7000 processors are
integrating acceleration engines for artificial intelligence (AI)
workloads [18]. Modern graphics processing units (GPUs) also
include specialized tensor cores to improve the efficiency of
the matrix multiplications extensively used in DL workloads.
While tensor operations are key in DL, they are not the entire
compute pipeline and bottlenecks can still occur elsewhere. As
an example, Nvidia recently integrated dedicated engines for
DL preprocessing operations such as JPEG image decoders in
their A100 GPUs to address one such bottleneck [19].

The architecture of field-programmable gate arrays (FPGAs)
is similarly driven by their key use cases. Therefore, we
are also starting to witness many FPGA architecture changes
targeted at making them more efficient for DL. In this article,
we survey proposals and innovations from both academia and
industry to optimize FPGA architecture specifically for DL.
We first present an introductory tutorial on FPGA architecture
through a DL lens, highlighting the key strengths, weaknesses,
and opportunities of FPGAs in the area of DL acceleration.
Then, we highlight the key design styles of DL accelerators
on FPGAs with selected examples from the broad literature
available on this topic. However, this article is not intended to
be a comprehensive survey of FPGA-based DL accelerator
implementations and toolflows. We refer interested readers
to [20]–[22] which cover this area in more detail. Next,
we explain the general methodology used to model and
evaluate new FPGA architectures. We discuss DL-driven
architecture enhancements in modern FPGAs, starting from
conventional FPGA blocks (e.g. logic elements and embedded

Fig. 2: The training and inference phases of a DL model. Training is
performed by a few DL experts on large-scale compute clusters and
requires many design iterations. When model accuracy is satisfactory,
it is deployed for inference with varying performance requirements
depending on the application (latency-tolerant vs. real-time).

hard blocks) and moving on to new DL-specific blocks (e.g.
tensor blocks) as well as on-die coarse-grained accelerators
(e.g. AI engines) and in-package DL chiplets. Finally, we
present our perspective on the future of reconfigurable devices
in the DL domain and identify interesting research directions
in this area.

II. FPGA FOR DL ACCELERATION

A. Key DL Acceleration Requirements

As illustrated in Fig. 2, a DL model goes through two
main phases during its life-cycle: training and inference.
During training, a small group of DL scientists architect
the model and train it using huge datasets (e.g. >570 GB
for the GPT-3 language model [23]) to achieve the desired
quality of results. This process is very compute/memory
intensive due to the large amount of data used for training
and usually takes tens to hundreds of design iterations to
optimize the model. Therefore, it is typically performed on
large clusters of compute machines and accelerators in a
datacenter. The final product of the training process is a model
architecture and values of its trainable parameters or weights,
which are then deployed in a production-scale application
to perform inference on new data samples that were not
part of the training dataset. Depending on the deployment
environment (cloud/datacenter vs. edge/embedded) and the
nature of the application (latency-tolerant vs. real-time),
DL inference can have different compute requirements and
constraints. Consequently, the hardware used to accelerate
DL training and inference has to be optimized for different
metrics and use cases, creating potential markets for different
acceleration platforms (e.g. GPUs, FPGAs, and ASICs) based
on their characteristic strengths and weaknesses.

1) Performance: Performance of DL accelerators is
measured using two metrics: throughput and latency.
Throughput is the number of input examples a specific
accelerator can process per unit time on a given DL workload.
To facilitate accelerator efficiency comparisons across models
of different computational complexity, throughput is typically
reported in giga or tera operations per second (GOPS or
TOPS) where the operations are typically computed as the
number of multiplies plus the number of accumulates as



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 4

multiply-accumulate (MAC) is the dominant operation in DL
workloads. Each accelerator has a peak throughput which is
workload-independent, and is determined by the number of
MACs it can perform per cycle and its maximum operating
frequency. However, in practice it is not possible to achieve
100% utilization of these MAC units1, and thus the effective
throughput of an accelerator is the more realistic metric
and is typically evaluated for each DL workload [24]. An
efficient accelerator architecture aims to maximize its compute
utilization (i.e. minimize the gap between peak and effective
throughput). To improve their effective throughput, many
accelerators batch a group of inputs to be processed at the
same time. This enables reusing the same set of model weights
across the many inputs in a batch to hide the memory latency
of loading the next set of weights and reduces the number of
cycles in which the MAC units remain idle. On the other hand,
latency is the amount of time it takes the accelerator to process
a single input, which is a key metric for real-time applications.
Although batching can help improve the effective throughput
of an accelerator, it typically increases latency since more time
is needed to form a batch, process the entire batch of inputs,
and output all their results at the same time. As an example,
for the ResNet-50 image classification model, increasing the
batch size from 1 to 8 inputs improves throughput by 3× at
the cost of 2.2× higher latency on an Nvidia V100 GPU [25].

For the training phase, latency is not a concern, and
therefore DL training accelerators are throughput-optimized
to maximize the number of training samples that can be
processed per second. For inference, the optimization target
depends on the use case. Applications such as DL-based image
search engines or video copyright checks focus mainly on
maximizing the number of user queries that can be served
per second with a loose latency requirement, and therefore are
throughput-oriented. In other applications such as pedestrian
or obstacle detection in an autonomous vehicle, the latency
of acquiring inputs from several cameras or sensor readings,
detecting pedestrians/obstacles using one or multiple cascaded
DL models, and then taking an action (e.g. adjusting direction
or applying the brakes) is crucial for safety reasons.

2) Cost and Energy Efficiency: For both the training and
inference phases, energy and cost efficiency are major design
optimization targets for all DL accelerators. It is estimated
that 35% of the total cost of ownership of a datacenter
is spent on power [26]. Therefore, with DL becoming a
prominent datacenter workload, more energy efficient DL
compute hardware directly translates to significant cost savings
for service providers. For example, Google reported that using
their ASIC tensor processing unit (TPUs) reduced the cost
of training a ResNet-50 model for image classification by
38% [27]. For modern NLP models such as BERT [28], this
cost can reach millions of dollars for each full training [29].
Additionally, reducing the power consumption of datacenter

1Depending on the model architecture and the hardware organization, the
MAC units can be idle during some cycles. For example, computation can stall
when model weights are being loaded from external memory or transported
from on-chip buffers to compute units, and some compute units can be idle
when the input size does not exactly match the hardware compute parallelism
(e.g. performing a dot product between two 6-element vectors on an 8-lane
dot product engine).

Fig. 3: Unique features of FPGAs that make them an efficient
acceleration platform for DL.

compute has significant environmental impact, as datacenters
consume very large amounts of electricity and by some
estimates will account for ∼8% of the world’s electricity
demand by 2030 [30]. At the other end of the deployment
spectrum, DL inference on battery-operated edge devices
usually has a very tight power budget and therefore requires
energy-efficient compute hardware. For example, Tesla’s full
self-driving DL inference chip was custom designed to meet
an aggressive power budget of less than 40W [31]. Although
such custom ASICs can offer superior energy-efficiency, they
lack the flexibility to adapt to different systems and algorithms.
In addition, their significant non-recurring engineering (NRE)
cost and longer time-to-solution for design, fabrication and
testing can be prohibitive for small and medium-scale markets.

3) Adaptability: Besides achieving high performance and
energy-efficiency, DL accelerators must also be flexible to
adapt to frequent algorithmic changes. New state-of-the-art
DL models are introduced at a much faster rate than the
typical design and deployment cycle of computer hardware.
Adaptability can be achieved by making some or all of the
system software-programmable, but software programmability
adds energy and performance overheads (e.g. instruction
fetching and decoding) compared to fixed-function dedicated
hardware. In addition, the DL accelerator, especially in edge
deployments, is typically part of a bigger system where it
needs to interface with a wide variety of sensors (e.g. cameras,
LiDARs) and actuators (e.g. to control brakes) which can have
different communication protocols as well as different data
pre- and post-processing needs. Therefore, adaptability is not
only a requirement for the DL compute hardware, but also
for interfacing with the rest of the system to ensure usability
across a wide range of deployment use cases. Enabling such
flexible interfacing often requires electrical adaptability due
to the different voltage and timing requirements of different
interface protocols, which can not be achieved by software
programmability alone.

B. FPGA Strengths for DL Acceleration

Based on the DL acceleration requirements discussed in
the previous subsection, we can identify key FPGA strengths
(summarized in Fig. 3) that make them a desirable and efficient
acceleration platform for specific DL use cases.

Firstly, FPGAs offer fine-grained hardware
programmability which allows building customized
compute datapaths and on-chip memory sub-systems that



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 5

match exactly the application needs. Therefore, FPGAs
have an advantage compared to general-purpose processors
(e.g. CPUs and GPUs) in use cases where customization
is desired. For example, DL inference quality of results is
tolerant of low-precision computation and since the energy
and area of compute units drop rapidly with precision,
this can be exploited for a more efficient acceleration
solution [32]. Unlike CPUs and GPUs that support only
specific arithmetic precisions (e.g. int4, int8, fp16,
fp32), an FPGA can implement custom compute units for
any precision, including binary/ternary, narrow floating-point
formats (e.g. fp8 [33]), or floating-point numbers with shared
exponents (bfp) [32]. Since the most efficient precision
varies across DL models and even across layers within a
single model, this flexibility is very useful. However, the
fine-grained bit-level hardware programmability comes with
speed and area overheads as functions are implemented with
programmable blocks and programmable routing which are
slower and bigger than standard cell logic gates and direct
wires. Therefore, the customization gains should outweigh
these programmability overheads for an FPGA acceleration
solution to be competitive.

Secondly, FPGAs are spatial computing devices. This
means that data does not have to move through a memory
hierarchy of caches and register files for the computation to
be performed, and compute cores do not have to communicate
through memory. Instead, in an FPGA, data can flow directly
from distributed on-chip buffers and through chained compute
units using the flexible programmable routing, without the
need for an instruction sequence to orchestrate data movements
and computations. This can reduce the overall compute latency
as fewer cycles are spent on data movement across different
levels of the memory hierarchy. It can also result in significant
energy savings; for example, ∼99% of the energy consumed
by an integer add operation in a 45nm CPU is spent on
cache/register file accesses and control logic [34], a large
portion of which can be saved when performing computations
spatially on an FPGA.

Thirdly, FPGAs are flexible. Reconfiguring the FPGA with
a new bitstream changes its hardware functionality. This offers
a clear advantage over ASIC accelerators since the hardware
can flexibly adapt to rapid changes in DL algorithms, model
architectures and application-specific pre- or post-processing.
New operations can be implemented in hardware, integrated
into an FPGA-based accelerator architecture, and deployed in
production in a matter of weeks [35]. On the other hand, an
ASIC accelerator would need to implement this new operation
on a software-programmable core or its host CPU resulting
in degraded performance until the next generation chip is
designed, fabricated and deployed, which can take years.

Fourthly, FPGAs provide a myriad of programmable
input/output (IO) interfaces. These IOs can flexibly
implement a wide variety of protocols with different electrical
characteristics and timing specifications. Modern FPGAs
also implement hardened controllers for various widely-
used standards for datacenter deployments such as ethernet,
peripheral component interconnect express (PCIe), and double
data rate (DDR) and high bandwidth (HBM) external

memories. This allows efficient communication between the
FPGA as a server accelerator card and the host CPU,
and also enables directly connecting multiple FPGAs over
the network to create many-device accelerators such as
Microsoft’s Brainwave datacenter-scale DL accelerator [36].
Additionally, the FPGA programmable logic can also
implement other custom standards for interfacing with
different sensors/actuators in embedded systems at the
edge [37].

These unique FPGA characteristics lead to certain DL
use cases where FPGAs have advantages compared to other
acceleration solutions such as general-purpose CPUs/GPUs
and ASIC accelerators. These are use cases that:
• can perform computations using low precision or non-

standard number formats which require customized
datapaths [32], [38]. These precisions are more common
and generally easier to use in inference, while training
is typically performed in higher precision floating-point
formats (e.g. fp32, fp16) that are natively supported in
general-purpose CPUs and GPUs.

• have tight latency constraints that prohibit batching a large
number of inputs for processing. If an application is more
throughput-oriented with loose latency constraints, multiple
inputs can be batched and processed simultaneously. This
provides more opportunities for reuse of on-chip values, and
while this can benefit all computational devices it is usually
particularly helpful in keeping a GPU’s massively parallel
functional units busy. This is another reason why (latency-
constrained) inference is a better match for FPGAs than
(throughput-oriented) training.

• can fit all model weights in the FPGA’s on-chip memory
(i.e. persistent weights). The spatial nature of FPGAs
enables near-memory compute with low-latency memory
accesses and application-tailored memory organization. For
bigger models, the diverse FPGA IOs allow directly
connecting multiple FPGAs over the network to create
bigger multi-FPGA fabrics with more on-chip memory [36].

• implement a DL component in a bigger system, in which
the FPGA’s flexibility and rich IOs can play a crucial
role, such as in autonomous driving systems. A variety of
sensor/camera inputs might require classical signal/image
preprocessing before being used as inputs to a DL model,
and then the output of the DL model is used to control
different actuators. In such cases, FPGAs offer a platform
for accelerating the full system with custom interfaces and
application-dependent pre- and/or post-processing [39].

• require periodic changes to the DL model architecture
with new operations and irregular compute graphs [40]. In
contrast to an ASIC, these new changes can be implemented
in hardware by simply programming the FPGA with a
new bitstream. However, if these changes are very frequent
(e.g. daily), compiling a new bitstream every time the model
changes can be challenging due to the high runtime of
FPGA computer-aided design (CAD) tools. In such cases,
a software-programmable solution could be more desirable.

Thus, for the rest of this article, we mainly focus on DL
inference acceleration which better matches the unique FPGA
characteristics and strengths.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 6

C. FPGA-Based DL Inference Acceleration Styles

This subsection presents commonly-used styles for
accelerating DL inference on FPGAs. It is not intended to
be a comprehensive survey of DL inference accelerators
implemented on FPGAs, as our focus is primarily on
enhancements to the underlying FPGA chip architecture.

In 2012, AlexNet was the first convolutional neural network
(CNN) to demonstrate the superior quality of results of DL in
image classification tasks compared to prior machine-learning-
based approaches [3]. Its significantly higher computational
complexity sparked interest in accelerating DL inference using
specialized hardware on FPGAs as co-processors. A host or
an embedded CPU would offload the computation of the
whole CNN (or specific compute-intensive layers) to an FPGA
accelerator, and at the end perform a final softmax operation
to calculate prediction probabilities from the final output of
the accelerator, if needed. In this case, the FPGA accelerator
is usually hand-crafted and optimized for a specific DL
model or a group of similar models [41]–[44]. This approach
achieved significant performance and energy efficiency gains
compared to software-based solutions on contemporaneous
multi-core CPUs and GPUs. Although the main focus was on
CNN acceleration and computer vision applications, several
works also investigated FPGA acceleration of other types of
DL models such as recurrent neural networks (RNNs) for
sequence inputs and natural language processing [45]–[47].

However, with the continuous and rapid advances in state-
of-the-art DL models, it quickly became evident that building
a custom FPGA accelerator for each model is extremely
laborious and cannot keep pace with DL model evolution.
Therefore, building custom hardware generators to automate
this process became a major research focus. These hardware
generators are domain-specific compilers that take as inputs
the specifications of a target FPGA and the dataflow graph
of a DL model in the same formats used by common DL
frameworks such as TensorFlow [48] or PyTorch [49]. They
optimize the input dataflow graph by reordering, simplifying
and/or fusing model layers/operations, and then use a library
of parameterized implementations of hardware modules to
generate an optimized model-specific FPGA implementation
given the target FPGA resource constraints. Although these DL
hardware generation toolflows all share the same fundamental
concepts, their generated accelerator architectures can be very
different. Some toolflows generate streaming layer-pipelined
architectures in which each layer has a dedicated compute
engine and all layers coexist on the FPGA in a pipelined
fashion (i.e. spatial execution). Examples of such toolflows
are HPIPE [25], fpgaConvNet [50], DNNBuilder [51], and
FINN [52]. Other toolflows generate architectures that have a
number of more flexible processing elements (PEs) on which
layers of a given model are mapped and executed sequentially
(i.e. temporal execution) as orchestrated by control finite-
state machines and microcodes [53]–[56]. Many of these
toolflows automatically apply different FPGA-friendly DL
model optimizations to further enhance performance such
as quantizing to lower numerical precisions and exploiting
sparsity to skip ineffectual computations with zero weights.

Fig. 4: The overlay design approach enables application experts to
use FPGAs for accelerating their DL workloads without any hardware
design expertise or suffering from long runtime of FPGA CAD tools.

Some work has gone even further, and directly uses the look-
up tables (LUTs) in FPGA fabrics as the trainable building
blocks of a neural network, instead of using only MAC
operations [57], [58].

The generation of custom DL hardware exploits the unique
reconfigurable nature of FPGAs by optimizing the accelerator
architecture to exactly match the needs of a specific model
or class of models, minimizing the additional overheads of
generality. However, this comes at the cost of (1) long
FPGA compile time (on the order of hours for synthesis,
place and route) to generate a different FPGA bitstream for
each new model or slight change in an existing model and
(2) the need to reprogram the FPGA (which can take tens
to hundreds of milliseconds) when switching between pre-
compiled bitstreams implementing different models. These
drawbacks can be prohibitive for use cases in which very
frequent (e.g. daily) model updates are deployed in production
or when real-time or input-dependent switching between
several models is needed. Another approach for designing DL
accelerators on FPGAs is to build software-programmable
domain-specific overlays. Similarly to CPUs and GPUs,
an FPGA overlay defines an instruction set architecture
(ISA) that decouples the hardware and software stacks. The
ISA abstracts away all the micro-architecture and hardware
implementation details from application developers who write
their algorithms in a high-level programming language and
then compile them into sequences of instructions that can run
on any processor that supports the same ISA. For a generic
processor architecture and ISA (e.g. RISC-V), a hard ASIC
implementation will always be more efficient than an FPGA
overlay due to the overhead of reconfigurability [59], [60].
However, a soft processor can enhance efficiency by exploiting
the FPGA’s flexibility to implement a customized datapath and
memory hierarchy, as well as a domain-specific ISA.

As illustrated in Fig. 4, to build an FPGA DL overlay,
architects would first design the overlay ISA and processor
architecture. The microarchitecture of the overlay is then
heavily-optimized to generate a single high-quality FPGA
implementation that is deployed on an FPGA and programmed
through software to execute different DL models. To program
the overlay, users are provided with a compiler that translates
a high-level description of a DL model (e.g. TensorFlow or
PyTorch) to a sequence of instructions to be executed on



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 7

Fig. 5: Temporal mapping of DL models to an array of PEs (top left)
vs. building per-layer customized compute units as in HPIPE (bottom
left) and an overview of the HPIPE hardware generation flow (right).

the FPGA overlay. In this approach, users do not need to
have any hardware design expertise, significantly reducing the
barrier of entry for DL application developers to use FPGAs.
In addition, their iteration time to compile a new DL model
is much faster, as they are performing a fast software compile
(seconds) to create a new sequence of overlay instructions
instead of a long FPGA hardware compile (hours) to create
a new bitstream. There are many DL overlay examples from
both industry and academia optimized for different types of
models [24], [61]–[66], including Microsoft’s datacenter-scale
DL inference accelerator, Brainwave [36].

D. Examples of DL Acceleration on FPGAs

When using FPGAs for DL inference acceleration,
regardless of the accelerator design style, there are two main
concerns. The first is ease of use; FPGAs are generally harder
to design for, use and debug compared to other compute
platforms such as GPUs and CPUs. Even with advances
in high-level synthesis (HLS) technology, using FPGAs still
requires extensive hardware design expertise, making them
harder to use by DL application developers. The second
concern is whether FPGAs can deliver state-of-the-art DL
inference performance despite their inherent overhead of
reconfigurability. As discussed in the previous subsection,
both the custom hardware generation and overlay design
approaches address the first concern. Using these approaches,
DL application developers can go from a high-level DL model
description to an FPGA deployment with little or no hardware
design expertise. In this subsection, we cover two examples
from these two design approaches to showcase that FPGAs can
deliver best-in-class DL inference performance. We also show
that even higher performance can be realized by optimizing
the underlying FPGA architecture specifically for DL.

1) Custom Hardware Generation Example (HPIPE):
HPIPE [25] is a domain-specific compiler that generates layer-
pipelined dataflow FPGA accelerators for persistent CNNs,
where all the weights can be stored in the on-chip SRAMs.
It builds a unique processing module for each layer in a
CNN and chains them using latency-insensitive FIFOs. It also
exploits weight sparsity by skipping ineffectual zero-weight
computations, which can significantly reduce on-chip memory
requirements and improve performance by executing fewer

operations. When compared to the one-size-fits-all approach
in which the same array of PEs is used for all layers (see left
side of Fig. 5), the per-layer customized modules in HPIPE
result in better utilization of the compute resources and exploit
the additional dimension of pipeline parallelism in which all
the CNN layers are executing simultaneously on different
parts of an image or on different images. As illustrated on
the right side of Fig. 5, the HPIPE compiler takes as inputs
a TensorFlow description of the CNN and specifications of
the target FPGA. Then, it performs a number optimizations
on the CNN dataflow graph (e.g. fuse layers for a more
efficient implementation). After that, it allocates hardware
resources to each CNN layer to balance the throughput of
all the pipelined layers and maximize overall performance.
The HPIPE compiler also performs several physical design
optimizations that consider the spatial layout of the layer
modules and implements optimized interconnect structures
for high-fanout and long-span connections, resulting in high
operating frequencies. Finally, it generates the accelerator RTL
files and memory initialization files to store the CNN weights
in the on-chip memories; the resulting RTL is compiled to a
bitstream using the conventional FPGA CAD tools.

Using an Intel Stratix 10 GX2800, the largest monolithic
(single die) 14nm Stratix 10 FPGA, HPIPE outperforms
all other FPGA-based CNN accelerators on same-generation
FPGAs. It can also achieve 4× higher ResNet-50 throughput
at the same latency (< 1ms) compared to batch-1 inference
on the Nvidia V100 GPU, which is on a comparable
process techology (12nm). Increasing the batch size improves
GPU utilization but worsens latency; HPIPE still achieves
1.4× higher throughput but at 2.2× lower latency compared
to the V100 GPU running at a batch size of 8. This
highlights the utility of FPGAs for low-latency inference; in
this case the FPGA’s flexibility enables extreme per-model
customization, yielding efficiency gains that outweigh its
inherent reconfigurability overheads. The automatic generation
of hardware from a high-level model description eliminates the
need for FPGA design expertise, but it still requires a time-
consuming compilation of a new FPGA bitstream for each
different model to be deployed.

2) Overlay Example (NPU): The neural processing unit
(NPU) [67] is a very-long-instruction-word (VLIW) processor
architecture targeting low-latency batch-1 inference of DL
models with no data reuse (i.e. memory-bound) such as
different types of RNNs and multi-layer perceptrons (MLPs).
The NPU overlay design relies on two key principles. First, it
exploits the massive parallelism of DL models to amortize the
energy and area cost of software programmability. A single
coarse-grained VLIW instruction can trigger the execution of
thousands of operations, much like an extreme example of a
complex instruction set computer (CISC) architecture. Second,
it customizes the processor’s memory subsystem to utilize the
tremendous bandwidth between the distributed FPGA on-chip
memories and processing elements, performing near-memory
compute. The memory subsystem is explicitly managed (no
caches), uses several different register files with specific
purposes and wide data words rather than one general purpose
group, and directly chains many operations between functional



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 8

Fig. 6: The NPU overlay architecture. It is a VLIW processor consisting of five chained coarse-grained units: a matrix-vector multiplication
unit (MVU), an external vector register file (eVRF), two multi-function units (MFUs) for vector elementwise operations, and a loader unit.

units with no register file access. Fig. 6 shows the architecture
of the NPU overlay, which consists of five coarse-grained
chained units such that the output of one unit feeds the next.
The pipeline starts with a matrix-vector multiplication unit
(MVU). The MVU consists of T compute tiles, each of which
has D dot-product engines (DPEs) of size L multiplication
lanes. Vector operands are broadcast from a vector register
file (VRF) to all DPEs in a single tile, while persistent model
weights come from the matrix register files (MRFs). The MVU
is followed by an external VRF (eVRF) that enables skipping
the MVU if an instruction does not start with a matrix-vector
multiplication. The rest of the pipeline consists of two multi-
function units (MFUs) that implement vector elementwise
operations (e.g. activation functions, addition, multiplication),
and a loader unit which can write back results to any of
the processor architecture states (i.e. VRFs) or communicate
with external components (e.g. a network interface) through
input/output FIFOs. DL application developers describe their
models using a subset of the Tensorflow Keras API [68] which
is then compiled into a sequence of NPU VLIW instructions
to be executed on the FPGA overlay.

The NPU implemented on an Intel Stratix 10 GX2800
FPGA achieves 2.7× lower batch-1 latency than the equivalent
Nvidia V100 GPU for various RNN workloads from the
DeepBench suite [69] when using the same fp32 numerical
precision as the GPU. When using the more FPGA-friendly
8-bit integer precision, this performance gap grows to 8.6×.
This shows that a domain-specific FPGA overlay with a
custom architecture and ISA can deliver significantly higher
performance compared to generic processor pipelines such as
those of GPUs and CPUs, while providing similar software-
level programmability.

3) Effect of FPGA Architecture Enhancements for DL:
Both HPIPE and the NPU overlay were designed to best
match the underlying FPGA architecture. For example, they
both organize their fundamental MAC compute units to
efficiently utilize the embedded digital signal processing
blocks (DSPs) in the target FPGA. HPIPE used the dedicated
(non-programmable) interconnects between DSP blocks to
build efficient pipelined dot products with minimal utilization
of the FPGA’s programmable logic and routing. On the other
hand, the NPU used a small amount of soft logic for post-
multiplier correction to enable the dense packing of four
int8 multipliers to the two int18 multipliers available in
a single DSP block on an Intel Stratix 10 FPGA [70]. These
optimizations are used to enhance DL performance assuming

that the FPGA architecture itself is a constant. However, FPGA
architecture has been continuously evolving to better suit key
FPGA use cases and market segments throughout the past
three decades. Thus, with DL becoming such a prominent
workload, many DL-targeted FPGA architecture enhancements
have been proposed in the past few years.

One example of such FPGA architecture enhancements
(which we cover in more detail later in this article) is the
replacement of conventional DSP blocks with DL-optimized
tensor blocks in the Intel Stratix 10 NX FPGA [71].
These tensor blocks replace the legacy DSP block modes
of operation and precisions with DL-targeted ones that can
implement significantly more int8 and int4 multiplications
per block. By restricting the data input and output patterns
that can achieve peak throughput (and thereby avoiding adding
expensive additional programmable interconnect), these tensor
blocks achieve area similar to that of a conventional DSP
block. Both HPIPE and the NPU were upgraded to use these
new DL-optimized FPGAs with tensor blocks resulting in a
significant performance boost. For HPIPE, the tensor blocks
improved inference throughput by 4.8× from 6,000 to 29,400
batch-1 inferences per second for the MobileNet-V2 CNN
compared to the conventional FPGA with DSP blocks [72].
Compared to the Nvidia V100 GPU (which is more than
1.5× bigger in die size than the Stratix 10 NX FPGA), the
tensor-block-enhanced HPIPE achieves 17× higher throughput
and 3× lower latency at batch-1 or 1.3× higher throughput
and 29× lower latency at batch-128. On the other hand,
the NPU performance is improved by 3.5× when using the
tensor blocks compared to conventional DSPs, resulting in
11× higher performance than the V100 GPU [24].

These two examples highlight the significant impact
DL-specific architecture enhancements can have on FPGA
inference performance. In this article, we cover many such
architecture innovations from both industry and academia that
all share the same goal: to make FPGAs better at DL.

III. FPGA ARCHITECTURE & OPPORTUNITIES FOR DL
In this section, we briefly describe the key building blocks

of an FPGA architecture and highlight the opportunities for
optimizing these different components for DL compute. For
a more comprehensive survey on the design principles and
evolution of FPGA architecture, we refer the reader to [73].

A. Programmable Logic & Routing
The programmable logic blocks (LBs) are the most

abundant resource in an FPGA. An LB is a group of N logic



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 9

Fig. 7: Logic block (LB) and routing architecture. An LB consists of
N Logic Elements (LEs) and local interconnect. SRAM-controlled
programmable routing MUXes connect general routing wires to each
other and to LB inputs/outputs.

elements (LEs) in addition to local routing, generally built
with programmable multiplexers, that allow the LB inputs to
connect to different LEs or feed the LE outputs back to their
inputs, as illustrated in Fig. 7. In their simplest form, each LE
combines an SRAM-based K-input look-up table (LUT) with
a bypassable flip-flop (FF) and can implement any optionally-
registered K-input Boolean logic function. The LEs in many
modern FPGA architectures can also be fractured to implement
two logic functions that use at most K − 1 inputs each and
together do not use more distinct inputs than the local routing
provides to a single LE. They also include dedicated circuitry
(the pink box in Fig. 7) to efficiently implement adders, which
are abundant in many FPGA designs [74] and very common
in DL accelerators. Most commercial FPGAs from both AMD
and Intel implement LBs of eight to ten 6-input LEs (i.e.
N = 8−10,K = 6). A key distinction is that each LE in Intel
FPGAs includes dedicated circuitry to implement two bits of
addition, while each AMD LE can only implement a single bit
of addition. The LBs (and other FPGA fabric components and
IOs) are surrounded by programmable routing that can flexibly
connect between various blocks. This programmable routing
consists of SRAM-controlled multiplexers to connect block
outputs and routing wires to different routing wires (green
MUXes in Fig. 7) and routing wires to block inputs (yellow
MUXes in Fig. 7). These multiplexers consume a large fraction
of an FPGA’s die area; they constitute more than 50% of the
area of a logic tile (i.e. LB and its programmable routing) [75].
As adding more inputs and outputs to an FPGA LB or hard
block implies more routing multiplexers, architecture changes
that increase the number of inputs/output to/from a block
require careful consideration of the functionality gain vs. the
area cost.

The programmable logic and routing are the key to the
FPGA’s bit-level programmability and allow it to implement
any functionality by setting LUT and routing configuration
SRAMs (shown in Fig. 7) accordingly. For DL, custom
low-precision MAC units are typically implemented using
the LUTs, FF, and dedicated adder circuitry in the FPGA’s
LEs. For example, the Microsoft Brainwave FPGA-based DL
accelerator implemented custom 8-bit floating-point (msfp8)
compute units in the FPGA’s programmable logic. This custom

floating point format, which emphasizes dynamic range over
precision, has 2.9× higher MAC density than traditional
int8 compute units [76] and yields inference accuracy
comparable to 32-bit floating point (fp32). When somewhat
reduced accuracy is tolerable, low precision binary MACs
which are realized as XNOR and population count (popcount)
operations [77] can also be used in DL models. This results
in very small and efficient compute units when implemented
on an FPGA. In other devices, the compute units are pre-
fabricated to implement conventional, higher precision MACs
and word-wide logic operations and hence the full efficiency
gains of such extremely low precisions are not realized. While
narrow bitwidth operations are already a strength of FPGAs,
current FPGA LBs were architected before the rise of DL and
its high demand for low-precision MACs, raising the question
of whether DL-targeted LB changes could further improve
their MAC efficiency.
Opportunity 1: Enhancing logic block architecture to
implement more efficient narrow-bitwidth multiplication and
addition operations can result in significant gains for low-
precision DL acceleration.

B. Digital Signal Processing Blocks

Since DL workloads are dominated by MAC operations,
digital signal processing (DSP) blocks are crucial when
implementing FPGA-based DL accelerators. DSP blocks are
hard (ASIC-style) blocks embedded in the FPGA fabric that
implement multipliers and adders. However, they are designed
with some programmability to increase their usability in
various FPGA designs while still maintaining their ASIC-
like efficiency. For example, DSP blocks in the Intel Arria
10 and Stratix 10 FPGA families have configurable circuitry
to perform multiplications of different precisions (e.g. one
int27 or two int18 multiplications) as well as optional pre-
multiplication adders, a post-multiplication adder/accumulator,
bypassable pipeline registers, and dedicated routing wires
between DSP blocks in the same FPGA column. These DSP
blocks were originally designed for wireless communication
and filtering applications, which remain a major market for
FPGAs. Therefore, they natively support numerical precisions
that are widely used in this domain (e.g. 27×27 and 18×18
multiplications in Intel FPGAs, and 27×18 multiplications in
AMD FPGAs). Although they can be used to implement MAC
units in DL accelerators, these precisions are typically higher
than what is commonly needed for DL inference resulting in
underutilization of the DSP block features (or equivalently,
wastage of silicon area as the DSP blocks are over-engineered
for DL requirements).
Opportunity 2: Adding low-cost reconfiguration circuitry to
enable fracturing the multipliers inside DSP blocks into
more lower-precision multipliers (while maintaining backward
compatibility) can enhance DL performance.

Besides numerical precisions, these DSP blocks include
other features beneficial to traditional FPGA applications like
wireless communication. For example, the Intel Stratix 10 DSP
block has a small constant coefficient bank and input cascading
registers/interconnect for implementing efficient finite impulse



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 10

response (FIR) filters. These DSP features consume silicon
area, but are less useful for DL computations; replacing them
with more DL-focused features could improve DL efficiency
at the cost of losing backward compatibility with traditional
DSP blocks.
Opportunity 3: Replacing the DSP blocks originally designed
for the wireless communications domain with new DL-targeted
blocks can increase the compute density and efficiency of
FPGAs for DL.

C. On-Chip Block Memories

FPGAs also include a large number of on-chip SRAM
memory blocks typically referred to as block RAMs (BRAMs).
These BRAMs (more than 10,000 blocks in modern FPGAs)
are spatially distributed in columns throughout the FPGA
fabric, as shown in Fig. 10. The latest generations of
Intel FPGAs contain a single type of BRAM with 20Kb
capacity [78], while AMD FPGAs have 36Kb BRAMs as well
as larger but less common 288Kb RAMs (typically referred to
as Ultra RAMs or URAMs) [79]. The core of these BRAMs
is a fixed size SRAM array with the conventional peripheral
circuitry for read/write operations such as row decoders,
sense amplifiers, and write drivers. However, similarly to
DSP blocks, these BRAMs include low-cost reconfiguration
circuitry in their peripherals to enable implementing buffers
with different width/depth (narrow and deep vs. shallow
and wide buffers) and number of ports depending on the
application needs [80]. For example, by setting a few
configuration SRAM cells, a 20Kb BRAM can be used as a
read-only memory (ROM), a single-port RAM, or a dual-port
RAM with a 1b×16K, 2b×8K, 4b×4K, 8b×2K, 16b×1K,
32b×512, or 40b×512 organization. The FPGA BRAMs can
all be accessed in parallel providing massive on-chip memory
bandwidth (on the order of petabits per second) with only
one or two cycles of access latency. Additionally, they can
be independently controlled and directly connected to the
compute units by exploiting the flexibility of the FPGA’s
programmable routing. These features are useful for low-
latency massively parallel DL compute on FPGAs. However,
with the increasingly pressing need to bring compute even
closer to data for higher efficiency, the thousands of on-chip
memory blocks in an FPGA can potentially do more than just
store data to be used by the compute units implemented in
LBs and DSPs.
Opportunity 4: With advances in processing-in-memory
technology, enhancing BRAMs with in-memory compute
capabilities can provide thousands of parallel compute units
on the FPGA at a relatively low cost.

D. Interposers

Since FPGAs are typically early adopters of a new process
technology, creating large single-silicon-die FPGAs results in
poor yield (due to manufacturing defects) especially early
in the process life cycle. To face this challenge, many
recent FPGAs use passive interposer technology to integrate
multiple (smaller) silicon dice in the same package. This
not only improves yield but also enables agile hardware

Fig. 8: Passive interposer technology for creating larger FPGA
devices by integrating multiple smaller and higher yield chips in the
same package.

development by combining FPGA fabrics with pre-fabricated
chiplets that implement different functionalities and (possibly)
use different process technologies into a complete system-in-
package. As illustrated in Fig. 8, an interposer is a silicon die
with conventional metal layers but has no active transistors
implemented on it (thus the name passive interposer). The
top metal layer of the interposer die can connect to the top
metal layer of multiple dice flipped on top of it through
densely packed (typically tens of µm pitch) solder balls
known as microbumps [81], providing a high density of
routing tracks between different chips in the same package.
AMD FPGAs have been using this technology starting from
their 28nm 7-series family to integrate multiple FPGA dice
which are presented to users as a single large FPGA with
multiple super logic regions (SLRs) [82]. Intel FPGAs also
use a similar technology, known as the embedded multi-die
interconnect bridge (EMIB) [83], to integrate an FPGA die
with multiple transceiver or high-bandwidth memory (HBM)
chiplets starting from their 14nm Stratix 10 family [84]. These
technologies enable the creation of many device variations for
different markets depending on the application-specific ASIC
chips integrated with the FPGA in the same package. Even
with the rapid change in state-of-the-art DL models, massively
parallel MAC operations are a core component of almost all
models and hence can be potentially offloaded to a highly-
efficient ASIC side chiplet. In this case, the FPGA in the same
package can provide the needed flexibility for any DL model
changes and diverse IOs to the rest of the system.
Opportunity 5: Integrating FPGAs and DL-specialized ASICs
using advanced package integration technologies can combine
the best of both worlds: FPGA flexibility for bespoke parts of
the system and ASIC efficiency for common functionality.

E. Networks-on-Chip and Embedded Accelerators

More recently, new beyond-FPGA reconfigurable
acceleration devices (RADs) have emerged. An example
is the AMD Versal architecture, which combines an FPGA
fabric with general-purpose processor cores and an array
of software-programmable vector processors in a single
device [85]. All these components are connected via a
packet-switched network-on-chip (NoC) for efficient system-
level communication [86]. The NoC enables faster and
easier integration of systems combining various soft design
IPs implemented on the programmable FPGA fabric along
with hard coarse-grained application-specific embedded
accelerators. The AMD Versal architecture is a single design



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 11

Fig. 9: Key ingredients for FPGA architecture exploration: benchmark
circuits, architecture description, and a retargettable CAD flow.

point from a broad space of potential novel reconfigurable
computing devices that could benefit DL acceleration.
Opportunity 6: Exploring the design space of new DL-targeted
RADs that combine the unique features of FPGAs with more
efficient coarse-grained DL accelerator cores.

For the remainder of this article, we review recent
proposals from both academia and industry to enhance FPGA
architecture for DL, capitalizing on the opportunities that we
highlighted in this section. Before that, we first explain the
commonly used methodology for exploring and evaluating new
FPGA architectures quantitatively.

IV. FPGA ARCHITECTURE EXPLORATION

A. Tools and Benchmarks

Fig. 9 shows the flow typically used to evaluate FPGA
architecture modifications. At the core of this flow is a
retargettable FPGA CAD tool that can flexibly synthesize,
place and route a set of benchmark designs on a wide range
of input FPGA architectures. Architects can then evaluate
different candidate architectures by comparing the the timing,
area, and power metrics reported by the CAD tools. Verilog-to-
routing (VTR) is an open-source flow that is widely used for
FPGA architecture and CAD research [87]. It combines several
tools such as ODIN [88] or Yosys [89] for Verilog synthesis,
ABC [90] for logic optimization and technology mapping,
VPR for packing, placement and routing, and Tatum [91]
for static timing analysis. VTR takes as an input an XML-
based FPGA architecture description file which specifies the
high-level organization of an FPGA (e.g. number and type
of blocks, distribution of wire segment lengths, size of logic
clusters and logic elements), its micro-architectural details
(e.g. DSP and BRAM modes of operation, hard arithmetic in
logic blocks, switch block patterns), as well as transistor-level
circuit implementation parameters (e.g. switch/wire delays and
areas). Tools such as COFFE [92] automate the transistor-level
design and modeling of FPGA circuitry and generate the delay
and area of different components to be included in the VTR
FPGA architecture description file.

Optimizing an FPGA architecture also requires benchmark
designs that cover a variety of use cases in the target
application domains. Typically, FPGA vendors have carefully
curated benchmark suites comprising proprietary designs

representative of different customer use cases. There are also
several academic open-source benchmark suites such as the
classic MCNC20, the VTR [87], and the Titan23 [93] suites
which are commonly used in academic FPGA architecture and
CAD research. While early academic FPGA research used
the MCNC circuits, they are now too small (thousands of
logic primitives) and simple (only IOs and logic) to represent
modern FPGA applications. The VTR and particularly the
Titan suites are larger and more complex, making them
more representative. However, none of these benchmark suites
contain any FPGA designs representative of the DL domain.
The Koios benchmark suite [94] was introduced to address
this gap. It contains 40 DL circuits that capture a wide
variety of sizes, implementation styles, target neural networks,
numerical precisions, and circuit properties. It also introduced
a methodology for generating synthetic or proxy circuits that
have similar characteristics as various real DL circuits. The
Koios benchmarks are open-sourced and integrated into the
VTR flow, enabling the exploration of new FPGA architectures
optimized specifically for DL.

B. Methodology

In this subsection, we explain the general methodology for
evaluating new FPGA architecture ideas using the tools and
benchmarks that we introduced in the previous subsection.
A similar methodology is used for evaluating the gains
and cost of most of the proposed FPGA fabric architecture
enhancements discussed in the rest of this article.

A common FPGA architecture enhancement for a specific
target domain is to introduce a new type of hard block to
the FPGA fabric (or change an existing one) to efficiently
implement common functionalities in application designs from
this domain. As an example, for the DL target domain,
an FPGA architect might evaluate adding hard convolution
engines to the FPGA fabric. This involves many design trade-
offs and questions including: how much of the FPGA die area
should be dedicated to these convolution blocks? How flexible
should they be? Do they implement only convolutions or can
be re-configured to implement other operations and used by a
broader set of applications? What impact does their addition
have on the demand for programmable routing? How much do
they improve the overall target application performance and at
what cost to other application domains?

To answer these questions, the architect first writes an
RTL implementation for their new proposed hard block
(a convolution engine in our example). This implementation
describes the cycle-accurate functionality of the block as
well as its different reconfigurable modes of operation. Then,
they perform the circuit-level evaluation using a tool like
COFFE. FPGA circuitry consists of both standard cell (ASIC)
components and full custom (hand-optimized transistors and
layouts) components, and COFFE models and evaluates both
types. The functionality of the hard block is implemented
using standard cell ASIC EDA tools, while the interface to
the programmable routing uses automated full-custom design
and SPICE modeling. The outcomes of this step are the
area, timing and power models of the proposed hard block.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 12

Fig. 10: Taxonomy of FPGA architecture enhancements for DL.

These models are then plugged into an FPGA CAD flow
(such as VTR) to perform the architecture-level evaluation
by mapping a set of representative benchmark circuits (such
as Koios) to the FPGA architecture including the proposed
new hard block. This mapping can be done by modifying
the benchmarks to directly instantiate an instance of the
new hard block or by extending the synthesis tools to
automatically extract circuit netlist components and map them
to the new hard block. This last step evaluates the resource
utilization, timing, and routability of the benchmarks of
interest on the proposed FPGA architecture. Enhancements to
the programmable logic blocks and BRAMs can be evaluated
using the same general methodology, except that the core of
these blocks is also custom designed and laid out instead of
being implemented with ASIC standard cells.

C. Taxonomy of FPGA Architecture Enhancements for DL

In the rest of this article, we present several DL-
targeted FPGA architecture enhancements from both academic
research and industry. Fig. 10 illustrates the taxonomy
of these proposals which include 1 enhancing existing
conventional FPGA fabric blocks (e.g. LBs, DSPs, BRAMs),
2 introducing new DL-specific in-fabric hard blocks (e.g.

tensor blocks), 3 tightly integrating coarse-grained DL
accelerators on the same die with an FPGA fabric (e.g. AMD
AI engines), as well as 4 integrating FPGAs and other DL
chiplets in the same package.

V. ENHANCING EXISTING FPGA FABRIC BLOCKS

A. Logic Blocks

As discussed in Section III-A, many prior works have
shown that various DL models can be quantized down
to lower precisions with little to no accuracy loss during
inference [95]. Narrow integer MAC operations (e.g. int8,
int4) are now natively supported in many commercial DL
accelerators [96], [97]. In addition, new low-precision floating
point formats are being standardized (e.g. fp8 [33]) and
are expected to be supported in the next generation of

Fig. 11: Architecture of a logic element similar to that of Intel
Stratix 10 and Agilex. It can operate as four 4-LUTs followed by
two additions, two 5-LUTs, or one 6-LUT.

Fig. 12: Mapping of 4-bit multiplication to conventional logic
elements. The LUTs are significantly underutilized: 4/5-LUTs are
used to implement 2-input ANDs or the identity function (i.e. pass-
through) to access the adders.

compute platforms for DL. FPGAs offer unique flexibility
to implement any desired numerical precision directly in
hardware using their fine-grained programmable LBs and
since the logic usage of a multiplier grows quadratically
with its precision, large hardware savings are possible by
cutting precision to the minimum. LBs are the most abundant
resource in a conventional FPGA fabric, so architecture
changes that increase their efficiency for implementing low-
precision multipliers will have high impact in DL applications.

Fig. 11 shows the internal architecture of a modern FPGA
LE, similar to that in the Intel Stratix 10 and Agilex FPGAs.
It has 8 distinct inputs and 4 optionally-registered outputs,
as well as two chained hard adders that are fed by four 4-
input LUTs (4-LUTs). Therefore, at a high-level, each LE
can implement four 4-input logic functions followed by 2-
bits of addition, two 5-input logic functions, or one 6-input
logic function as long as no more than 8 distinct inputs are
needed. Fig. 12 illustrates how a 4-bit multiplication is mapped
to this LE architecture as an example, where bits of the two
multiplication operands are represented by different shapes
and colors. The first step of multiplication is performing
an AND between each bit of one operand and all bits of



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 13

the other operand to generate partial products, as illustrated
by combining the color and shape of the bits in Fig. 12.
These partial products are then reduced over one or multiple
stages of addition to produce the final multiplication result.
Thus, multiplications can be fundamentally viewed as bit-
level ANDs followed by adder trees (usually referred to as
compressor trees). In an LE implementation, the 2-input ANDs
are mapped to the 4-LUTs followed by adders to realize the
first level of reduction. Then, other LEs are used only for
the adders (i.e. the 4-LUTs implement identity functions) to
perform the subsequent reductions until the final result is
produced. This highlights a major source of inefficiency: the
LUTs are significantly underutilized. Many of the used LUTs
in Fig. 12 are just pass-throughs to access the adders, and even
the LUTs that implement partial products perform a 2-input
AND function, wasting half of the functionality of a 4-LUT.

The authors of [98], [99] highlight these inefficiencies
and propose four architectural modifications (summarized in
Fig. 13) to address them at both the LE and LB levels. The first
proposal adds another cascaded adder chain fed by the two
sum outputs of the existing chain and two independent inputs.
This can efficiently implement compressor trees by obviating
the need for a second level of LEs used only as adders.

The second proposal implements a single 4-bit adder chain
by adding circuitry to allow further fracturing of each 4-LUT
into two 3-LUTs. Fracturing a 6-LUT all the way down to 3-
LUTs generates 8 signals which can feed two inputs into each
of four adders, and a 3-LUT can still implement the 2-input
AND gate function needed in multiplier partial products. This
results in a higher density of adders in general at the cost of
sacrificing the ability to map 4-input logic functions feeding
adders in the same LE, which does not occur in multipliers and
is expected not to be very common in other non-DL FPGA
designs. While one might consider continuing this process,
fracturing down to 2-LUTs feeding 8 chained adders per LE,
this would exceed the 8 inputs the programmable routing
provides to an LE, and adding additional inputs from the
programmable routing is costly in terms of area [73]. Another
variation on this idea arranges the four adders into two 2-bit
chains per LE instead of a single 4-bit chain, as shown in
Fig. 13. This is different from the cascaded adder chain in
the first proposal, since all the adders in both chains are fed
directly by the LUTs.

The fourth idea modifies the LB architecture by adding a
low-precision hard multiplier in some or all of the FPGA
LBs. They are referred to as shadow multipliers as, when
used, they steal the input and output ports of some of
the LEs; this makes those LEs unusable but avoids adding
expensive input and output ports to the programmable routing.
The shadow multipliers from different LBs can also be
combined to implement higher-precision multiplications using
the programmable routing and some LE-based glue logic.

These four ideas vary in their area costs and performance
gains. For example, the two 2-bit adder chains proposal results
in 1.5× denser matrix multiplications, while being 10% faster
and also benefiting other non-DL benchmarks. These gains
come at a modest cost of only 3% increase in die area
compared to a Stratix-10-like baseline fabric. On the other

Fig. 13: Four architectural modifications to the FPGA LEs and LBs
for increasing the density of low precision MAC in soft logic.

hand, adding a 9-bit shadow multiplier to each LB results in
2.4× denser and 17% faster matrix multiplications, at the cost
of a 15% increase in die area. A patent filed by Intel [100]
further enhanced the cascaded adder chains proposal to achieve
denser MAC mappings, but is not yet adopted in commercial
FPGA architectures.

While [98], [99] focused on adding more full adders to LEs
for denser arithmetic, both MAC and pop-count operations
in low-precision and binarized DL models typically require
the addition of more than 3 bits and can benefit from
generalized parallel adders or compressors. A full adder is a
simple compressor that takes 3 bits as inputs (A,B,Cin) and
compresses them into 2 bits (a sum S and a higher significance
carry Cout). Therefore, a full adder is typically referred to as
a C3 : 11 compressor (3 inputs → 1 same significance + 1
higher significance outputs). This concept can be generalized
to any number of input bits, where the compressor output is
simply a count of the number of ones in the input bits. The
authors of [101] analyzed a variety of microbenchmarks and
found that more than 35% of the compressors in these designs
are C6 : 111 compressors. A C6 : 111 can be viewed as three
6-input logic functions (one for each output bit) and thus can
be mapped to 3 LEs. One of these three logic functions is a
simple 6-input XOR. In [101], the authors evaluated adding a
hardened 6-input XOR gate to a typical recent LE architecture
(similar to that in Fig. 11). Since all three logic functions share
the same 6 inputs and the LE has up to 4 outputs, the added
XOR gate enables a single LE to implement two of the three
logic functions in a C6 : 111 compressor. This results in up
to 36% denser compressor implementations at the cost of less
than 0.5% increase in die area.

Kim et al. [102] also proposed two architectural
modifications to the hard adder chains in LBs for enhancing
the efficiency of popcount operations in binarized DL models.
The first proposal adds a new popcount adder chain that



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 14

Fig. 14: Enhancements to the FPGA DSP blocks for DL such as:
(1) fracturing larger multipliers into smaller ones while keeping the
same interface to the programmable routing (left), and (2) adding
more dedicated interconnect between DSPs in a column for efficient
2D systolic array implementation and integrating an internal FIFO or
register file for efficient data reuse near compute (right).

propagates the sum bits on the dedicated chain interconnect
and produces the carry out bits to the outputs of the
LEs (which differs from the conventional adder chain that
propagates carry bits and produces sum bits). The second
proposal further optimizes popcount implementation by adding
another full adder that can sum the two carry out bits of the
two popcount adders in an LE. These two architectural changes
reduce the logic utilization of popcount operations of different
widths by 23-44% and 36-40% at the cost of only 1.9% and
2.4% increase in the LB’s silicon footprint, respectively.

B. DSPs

Along the same vein of increasing low-precision MAC
efficiency on FPGAs, both academic research and FPGA
vendors have investigated adding native support for low
precisions in conventional DSP blocks. As discussed
in Section III-B, filtering and wireless communication
applications were historically the key drivers of DSP block
architecture decisions. Therefore, DSP blocks in commercial
FPGAs until the 14nm process generation from both Intel
(Stratix 10) and AMD (Ultrascale+) had native support for
numerical precisions suitable for wireless communication
applications. In 2013, Intel added native support for single-
precision floating-point (fp32) in the DSPs of their Arria
10 (and later Stratix 10) devices to enhance their efficiency
for high-performance computing. The rapid growth in the
DL domain motivated the work in [103], which was the first
to investigate DSP micro-architecture optimizations for low-
precision DL.

This work enhanced an Arria-10-like DSP block that can
implement one int27 or two int18 multiplications to also

natively support four int9 and eight int4 multiply and
MAC operations at a low area cost, as illustrated on the
left side of Fig. 14. This was achieved by balancing the
addition of new small 4-bit multiplier arrays and low-cost
circuitry that enables the fracturing of existing multiplier
arrays into multiple independent sub-arrays. In addition, the
chain reduction and accumulation was split into two lanes
as shown in Fig. 14 to minimize the area and delay cost of
supporting the MAC mode for these precisions. The design of
this new enhanced DSP block was guided by three key design
principles: (1) Ensure backward compatibility such that the
DSP blocks are still efficiently usable for non-DL applications,
(2) Have minimal effect on DSP block area footprint and
operating frequency to minimize the negative impact on other
applications that do not benefit from the added modes of
operation, and (3) Keep the same number of input/output
ports to/from the DSP block to avoid both the expensive area
cost of additional interfaces to the programmable routing and
the creation of routing hot spots in the proximity of these
blocks.

The enhanced DSP block from [103] increased the area
of the DSP block by 12% which corresponds to only a
0.6% increase in the overall die area of DSP-rich devices,
with no effect on its operating frequency. When used in
several DL accelerator designs, the new DSP blocks enhanced
performance by 1.3× and 1.6× while reducing resource
utilization by 15% and 30% for int9 and int4 precisions,
respectively. Subsequent commercial FPGA architectures from
both Intel (Agilex) and Xilinx (Versal) added similar native
support for four and three int8/int9 multiplications per
DSP block, respectively.

Conventional DSP blocks also have dedicated wires that
can pass the inputs/outputs of one DSP block to the next
block in the same column. This was originally designed to
help implement more efficient 1D systolic arrays for finite
impulse response (FIR) filters in wireless communication
applications. However, for the DL domain, efficient matrix-
matrix multiplication and convolution operations can be
implemented as 2D systolic arrays. Therefore, Rasoulinezhad
et al. [104] explored adding a special pattern of dedicated
interconnect between DSP blocks that can efficiently map 2D
systolic arrays to a 1D column of DSP blocks without using
the general programmable routing, as shown on the right side
of Fig. 14. They also proposed integrating a small memory
inside the DSP block (register file or FIFO) to enhance
energy efficiency by storing data very close to compute.
This enables reusing the same set of operands across many
computations (which is common in many DL compute kernels)
without the need to read and transport it from distributed
LUT-based memories or BRAMs to DSP blocks. Their PIR-
DSP block significantly reduced energy consumption by 70%,
82%, and 87% (on average across several neural network
implementations) compared to a baseline Xilinx-like DSP
block for int9, int4, and int2 precisions, respectively.
These improvements come at the cost of 28% increase in the
DSP block area footprint.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 15

C. BRAMs

In DL applications, the FPGA BRAMs are used as on-
chip user-managed scratchpads to store computation operands
(weights and activations) and results, feeding the compute
units with data at a very high bandwidth due to their
distributed nature. However, the separation of compute units
(implemented using LBs and DSPs) from storage units
(BRAMs) implies data movement to feed the compute units
with input data and store the outputs back to the BRAMs.
This uses a large amount of the FPGA’s programmable routing,
leading to routing hot spots between the memory and compute
units and increased power consumption. To address these
challenges, several research efforts have proposed adding
compute capabilities to the FPGA BRAMs by introducing
lightweight bit-level PEs inside the BRAM itself to bring
compute closer to the data. This provides three major
advantages: (1) It increases the compute throughput of
the FPGA because a larger portion of the FPGA die area
can now perform computation, (2) it reduces the data
movement saving both energy and valuable programmable
routing resources, and (3) it provides massive compute
parallelism as the large number of BRAM bitlines can
operate as bit-serial SIMD lanes executing the same operation
on all the bits of a memory word. Similarly to the DSP
block enhancements in Section V-B, the new compute-capable
BRAMs should be functionally backward compatible, incur
minimal performance loss for traditional usage, and avoid
adding new input/output ports to/from the programmable
routing to avoid area overheads for designs that do not use
in-BRAM compute.

At a high level, enabling in-BRAM compute requires adding
PEs that perform bit-serial computations on the outputs of
the sense amplifiers inside the BRAM. Two N -bit rows (i.e.
wordlines) are read simultaneously from the RAM cell array,
the PEs perform N parallel binary operations between the
corresponding bits of the two words, and the result is stored
back to another row in the RAM array. This read-modify-write
operation happens completely inside the BRAM in a single
clock cycle that is longer than the normal read/write period
in a conventional BRAM. In addition to the sense amplifier
PEs, lightweight control logic (a finite state machine) may
be required inside the BRAM to sequence these steps. The
specific rows to read, computation to perform in the PEs,
and row to write constitute a compute instruction which is
provided to the BRAM through the existing programmable
routing ports.

Fig. 15 shows a top-level diagram of an FPGA BRAM
with the modified/added components to incorporate compute
capabilities highlighted in red. The dual-port memory cell
array at the core of the BRAM remains unmodified. In a
conventional BRAM, the column decoder activates a subset
of the bits in a row to be read by the sense amplifiers or
written by the write drivers. For example, a 20Kb SRAM array
(similar to that in the BRAMs of modern Intel FPGAs) is
arranged as 128×160-bit rows [105]. However, the maximum
read/write width of the BRAM is 40 bits to limit the cost of
the programmable routing interfaces. Therefore, the BRAM

Fig. 15: FPGA BRAM internal architecture with the components
changed or added for in-memory compute highlighted in red.

block includes 40 sense amplifiers and 40 write drivers and a
column decoder selects one 40-bit portion of the 160-bit row to
be read/written. To enable maximum parallelism for in-BRAM
compute, additional sense amplifiers and write drivers as well
as bit-level PEs are introduced to read/compute/write the full
width of the array row. The sequencing logic that controls
the events of the read/write operations (wordline activation,
precharge, sense amplifier enable, etc.) in the memory is also
modified to support reading, computing, and writing in one
(longer) cycle. One extra interface pin is added to the BRAM;
when it is asserted the input data and addresses are treated as
a compute-in-memory (CIM) instruction. In this case the CIM
mode glue logic decodes the instruction into low-level control
signals to various BRAM internal components.

Fig. 16a shows an example architecture of a CIM PE that
can perform bit-serial addition. On the read path, A and B are
the two operand bits read from two rows of the SRAM cell
array by the sense amplifiers (SA) for the two SRAM array
ports. The two XOR gates (SGEN) generate the sum bit (Sum)
using the two operand bits (A and B) and the previous cycle’s
carry (Cin). Another set of gates (CGEN) are used to compute
the carry bit, which is stored in the carry FF (C) for the next
cycle computation. The read outputs A and B are also sent to
Dout ports, which is the normal read path. On the write path,
2-input multiplexers (Ws) are added before the write drivers
(WD) for the two ports. These multiplexers determine what
to write to the SRAM cell array; the Ws multiplexers select
between the sum/carry bit and the normal write path inputs
(Din). The select lines of these multiplexers are driven by the
CIM mode glue logic, depending on the mode setting and the
instruction written to the BRAM input ports.

Fig. 16b illustrates the operation of a compute-capable
BRAM used to perform elementwise addition of two N -
element vectors (operands 1 and 2), where each element is a 4-
bit integer. The vector elements are first stored in a transposed
memory layout, where each of the elements of the first vector



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 16

WD WD
SA SA

C
a
rry

Sum

B

Cin

A

Din Dout

Cout CGEN

SGEN

Port BPort B Port APort A

WsWs

C

(a) (b)

Fig. 16: (a) Compute-in-memory processing element circuitry for
bit-serial addition. (b) In-BRAM compute operation example for
elementwise addition of two N -element vectors with 4-bit operands.
The input and result vectors are all stored in a transposed layout.

is stored in a different column over 4 rows (i to i + 3) and
elements of the second vector are stored in the same columns
over 4 different rows (j to j + 3). In one cycle, rows i and j
are read, one on each port of the dual-port SRAM array. Each
PE receives two bits (one from row i and one from row j)
and computes the sum of the two bits and the carry from the
previous cycle. The carry-out is stored in the carry FF in the
PE, and the sum is written to row k using one port. This
process is repeated for 4 cycles while incrementing the row
addresses read from and written to. In the fifth cycle, the last
carry bits stored in each PE are written to row k+4 using the
second write port and the final result vector of the elementwise
addition operation is now available in rows k to k + 4. More
complex operations such as multiplication or reduction can be
performed as a sequence of additions and memory copies.

There are several academic proposals to enhance FPGAs
with in-BRAM compute capabilities; they make different
design choices for the compute paradigm used (bit-serial vs.
bit-parallel), supported operations in the added PEs, how to
store data and intermediate results, and how to program/control
the BRAMs to execute a sequence of operations [106]–[110].
The work by Wang et al. [106] was the first to propose
adding compute capabilities similar to that demonstrated for
CPU caches [111] to FPGA BRAMs. Their compute-capable
BRAM (CCB) used a bit-serial addition PE; however, it uses
only one port by activating two wordlines simultaneously to
perform an analog AND operation on the bitlines. This makes
the PE slightly cheaper and frees up one of the two ports of
the BRAM, enabling overlap of data loading and computation.
However, this technique is less robust, more sensitive to
process variations, and requires lowering the wordline voltage
(and therefore the operating frequency) to avoid corruption
of the cell contents. A DL accelerator designed for CCB
achieves 1.25× and 3× higher performance compared to the
Microsoft Brainwave accelerator [36] for int8 and bfp8
precisions across RNN, GRU, and LSTM workloads, at the
cost of only 1.8% increase in the FPGA die area. Like

CCB, Compute RAM [107] performs analog AND operations
on the bitlines and uses bit serial processing elements for
addition, but introduces a small secondary memory array to
store instructions inside the BRAM block.

CoMeFa [108] improves robustness over CCB by avoiding
an analog AND on the bitlines; instead it exploits the dual-port
nature of FPGA BRAMs to obtain two operands and uses the
bit-serial addition PE from Fig. 16a. This technique also can
achieve higher operating speeds, but it comes at the cost of
using both BRAM ports during compute, and hence it cannot
overlap loading and compute. The CoMeFa architecture has
both area- and delay-optimized variants; the delay-optimized
version increases FPGA die area by 3.8% and achieves a 2.5×
performance improvement across a variety of DL workloads
on a Microsoft-Brainwave-like accelerator architecture that
uses in-BRAM compute.

Both CCB and CoMeFa followed the same bit-serial
compute paradigm where the operands are laid out in memory
in a transposed format. In DL applications, one set of
operands (the model weights) are fixed and therefore can be
transposed offline and stored in the BRAMs. However, [108]
shows that implementing a data transformation unit to
transpose the other set of operands (model activations) at
runtime uses a significant amount of soft logic resources.
Chen et al. [109] instead proposed a compute-in-BRAM
architecture for multiply accumulate (BRAMAC) that uses
a mix of bit-serial and bit-parallel computations to reduce
latency and enable the use of non-transposed activation values.
The PEs in BRAMAC are variable-precision adders that can
take inputs from groups of bitlines to perform bit-parallel
addition; multiplications are then implemented by serially
accumulating addition results. This significantly reduces the
compute latency compared to the purely bit-serial approach:
from O(m2) to O(m) cycles for m-bit operands. However, it
limits the possible numerical precisions to a pre-defined set
supported by the architecture whereas the bit-serial approach
can implement any precision. BRAMAC also added a smaller
secondary SRAM memory array with only a few wordlines
inside the BRAM block. In the compute mode, the operands
are first copied internally (two 40-bit data words per cycle) to
this secondary array, where the computations are performed.
This increases the BRAM compute mode frequency as it is
faster to charge/discharge the much shorter bitlines of the
secondary array; it also frees up both ports of the main
memory array to be used for normal read/write operations
while computations are performed in the secondary memory
array. Different variations of the BRAMAC architecture show
performance improvements ranging from 1.3× to 2× for
different CNNs running on an accelerator similar to Intel’s
DLA [62] at the cost of a 3.4-6.8% increase in FPGA die
area. M4BRAM [110] augments the BRAMAC PE by adding
duplication/shuffling logic to enable more efficient data reuse
and adding support for mixed-precision operations in which
the weights and activations have different bitwidths. These
enhancements improve the performance by 1.4× on average
compared to BRAMAC.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 17

Fig. 17: In-fabric 2D systolic tensor block consisting of 16 PEs that
can operate collectively in tensor mode or independently in scalar
mode as configured by the multiplexing logic. Each tensor block is
3.5× wider than a LB and spans 8 rows in the FPGA grid.

VI. IN-FABRIC TENSOR BLOCKS

Another line of work has investigated the integration of new
hard blocks for tensor computations in the FPGA fabric to
enhance DL inference efficiency. Arora et al. [112], [113]
proposed adding 2D systolic tensor blocks to the FPGA
fabric, as illustrated in Fig. 17; these tensor blocks are in
addition to (rather than a replacement for) the traditional
DSP blocks in the fabric. These blocks contain 16 PEs,
input logic for preparing data to be consumed by the PEs
(e.g. delay registers for staggering inputs in 2D systolic
processing), output logic for marshalling output data from
different PEs, and multiplexing logic for configuring the
block to operate in different modes. The multiplexing logic
allows the tensor block to operate in tensor or scalar modes.
In tensor mode, all the PEs are collectively calculating a
matrix-matrix multiplication, matrix-vector multiplication, or
matrix-matrix elementwise addition/subtraction/multiplication.
In scalar mode, each PE is calculating an independent
multiply or MAC operation. The mode of operation can
be dynamically changed at runtime by appropriately setting
control inputs to the block. Each PE in the tensor block can
implement 1× int16, fp16, or 16-bit Brain floating-point
(bfloat16) [114] MAC, and it can also be fractured to
implement 4× int8 MACs.

This tensor block has a 4.4× higher area footprint than an
Intel Agilex-like DSP block, with 2.4× and 4× more input
and output pins interfacing with the programmable routing,
respectively. To accommodate their higher area and increased
signal demand, these blocks occupy multiple locations in the
grid defined by the FPGA routing channels. Hence they can
connect to multiple routing channels; a single block spans
8 rows of the FPGA grid. A tensor block column is also
physically 3.5× wider than an LB column. On a set of 9
DL benchmarks, the addition of these in-fabric tensor blocks
increased the maximum operating frequency by 65% and
decreased the routed wirelength by 55% on average. A large
number of MAC operations and the interconnect between them
can be mapped to the PEs of a single tensor block, leading
to these speed and wirelength gains over distributed LBs and
DSPs connected together using the programmable routing. For

Fig. 18: The Achronix Speedster7t machine learning processor block
(MLPB) internal architecture. Tightly coupling BRAMs and register
files with MAC arrays restricts the high-bandwidth data transfers
internally in the MLPB and limits the number of external interfaces
to the programmable routing.

non-DL benchmarks the tensor blocks not only remain idle
but also, due to their coarse granularity, force other circuit
components to be placed physically further away from each
other with longer connections between them. This results in a
0.5-2.5% degradation in frequency and a 2-8% increase in
routed wirelength as the portion of die area dedicated for
tensor blocks is varied from 5% to 30%.

As the market for FPGA-based DL acceleration continues
to grow rapidly, several FPGA vendors have also started to
offer DL-optimized FPGA families that integrate different
forms of in-fabric tensor blocks. These devices sacrifice
backward compatibility by entirely replacing the wireless-
communication-targeted conventional DSP blocks with new
tensor blocks optimized specifically for the compute patterns
and numerical precisions of DL workloads. The Achronix
Speedster7t FPGA [115] integrates machine learning processor
blocks (MLPBs2), that tightly couple BRAMs and MAC
units with dedicated high-bandwidth routing between them,
as shown in Fig. 18. This tight coupling reduces the number
of expensive interfaces to the programmable routing needed to
feed the compute units inside the block. New weight and/or
activation data can be written to a double-buffered internal
BRAM using relatively narrower external interfaces, while
another set of weights and/or activations is reused for many
compute operations with wide internal dedicated connections
between the BRAM and compute units.

Another key benefit of this tight coupling of BRAMs and
MAC units is that it enables these hard MLPBs to operate on
a higher frequency clock domain (up to 750MHz) than the rest
of the design implemented in soft logic, without the need to
use the (slower and less efficient) fine-grained programmable
routing for transporting data between memory and compute
as in conventional FPGA fabrics. These MLPBs also natively
support a wide variety of numerical precisions suitable for
DL training and inference such as int4/8/16, bfp12/16,

2Although Achronix abbreviates their machine learning processor blocks
as MLPs, we use MLPBs to avoid confusion with MLPs for multi-layer
perceptron models.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 18

Fig. 19: Different int8 modes of operation of the Intel Stratix 10 NX
AI tensor block: scalar mode with 3 independent MACs (top), vector
mode with one dot-6 operation without input restrictions (middle),
and tensor mode with three dot-10 operations using input broadcast
and input reuse register chains (bottom).

bfloat16, and fp16/24. The largest Speedster7t devices
include 2,560 MLPBs that can provide up to 61.4 and 122.8
TOPS of int8/bfp16 and int4/bfp12 performance,
respectively. Cairncross et al. [116] demonstrated the use of the
Speedster7t MLPBs to implement a 4-core FPGA DL overlay
for low-latency inference use cases. The overlay can clock
the MLPBs at 560MHz, achieving a peak int8 performance
of 36.4 TOPS with 80-100% utilization of the compute units
across a variety of GEMV, MLP, and RNN workloads at a
batch size of 4.

The artificial intelligence tensor blocks (AITBs) in the Intel
Stratix 10 NX device [117] are another example of commercial
in-fabric tensor compute. Although the end goal is the same
(to integrate in-fabric tensor compute for DL), Intel adopted a
different design approach from the academic tensor blocks and
the Achronix MLPBs. The AITBs were designed as a drop-in
replacement for conventional Stratix 10 DSP blocks in terms
of silicon area footprint and interfaces to the programmable
routing (i.e. only the block internals are different). A single
AITB has enough silicon footprint to implement up to 30
int8 or 60 int4 multipliers. However, this would require
480 input and 480 output interfaces to the programmable
routing, which is much higher (and would be much larger) than
the 96 inputs and 72 outputs in the conventional Stratix 10 DSP
block. Most DL workloads are dominated by operations where
the results of many multiplies are accumulated and there is re-
use of input data. Intel exploits this by designing three different
AITB modes (shown in Fig. 19) that enable different levels of
arithmetic density while staying within the 96 input / 72 output
limit; more dense modes support increasingly constrained (but
useful in DL) compute patterns.

Fig. 20: Mapping of different convolution operations in HPIPE to
different modes of the Intel Stratix 10 NX AITB modes of operation.

In scalar mode, the AITB performs completely independent
multiplies. This mode is easy to use, but compute density is
limited by the number of outputs to the general programmable
routing; the AITB can perform only three independent int8
MAC operations with a 24-bit accumulator each (i.e. a total
of 72 outputs). The vector mode internally sums its multiplies
to produce one output, making it well suited for dot products.
In this case, the AITB is limited by the number of inputs
and can perform six int8 multiplies in a dot-6 operation
(i.e. 2 operands × 6 elements × 8 bits = 96 external inputs).
Finally, the tensor mode provides the highest arithmetic
density, but with more restrictions on the inputs and outputs of
the AITB. To limit outputs to 72, it performs three int8 dot-
10 operations, each of which has an accumulator and dedicated
interconnects to reduce results across AITBs in the same
column. To limit inputs to 96, an input vector is broadcast
to all 3 dot product units while three other input vectors (one
per dot product unit) are fed locally by ping pong input reuse
register chains. While inputs are reused for some time in
many DL computations (e.g. by computing multiple output
feature maps in a CNN from the same input maps), they must
eventually be reloaded to proceed to the next set of inputs.
This means that the AITB needs to either stall computations
and load the reuse registers in parallel, or use the first block in
a group of cascaded AITBs to sequentially load inputs to one
of the reuse register chains using the dedicated AITB-to-AITB
interconnect while the other chain is used for computation.
Additional lightweight circuitry is also added to the AITB to
reuse the int8 and int4 multipliers for natively supporting
bfp16 and bfp12 precisions, respectively.

As discussed in Sec. II-D3, both the HPIPE [72] and
NPU [24] accelerators have been re-architected to make best
use of the Intel Stratix 10 NX AITBs. In HPIPE, all 3
modes of operation of the AITBs are used for different CNN
operations as illustrated in Fig. 20. To exploit unstructured
sparsity, HPIPE builds a multiplexing network in the soft
logic to gather the activations matching non-zero weights.
This maps well to the AITB vector mode due to its input
flexibility (dot-6 operations with arbitrary inputs each cycle),
and enables a 1.9× overall inference speedup compared to
conventional DSP blocks. When running dense regular and
pointwise convolutions, HPIPE can exploit the high arithmetic



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 19

density of the tensor mode by pre-loading activations to the
reuse register chains and broadcasting weights to all 3 dot units
in the AITB. However, the scalar mode remains necessary for
implementing the depthwise convolutions as they do not have
reduction or data reuse across the input channel dimension.
Combining tensor and scalar modes speeds up HPIPE dense
CNN inference by 5× compared to using conventional DSP
blocks. The NPU can also exploit the tensor mode of the
AITBs, but in its case it is necessary to increase the batch
size from 1 to 3. Activations from a batch of 3 different inputs
are pre-loaded to the reuse register chains while weights are
broadcast to the 3 dot product units. This results in 3.5× higher
throughput than the baseline NPU using DSP blocks.

These performance gains all come with no increase in
the FPGA die size, since the AITBs have the exact same
area footprint and programmable routing interfaces as the
DSP blocks they replace. While the gains are significant,
they fall short of the 15× increase in peak int8 TOPS
compared to DSP blocks. The peak performance can only
be achieved if all operations match the compute pattern of
the AITB tensor mode, all vector operands are a multiple of
10 elements to exactly fit the dot product units, and there
is no overhead for loading data to the input reuse chains.
One or more of these 3 requirements for ideal efficiency are
not met in most application designs. In addition, efficiently
using the AITBs requires considerable changes to a design
that originally targeted conventional DSP blocks; one cannot
simply re-compile an RTL or HLS design to target these new
AITBs. The design computations must first be restructured to
match one of the compute patterns supported by the different
AITB modes, and then AITBs are instantiated as black-box
IPs in RTL to implement these computations. The resulting
optimized designs are less portable between different FPGA
families.

Moving forward, the DSP blocks in the upcoming Intel
Agilex 5 FPGA family will support modes from conventional
DSP blocks (6×int9, 2×int18, 1×int27), as well as a
variation of the AITB tensor mode with only two (instead
of three) int8 dot-10 operations per block [118]. Both the
NPU and HPIPE require not only many low precision MAC
operations but a few higher precision ones, so they will benefit
from the ability to do both efficiently in one block. These
hybrid blocks are targeted at edge DL applications in which
the FPGA implements a full system where inference is a
component along side other signal processing functionalities.

VII. BEYOND THE FPGA FABRIC

Sections V and VI described DL-targeted enhancements to
existing FPGA fabric components as well as the embedding
of new tensor compute blocks in the fabric. Beyond these
improvements to the fine-grained programmable fabric, several
other architecture enhancements have been proposed to
significantly increase peak performance by integrating coarse-
grained accelerator cores either on the same monolithic die or
in package using advanced chip integration technologies.

A. Reconfigurable Acceleration Devices

Recently, a new class of reconfigurable acceleration devices
(RADs) [119] has emerged that combine the reconfigurability
of conventional FPGA fabrics with the efficiency of coarse-
grained application-specific accelerators and the flexibility of
general-purpose processor cores. These components are all
connected via high-performance packet-switched networks-on-
chip (NoCs) for system-wide communication.

One example of such a RAD is the AMD Versal architecture
which tightly integrates a 7nm FPGA programmable fabric,
general-purpose Arm Cortex cores, and a 2D array of
specialized vector processors termed adaptive intelligent
engines (AIEs) on the same monolithic die [85]. These
different system components as well as the modules on
the FPGA fabric communicate using a hard packet-switched
NoC. The NoC is also the only way to access external
memories (e.g. DDR or HBM). The Versal NoC [86] has a
modified mesh topology were several columns are grouped
together and rows are squished to the top and bottom of
the device as illustrated in Fig. 21. This topology matches
the columnar nature of the FPGA fabric, simplifies the
layout of the chip, and also provides higher bandwidth
for horizontal communication at the top and bottom of
the device where the high-speed IOs, memory controllers,
and the AIE array are located. The presence of a hard
NoC significantly boosts FPGA designer productivity and
facilitates timing closure; it is no longer necessary to go
through many design iterations to optimize the system-
level interconnect built using the (relatively less efficient)
programmable routing resources [120]. Different modules
implemented on the programmable fabric and communicating
via latency-insensitive interfaces can be independently and
locally optimized to close timing as standalone components.
Then the compiled modules can be connected to one of the
pervasive NoC fabric ports to communicate with other fabric
modules, coarse-grained accelerators (e.g. AIEs), and external
interfaces. This can be extremely useful, especially for large
and complex FPGA systems with many compute modules and
high external memory bandwidth requirements such as DL
acceleration designs.

In addition, the AIEs significantly enhance the compute
capabilities of the Versal architecture by combining an array
of vector processors with FPGA-like spatial interconnect
and distributed state in a hybrid computational paradigm.
Each AIE tile contains a 1 GHz very-long-instruction-word
(VLIW) vector processor that can execute 7 operations
simultaneously (2 vector loads, 1 vector store, 1 vector
operation, and 2 scalar operations). The fixed-point vector
unit in a single AIE is capable of performing 128 int8
MAC operations per cycle for a peak throughput of 256
GOPS. The vector processor is tightly coupled with 32KB
of local SRAM memory and a direct memory access engine
for non-neighbor data communication. As illustrated in
Fig. 21, the AIE tiles are arranged in a 2D grid with an
AXI-Stream interconnect network that can implement both
circuit-switched and packet-switched communication between
remote tiles. In addition, there is a dedicated interconnect



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 20

Fig. 21: The AMD Versal architecture combining an FPGA fabric, general-purpose processors, AI engines, and a packet-switched NoC with
a modified mesh topology. The AI engines are arranged in a 2D grid with dedicated interconnect cascading their accumulators and an AXI
packet/circuit-switched bus-based interconnect. Each AI engine is a VLIW vector processor with a peak throughput of 256 int8 GOPS.

that cascades accumulators between neighbouring AIEs in a
serpentine pattern; this interconnect is conceptually similar
to the accumulation cascade chains between DSP blocks in
a conventional programmable fabric. Each AIE also has the
ability to directly read from and write to the local memory of 3
adjacent neighbours (north, south, and east or west depending
on the physical layout of the SRAM memories as shown in
Fig. 21). The biggest Versal device has an array of 400 AIEs
that can provide more than 100 TOPS of int8 compute, in
addition to the compute units that can be implemented in the
conventional FPGA fabric.

Several works have demonstrated the use of the Versal
AIEs for accelerating different DL workloads, such as
CNNs [121], [122], transformer networks [123], and graph
neural networks [124], [125]. The use of such spatial coarse-
grained cores running at a much higher frequency than
the FPGA’s programmable fabric can significantly improve
DL inference efficiency. However, efficiently mapping an
application to a large number of software-programmable
vector processors can be a challenging task. Since the AIEs
introduce a new reconfigurable acceleration paradigm, the
CAD tools to support them are not yet mature; improving the
quality of results the CAD flow can achieve with less designer
intervention is an active area of research. Several works
have introduced frameworks that can optimize the mapping
of matrix-matrix multiplication kernels of different sizes and
compositions to an AIE array such as CHARM [123] and
MaxEVA [126]. The Versal AIEs can also be used to accelerate
other non-DL workloads that can benefit from their vector
processing capabilities and spatial nature such as stencil-based
scientific simulations [127], [128].

The AMD Versal architecture is one specific RAD instance
from the huge design space arising from the combination of
fine-grained programmable fabrics, coarse-grained accelerator
cores, and NoC(s) for system-level interconnect. This vast
design space remains little explored due to the dearth of
tools that can model different RAD architectures and enable
evaluation of the complex interactions between their various
components. The work presented in [119], [129], [130] aims to
fill this gap by introducing a complete architecture exploration

Fig. 22: Architecture exploration and evaluation flow for novel RADs.

and evaluation flow for RADs, as shown in Fig. 22. The
first component of this flow is RAD-Sim, a cycle accurate
architecture simulator for RADs. It provides the infrastructure
for simulating RADs with different architecture parameters,
NoC specifications, and hardened accelerator cores. A user
can define application modules to be implemented on the
RAD FPGA fabric and/or coarse-grained accelerator cores
in SystemC, connect them to the RAD NoC, and simulate
the entire system. RAD-Sim can then report the end-to-end
application performance and NoC traffic congestion, as well
as verify the application functionality on a candidate RAD
architecture. This can be used to rapidly explore the design
of both RAD architectures and applications [129]. These
RAD devices introduce a new placement problem: to which
physical NoC router should each accelerator or programmable
logic module connect? Architects can either experiment with
different placements manually, or RAD-Sim can interact with
the VTR placement engine to automatically determine an
optimized NoC placement [131].

After the design space is narrowed down to a few RAD
candidates, the second component of this flow, RAD-Gen,
can be used to evaluate their implementation feasibility and
cost. For example, an accelerator core might significantly
improve performance in terms of cycle count when modeled
in RAD-Sim, but might not fit within its silicon area budget
or might run at a slower frequency than assumed. RAD-Gen
takes as inputs RTL descriptions of common RAD components
(e.g. NoC routers) and/or candidate accelerator cores with
a list of parameter values to be swept, as well as high-



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 21

Fig. 23: Passive interposers for integrating an FPGA fabric with
accelerator chiplets (left) and 3D stacked RADs (right).

level ASIC implementation flow configurations and the design
kit for the target process. Then, it automatically runs the
ASIC synthesis, place and route, and timing analysis tools
to evaluate the area and performance of different variations
of these RAD components. By using both RAD-Sim and
RAD-Gen, an architect can evaluate the performance-cost
tradeoff for different RAD candidates as demonstrated for DL
recommendation model acceleration in [130].

B. DL Chiplets
Most modern FPGAs from AMD and Intel have been using

interposer technology to integrate either multiple FPGA dice
or an FPGA die and one or multiple I/O transceiver chiplets
in the same package with high interconnect density between
them, as depicted in Fig. 8. Interposers can also be used to
build FPGA devices targeting a certain application domain by
integrating a specialized ASIC chiplet in the same package,
as depicted in the left side of Fig. 23. Work from Intel Labs
proposed the integration of different accelerator chiplets in the
Stratix 10 FPGA package to enhance DL inference efficiency
for different workloads [67], [132]. In this case, the chiplet
implements tensor operations that are common across a wide
variety of DL workloads, freeing up FPGA fabric resources to
implement either model layers that can change over time (e.g.
residual connections or activation functions) or other system
components such as pre/post-processing stages. Nurvitadhi
et al. [67] integrated TensorRAM, a chiplet optimized for
memory-bound DL models, with a small Stratix 10 FPGA
in the same package to achieve 16× lower latency and
34× higher energy efficiency compared to the largest same-
generation Nvidia DL-optimized GPU.

More recent advances in chip integration technology have
enabled the stacking of multiple active dice on top of each
other [133]. For example, the announced Instinct MI300
datacenter GPU accelerator family from AMD uses active
die stacking technology to integrate 13 chiplets including
CPU and GPU cores on top of dice that handle IO and
memory traffic [134]. This also opens the door for a myriad
of possibilities for 3D RADs that integrate an FPGA fabric
on top of an ASIC base die that implements larger on-
chip memories, application-specific accelerators for DL, and
system-level NoCs, as shown in Fig. 23 [75].

VIII. SUMMARY

With DL becoming the cornerstone of a myriad of
applications running on large-scale datacenter clusters as

well as edge devices, there is a pressing need for efficient
compute platforms that can keep up with the growing
compute demands of DL models. This has driven architectural
innovations for general-purpose CPUs and GPUs and the
creation of myriad ASIC DL accelerators. FPGAs offer
several unique features compared to these other compute
platforms: (1) their fine-grained hardware programmability
enables customizing numerical precisions and the on-chip
memory hierarchy to exactly match the needs of the target
DL models, (2) their spatial architecture can exploit massive
parallelism and direct communication between compute units
for inference applications with tight latency constraints, (3)
their reconfigurability allows adding or changing hardware
features as DL models evolve, and (4) their diverse IOs
enable building end-to-end DL systems in which an inference
component is interfaced with different sensors and actuators
in edge applications or high-speed networking in datacenters.

In this article, we described different design styles of
DL accelerators on FPGAs that achieve state-of-the-art
performance while improving ease-of-use for application
developers. Similarly to other compute platforms such as
CPUs and GPUs, FPGA architecture is also evolving to better
suit DL workloads. We surveyed different proposals on how to
enhance the FPGA underlying architecture to be even better
at DL. These enhancements include modifying conventional
FPGA fabric blocks (logic blocks, DSPs, BRAMs), adding
new in-fabric blocks for tensor compute, and integrating
conventional FPGA fabrics with different coarse-grained
accelerator cores and chiplets in future RADs.

The design space of RAD architectures is very large, as it
comprises fabric optimizations, new coarse-grained accelerator
blocks, and different methods to interconnect them using
traditional programmable routing, NoCs, and 2.D or 3D
integration. We expect exploration of these architectures to
improve DL inference efficiency will remain a dynamic
research area for years to come.

REFERENCES

[1] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, 2005, pp. 886–893.

[2] D. Rumelhart, G. Hinton, and R. Williams, “Learning Internal
Representations by Error Propagation,” in Neurocomputing:
Foundations of Research, 1988, pp. 673–695.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Advances in Neural
Information Processing Systems (NeurIPS), 2012.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All You Need,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 30,
2017.

[5] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al.,
“Deep Learning Recommendation Model for Personalization and
Recommendation Systems,” arXiv preprint arXiv:1906.00091, 2019.

[6] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-Shot Text-to-Image Generation,” in
International Conference on Machine Learning (ICML). PMLR, 2021,
pp. 8821–8831.

[7] M. Haldar, M. Abdool, P. Ramanathan, T. Xu, S. Yang, H. Duan,
Q. Zhang, N. Barrow-Williams, B. C. Turnbull, B. M. Collins et al.,
“Applying Deep Learning to Airbnb Search,” in proceedings of the
25th ACM SIGKDD international conference on knowledge discovery
& Data Mining, 2019, pp. 1927–1935.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 22

[8] T. Capes, P. Coles, A. Conkie, L. Golipour, A. Hadjitarkhani, Q. Hu,
N. Huddleston, M. Hunt, J. Li, M. Neeracher et al., “Siri On-Device
Deep Learning-Guided Unit Selection Text-to-Speech System,” in
Interspeech, 2017, pp. 4011–4015.

[9] H. Steck, L. Baltrunas, E. Elahi, D. Liang, Y. Raimond, and J. Basilico,
“Deep Learning for Recommender Systems: A Netflix Case Study,” AI
Magazine, vol. 42, no. 3, pp. 7–18, 2021.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al.,
“Evaluating Large Language Models Trained on Code,” arXiv preprint
arXiv:2107.03374, 2021.

[11] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben,
H. Anand, S. Banerjee, I. Bayraktaroglu et al., “ChipNeMo: Domain-
Adapted LLMs for Chip Design,” arXiv preprint arXiv:2311.00176,
2023.

[12] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes,
M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz
et al., “Discovering Faster Matrix Multiplication Algorithms with
Reinforcement Learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.

[13] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
Accurate Protein Structure Prediction with AlphaFold,” Nature, vol.
596, no. 7873, pp. 583–589, 2021.

[14] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards Closing the
Energy Gap between HOG and CNN Features for Embedded Vision,”
in IEEE International Symposium on Circuits and Systems (ISCAS),
2017, pp. 1–4.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” in International
Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[16] D. Patel and A. Ahmad, “The Inference Cost of Search Disruption:
Large Language Model Cost Analysis,” in SemiAnalysis, 2023.

[17] D. Khaldi, Y. Luo, B. Yu, A. Sotkin, B. Morais, and M. Girkar,
“Extending LLVM IR for DPC++ Matrix Support: A Case Study with
Intel Advanced Matrix Extensions (Intel AMX),” in IEEE Workshop
on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), 2021, pp.
20–26.

[18] L. Su, “AMD Keynote Presentation,” in Consumer Electronics Show
(CES), 2023. [Online]. Available: https://www.youtube.com/watch?v=
OMxU4BDIm4M

[19] A. Weißenberger and B. Schmidt, “Accelerating JPEG Decompression
on GPUs,” in International Conference on High Performance
Computing, Data, and Analytics (HiPC). IEEE, 2021, pp. 121–130.

[20] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-
based Neural Network Inference Accelerators,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 12, no. 1, pp.
1–26, 2019.

[21] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerating CNN
Inference on FPGAs: A Survey,” arXiv preprint arXiv:1806.01683,
2018.

[22] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for Mapping
Convolutional Neural Networks on FPGAs: A Survey and Future
Directions,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–39,
2018.

[23] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
Models are Few-Shot Learners,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 33, pp. 1877–1901, 2020.

[24] A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C.
Hoe, V. Betz, and M. Langhammer, “Beyond Peak Performance:
Comparing the Real Performance of AI-Optimized FPGAs and GPUs,”
in International Conference on Field-Programmable Technology (FPT),
2020, pp. 10–19.

[25] M. Hall and V. Betz, “From TensorFlow Graphs to LUTs and Wires:
Automated Sparse and Physically Aware CNN Hardware Generation,”
in IEEE International Conference on Field-Programmable Technology
(FPT), 2020, pp. 56–65.

[26] L. Ganesh, H. Weatherspoon, T. Marian, and K. Birman, “Integrated
Approach to Data Center Power Management,” IEEE Transactions on
Computers, vol. 62, no. 6, pp. 1086–1096, 2013.

[27] Z. Stone. (2018) Now You Can Train TensorFlow
Machine Learning Models Faster and at Lower
Cost on Cloud TPU Pods. [Online]. Available:
https://cloud.google.com/blog/products/ai-machine-learning/
now-you-can-train-ml-models-faster-and-lower-cost-cloud-tpu-pods

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-Training of Deep Bidirectional Transformers for Language
Understanding,” arXiv preprint arXiv:1810.04805, 2018.

[29] O. Sharir, B. Peleg, and Y. Shoham, “The Cost of Training NLP
Models: A Concise Overview,” arXiv preprint arXiv:2004.08900, 2020.

[30] N. Jones et al., “How to Stop Data Centres from Gobbling Up the
World’s Electricity,” Nature, vol. 561, no. 7722, pp. 163–166, 2018.

[31] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti et al., “Compute
Solution for Tesla’s Full Self-Driving Computer,” IEEE Micro, vol. 40,
no. 2, pp. 25–35, 2020.

[32] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov,
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner et al., “Pushing the
Limits of Narrow Precision Inferencing at Cloud Scale with Microsoft
Floating Point,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 10 271–10 281, 2020.

[33] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey,
R. Grisenthwaite, S. Ha, A. Heinecke, P. Judd, J. Kamalu et al., “FP8
Formats for Deep Learning,” arXiv preprint arXiv:2209.05433, 2022.

[34] M. Horowitz, “Computing’s Energy Problem (and What We Can Do
About It),” in International Solid-State Circuits Conference (ISSCC),
2014, pp. 10–14.

[35] E. S. Chung, D. Burger, J. Fowers, M. Ghandi, G. Weisz, S. Lanka,
and S. K. Reinhardt, “RETROSPECTIVE: A Configurable Cloud-
Scale DNN Processor for Real-Time AI,” in ISCA@50 25-Year
Retrospective: 1996-2020. ACM SIGARCH and IEEE TCCA, 2023.
[Online]. Available: https://bit.ly/isca50 retrospective

[36] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al.,
“A Configurable Cloud-Scale DNN Processor for Real-Time AI,” in
International Symposium on Computer Architecture (ISCA), 2018, pp.
1–14.

[37] M. Urbina, T. Acosta, J. Lázaro, A. Astarloa, and U. Bidarte, “Smart
Sensor: SoC Architecture for the Industrial Internet of Things,” IEEE
Internet of Things Journal, vol. 6, no. 4, pp. 6567–6577, 2019.

[38] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide
Reduced-Precision Networks,” arXiv preprint arXiv:1709.01134, 2017.

[39] Y. Cheng, D. Li, Z. Guo, B. Jiang, J. Lin, X. Fan, J. Geng,
X. Yu, W. Bai, L. Qu et al., “DLBooster: Boosting End-to-End Deep
Learning Workflows with Offloading Data Preprocessing Pipelines,” in
Proceedings of the International Conference on Parallel Processing
(ICPP), 2019, pp. 1–11.

[40] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient
Neural Architecture Search via Parameters Sharing,” in International
Conference on Machine Learning (ICML), 2018, pp. 4095–4104.

[41] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula,
J.-s. Seo, and Y. Cao, “Throughput-Optimized OpenCL-based FPGA
Accelerator for Large-Scale Convolutional Neural Networks,” in
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), 2016, pp. 16–25.

[42] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-Based Accelerator Design for Deep Convolutional
Neural Networks,” in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), 2015, pp. 161–170.

[43] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going Deeper with Embedded FPGA Platform
for Convolutional Neural Network,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2016, pp.
26–35.

[44] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A High
Performance FPGA-Based Accelerator for Large-Scale Convolutional
Neural Networks,” in IEEE International Conference on Field
Programmable Logic and Applications (FPL), 2016, pp. 1–9.

[45] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and
D. Marr, “Accelerating Recurrent Neural Networks in Analytics
Servers: Comparison of FPGA, CPU, GPU, and ASIC,” in International
Conference on Field Programmable Logic and Applications (FPL),
2016, pp. 1–4.

[46] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent
Neural Networks Hardware Implementation on FPGA,” arXiv preprint
arXiv:1511.05552, 2015.

[47] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “FPGA Acceleration
of Recurrent Neural Network Based Language Model,” in IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2015, pp. 111–118.

[48] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for

https://www.youtube.com/watch?v=OMxU4BDIm4M
https://www.youtube.com/watch?v=OMxU4BDIm4M
https://cloud.google.com/blog/products/ai-machine-learning/now-you-can-train-ml-models-faster-and-lower-cost-cloud-tpu-pods
https://cloud.google.com/blog/products/ai-machine-learning/now-you-can-train-ml-models-faster-and-lower-cost-cloud-tpu-pods
https://bit.ly/isca50_retrospective


UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 23

Large-Scale Machine Learning,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016, pp. 265–283.

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
Imperative Style, High-Performance Deep Learning Library,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.

[50] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: Mapping Regular
and Irregular Convolutional Neural Networks on FPGAs,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 2,
pp. 326–342, 2018.

[51] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“DNNBuilder: An Automated Tool for Building High-Performance
DNN Hardware Accelerators for FPGAs,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–8.

[52] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017, pp.
65–74.

[53] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and
Modularized RTL Compilation of Convolutional Neural Networks onto
FPGA,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), 2016, pp. 1–8.

[54] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From High-Level Deep Neural
M0odels to FPGAs,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–12.

[55] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun,
W. Zhang, and J. Cong, “FP-DNN: An Automated Framework for
Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid
Templates,” in IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2017, pp. 152–159.

[56] S. Abi-Karam and C. Hao, “GNNBuilder: An Automated Framework
for Generic Graph Neural Network Accelerator Generation, Simulation,
and Optimization,” arXiv preprint arXiv:2303.16459, 2023.

[57] E. Wang, J. J. Davis, P. Y. Cheung, and G. A. Constantinides, “LUTNet:
Learning FPGA Configurations for Highly Efficient Neural Network
Inference,” IEEE Transactions on Computers, vol. 69, no. 12, pp. 1795–
1808, 2020.

[58] M. Andronic and G. A. Constantinides, “PolyLUT: Learning Piecewise
Polynomials for Ultra-Low Latency FPGA LUT-based Inference,”
2023.

[59] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom CMOS
and the Impact on Processor Microarchitecture,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
2011.

[60] A. Boutros, S. Yazdanshenas, and V. Betz, “You Cannot Improve
What You Do Not Measure: FPGA vs. ASIC Efficiency Gaps for
Convolutional Neural Network Inference,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, pp.
1–23, 2018.

[61] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An OpenCL Deep Learning Accelerator on Arria 10,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2017, pp.
55–64.

[62] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling et al.,
“DLA: Compiler and FPGA Overlay for Neural Network Inference
Acceleration,” in International Conference on Field Programmable
Logic and Applications (FPL), 2018, pp. 411–4117.

[63] Advanced Micro Devices, Inc., “DPUCADF8H for Convolutional
Neural Networks Product Guide (PG400),” 2022.

[64] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-
based Overlay Processor for Convolutional Neural Networks,” IEEE
Transactions on Very Large Scale Integration Systems (TVLSI), vol. 28,
no. 1, pp. 35–47, 2019.

[65] Y. Bai, H. Zhou, K. Zhao, J. Chen, J. Yu, and K. Wang, “Transformer-
OPU: An FPGA-based Overlay Processor for Transformer Networks,”
in International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2023, pp. 221–221.

[66] S. Hur, S. Na, D. Kwon, J. Kim, A. Boutros, E. Nurvitadhi, and J. Kim,
“A Fast and Flexible FPGA-based Accelerator for Natural Language
Processing Neural Networks,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 20, no. 1, pp. 1–24, 2023.

[67] E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar et al., “Why Compete
When You Can Work Together: FPGA-ASIC Integration for Persistent

RNNs,” in International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2019.

[68] TensorFlow, “Keras: The High-Level API for TensorFlow,” in https://
www.tensorflow.org/guide/keras, [Online; last accessed October 2023].

[69] Baidu, “DeepBench,” in https://github.com/baidu-research/
DeepBench, [Online; last accessed October 2023].

[70] M. Langhammer, B. Pasca, G. Baeckler, and S. Gribok, “Extracting
INT8 Multipliers from INT18 Multipliers,” in International Conference
on Field Programmable Logic and Applications (FPL), 2019, pp. 114–
120.

[71] M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, “Stratix 10
NX Architecture and Applications,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2021, pp. 57–67.

[72] M. Stan, M. Hall, M. Ibrahim, and V. Betz, “HPIPE NX: Boosting
CNN Inference Acceleration Performance with AI-Optimized FPGAs,”
in International Conference on Field-Programmable Technology (FPT),
2022, pp. 1–9.

[73] A. Boutros and V. Betz, “FPGA Architecture: Principles and
Progression,” IEEE Circuits and Systems Magazine, vol. 21, no. 2,
pp. 4–29, 2021.

[74] K. E. Murray, J. Luu, M. J. Walker, C. McCullough, S. Wang, S. Huda,
B. Yan, C. Chiasson, K. B. Kent, J. Anderson et al., “Optimizing FPGA
Logic Block Architectures for Arithmetic,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 6, pp. 1378–1391,
2020.

[75] A. Boutros, F. Mahmoudi, A. Mohaghegh, S. More, and V. Betz,
“Into the Third Dimension: Architecture Exploration Tools for 3D
Reconfigurable Acceleration Devices,” in International Conference on
Field-Programmable Technology (FPT), 2023.

[76] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengil, M. Liu, D. Lo, S. Alkalay, M. Haselman et al.,
“Accelerating Persistent Neural Networks at Datacenter Scale,” in Hot
Chips, vol. 29, 2017.

[77] Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang, “FracBNN:
Accurate and FPGA-Efficient Binary Neural Networks with Fractional
Activations,” in International Symposium on Field-Programmable Gate
Arrays (FPGA), 2021, pp. 171–182.

[78] Intel Corp., “Intel Agilex Embedded Memory User Guide (UG-
20208),” 2022.

[79] AMD Inc., “Versal ACAP Memory Resources (AM007 v1.1),” 2020.
[80] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t Forget the

Memory: Automatic Block RAM Modelling, Optimization, and
Architecture Exploration,” in International Symposium on Field-
Programmable Gate Arrays (FPGA), 2017, pp. 115–124.

[81] J. H. Lau, “Recent Advances and Trends in Advanced Packaging,”
IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 12, no. 2, pp. 228–252, 2022.

[82] C. Ravishankar, D. Gaitonde, and T. Bauer, “Placement Strategies for
2.5D FPGA Fabric Architectures,” in International Conference on Field
Programmable Logic and Applications (FPL), 2018, pp. 16–164.

[83] R. Mahajan, R. Sankman, N. Patel, D.-W. Kim, K. Aygun, Z. Qian,
Y. Mekonnen, I. Salama, S. Sharan, D. Iyengar et al., “Embedded
Multi-Die Interconnect Bridge (EMIB): A High Density, High
Bandwidth Packaging Interconnect,” in Electronic Components and
Technology Conference (ECTC), 2016, pp. 557–565.

[84] Greenhill, David and Ho, Ron and Lewis, David and Schmit, Herman
and Chan, Kok Hong and Tong, Andy and Atsatt, Sean and How, Dana
and McElheny, Peter and Duwel, Keith and others, “A 14nm 1GHz
FPGA with 2.5D Transceiver Integration,” in 2017 IEEE International
Solid-State Circuits Conference (ISSCC), 2017, pp. 54–55.

[85] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx Adaptive
Compute Acceleration Platform: Versal Architecture,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2019, pp.
84–93.

[86] I. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel,
“Network-on-Chip Programmable Platform in Versal ACAP
Architecture,” in International Symposium on Field-Programmable
Gate Arrays (FPGA), 2019.

[87] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. Walker et al., “VTR
8: High-Performance CAD and Customizable FPGA Architecture
Modelling,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 13, no. 2, pp. 1–55, 2020.

[88] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II:
An Open-Source Verilog HDL Synthesis Tool for CAD Research,” in
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2010, pp. 149–156.

https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench


UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 24

[89] C. Wolf and J. Glaser, “Yosys: A Free Verilog Synthesis Suite,” in
Austrian Workshop on Microelectronics (AustroChip), 2013.

[90] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-
Strength Verification Tool,” in International Conference on Computer
Aided Verification (CAV), 2010, pp. 24–40.

[91] K. E. Murray and V. Betz, “Tatum: Parallel Timing Analysis for
Faster Design Cycles and Improved Optimization,” in International
Conference on Field-Programmable Technology (FPT), 2018, pp. 110–
117.

[92] S. Yazdanshenas and V. Betz, “COFFE 2: Automatic Modelling and
Optimization of Complex and Heterogeneous FPGA Architectures,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 12, no. 1, pp. 1–27, 2019.

[93] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling
Large and Complex Benchmarks in Academic CAD,” in International
Conference on Field programmable Logic and Applications (FPL),
2013, pp. 1–8.

[94] A. Arora, A. Boutros, S. A. Damghani, K. Mathur, V. Mohanty,
T. Anand, M. A. Elgammal, K. B. Kent, V. Betz, and L. K. John, “Koios
2.0: Open-Source Deep Learning Benchmarks for FPGA Architecture
and CAD Research,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2023.

[95] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer
Quantization for Deep Learning Inference: Principles and Empirical
Evaluation,” arXiv preprint arXiv:2004.09602, 2020.

[96] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker,
T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell et al.,
“Think Fast: A Tensor Streaming Processor (TSP) for Accelerating
Deep Learning Workloads,” in ACM/IEEE International Symposium
on Computer Architecture (ISCA), 2020, pp. 145–158.

[97] M. Anderson, B. Chen, S. Chen, S. Deng, J. Fix, M. Gschwind,
A. Kalaiah, C. Kim, J. Lee, J. Liang et al., “First-Generation
Inference Accelerator Deployment at Facebook,” arXiv preprint
arXiv:2107.04140, 2021.

[98] A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, “Math
Doesn’t Have to Be Hard: Logic Block Architectures to Enhance
Low-Precision Multiply-Accumulate on FPGAs,” in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(FPGA), 2019, pp. 94–103.

[99] M. Eldafrawy, A. Boutros, S. Yazdanshenas, and V. Betz, “FPGA Logic
Block Architectures for Efficient Deep Learning Inference,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 13, no. 3, pp. 1–34, 2020.

[100] S. Yazdanshenas and T. Vanderhoek, “Efficient Logic Blocks
Architectures for Dense Mapping of Multipliers,” 2021, US Patent App.
16/729,256.

[101] S. Rasoulinezhad, Siddhartha, H. Zhou, L. Wang, D. Boland, and P. H.
Leong, “LUXOR: An FPGA Logic Cell Architecture for Efficient
Compressor Tree Implementations,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2020, pp.
161–171.

[102] J. H. Kim, J. Lee, and J. H. Anderson, “FPGA Architecture
Enhancements for Efficient BNN Implementation,” in International
Conference on Field-Programmable Technology (FPT), 2018.

[103] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing Diversity:
Enhanced DSP Blocks for Low-Precision Deep Learning on FPGAs,”
in International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 35–357.

[104] S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. Leong, “PIR-
DSP: An FPGA DSP Block Architecture for Multi-Precision Deep
Neural Networks,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019, pp. 35–44.

[105] K. Tatsumura, S. Yazdanshenas, and V. Betz, “High Density,
Low Energy, Magnetic Tunnel Junction Based Block RAMs for
Memory-Rich FPGAs,” in IEEE International Conference on Field-
Programmable Technology (FPT), 2016.

[106] X. Wang, V. Goyal, J. Yu, V. Bertacco, A. Boutros, E. Nurvitadhi,
C. Augustine, R. Iyer, and R. Das, “Compute-Capable Block RAMs
for Efficient Deep Learning Acceleration on FPGAs,” in IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021.

[107] A. Arora, B. Hanindhito, and L. K. John, “Compute RAMs: Adaptable
Compute and Storage Blocks for DL-Optimized FPGAs,” in IEEE
Asilomar Conference on Signals, Systems, and Computers, 2021.

[108] A. Arora, T. Anand, A. Borda, R. Sehgal, B. Hanindhito, J. Kulkarni,
and L. K. John, “CoMeFa: Compute-in-Memory Blocks for FPGAs,”

in IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022.

[109] Y. Chen and M. S. Abdelfattah, “BRAMAC: Compute-in-BRAM
Architectures for Multiply-Accumulate on FPGAs,” in IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2023.

[110] Y. Chen, J. Dotzel, and M. S. Abdelfattah, “M4BRAM: Mixed-
Precision Matrix-Matrix Multiplication in FPGA Block RAMs,” in
IEEE International Conference on Field-Programmable Technology
(FPT), 2023.

[111] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural Cache: Bit-Serial In-Cache
Acceleration of Deep Neural Networks,” in ACM/IEEE International
Symposium on Computer Architecture (ISCA), 2018, pp. 383–396.

[112] A. Arora, S. Mehta, V. Betz, and L. K. John, “Tensor Slices to the
Rescue: Supercharging ML Acceleration on FPGAs,” in The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2021, pp. 23–33.

[113] A. Arora, M. Ghosh, S. Mehta, V. Betz, and L. K. John, “Tensor Slices:
FPGA Building Blocks for the Deep Learning Era,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 15, no. 4, pp.
1–34, 2022.

[114] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen
et al., “A Study of BFLOAT16 for Deep Learning Training,” arXiv
preprint arXiv:1905.12322, 2019.

[115] Achronix Corp., “Speedster7t Machine Learning Processing User
Guide (UG088),” 2019.

[116] A. Cairncross, B. Henry, C. Chalmers, D. Reid, J. Shipton, J. Fowler,
L. Corrigan, and M. Ashby, “AI Benchmarking on Achronix
Speedster7t FPGAs,” White Paper, 2023.

[117] M. Langhammer, E. Nurvitadhi, S. Gribok, and B. Pasca, “Stratix 10
NX Architecture,” ACM Transactions on Reconfigurable Technology
and Systems (TRETS), vol. 15, no. 4, pp. 1–32, 2022.

[118] Intel Corp., “Intel Agilex® 5 FPGAs and SoCs Device Overview
(762191),” 2023.

[119] A. Boutros, E. Nurvitadhi, and V. Betz, “RAD-Sim: Rapid
Architecture Exploration for Novel Reconfigurable Acceleration
Devices,” in International Conference on Field-Programmable Logic
and Applications (FPL), 2022.

[120] M. S. Abdelfattah and V. Betz, “The Case for Embedded Networks
on Chip on Field-Programmable Gate Arrays,” IEEE Micro, vol. 34,
no. 1, pp. 80–89, 2013.

[121] X. Jia, Y. Zhang, G. Liu, X. Yang, T. Zhang, J. Zheng, D. Xu,
H. Wang, R. Zheng, S. Pareek et al., “XVDPU: A High Performance
CNN Accelerator on the Versal Platform Powered by the AI
Engine,” in International Conference on Field-Programmable Logic
and Applications (FPL), 2022.

[122] T. Zhang, D. Li, H. Wang, Y. Li, X. Ma, W. Luo, Y. Wang, Y. Huang,
Y. Li, Y. Zhang et al., “A-U3D: A Unified 2D/3D CNN Accelerator
on the Versal Platform for Disparity Estimation,” in International
Conference on Field-Programmable Logic and Applications (FPL),
2022.

[123] J. Zhuang, J. Lau, H. Ye, Z. Yang, Y. Du, J. Lo, K. Denolf,
S. Neuendorffer, A. Jones, J. Hu et al., “CHARM: Composing
Heterogeneous Accelerators for Matrix Multiply on Versal ACAP
Architecture,” in International Symposium on Field Programmable
Gate Arrays (FPGA), 2023.

[124] C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Lit, and
D. Tao, “H-GCN: A Graph Convolutional Network Accelerator on
Versal ACAP Architecture,” in International Conference on Field-
Programmable Logic and Applications (FPL), 2022.

[125] P. Chen, P. Manjunath, S. Wijeratne, B. Zhang, and V. Prasanna,
“Exploiting On-chip Heterogeneity of Versal Architecture for GNN
Inference Acceleration,” in International Conference on Field-
Programmable Logic and Applications (FPL), 2023.

[126] E. Taka, A. Arora, K.-C. Wu, and D. Marculescu, “MaxEVA:
Maximizing the Efficiency of Matrix Multiplication on Versal AI
Engine,” arXiv preprint arXiv:2311.04980, 2023.

[127] N. Brown, “Exploring the Versal AI Engines for Accelerating
Stencil-Based Atmospheric Advection Simulation,” in International
Symposium on Field Programmable Gate Arrays (FPGA), 2023.

[128] G. Singh, A. Khodamoradi, K. Denolf, J. Lo, J. Gomez-Luna,
J. Melber, A. Bisca, H. Corporaal, and O. Mutlu, “SPARTA: Spatial
Acceleration for Efficient and Scalable Horizontal Diffusion Weather
Stencil Computation,” in International Conference on Supercomputing
(SC), 2023.



UNDER REVIEW FOR PUBLICATION IN PROCEEDINGS OF THE IEEE 25

[129] A. Boutros, E. Nurvitadhi, and V. Betz, “Architecture and Application
Co-Design for Beyond-FPGA Reconfigurable Acceleration Devices,”
IEEE Access, vol. 10, pp. 95 067–95 082, 2022.

[130] A. Boutros, S. More, and V. Betz, “A Whole New World: How
to Architect Beyond-FPGA Reconfigurable Acceleration Devices?”
in International Conference on Field-Programmable Logic and
Applications (FPL), 2023.

[131] S. Srinivasan, A. Boutros, F. Mahmoudi, and V. Betz, “Placement
Optimization for NoC-Enhanced FPGAs,” in International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2023.

[132] E. Nurvitadhi, J. Cook, A. Mishra, D. Marr, K. Nealis, P. Colangelo,
A. Ling, D. Capalija, U. Aydonat, A. Dasu et al., “In-Package
Domain-Specific ASICs for Intel Stratix 10 FPGAs: A Case Study of
Accelerating Deep Learning using TensorTile ASIC,” in International
Conference on Field Programmable Logic and Applications (FPL),
2018.

[133] D. Ingerly et al., “Foveros: 3D Integration and the Use of Face-to-
Face Chip Stacking for Logic Devices,” in IEEE International Electron
Devices Meeting (IEDM), 2019.

[134] L. Su, “AMD Keynote,” in Consumer Electronics Show (CES), 2023.
[Online]. Available: https://tinyurl.com/amdceskeynote

IX. BIOGRAPHY SECTION

Andrew Boutros received his B.Sc. degree in
electronics engineering from the German University
in Cairo in 2016, and his M.A.Sc. degree in electrical
and computer engineering from the University of
Toronto in 2018. He was a research scientist at
Intel’s Accelerator Architecture Lab in Oregon
before returning to the University of Toronto, where
he is currently pursuing his Ph.D. degree under
the supervision of Prof. Vaughn Betz. His research
interests include FPGA architecture and CAD,
deep learning acceleration, and next-generation

reconfigurable acceleration devices. He is an affiliate of the Intel/VMware
Crossroads 3D-FPGA Academic Research Center and the Center for Spatial
Computational Learning. He has more than 30 publications in top conferences
and journals in the field of FPGAs, including 4 best paper awards.

Aman Arora received his B.Tech. degree in
electronics and communications engineering from
the National Institute of Technology Kurukshetra
in 2007, and his M.S. and Ph.D. in electrical
and computer engineering from the University of
Texas at Austin in 2012 and 2023, respectively.
He is currently an assistant professor at Arizona
State University, where he leads a research lab that
focuses on next-generation FPGA architectures and
hardware for machine learning. During his graduate
school, he focused on optimizing FPGA architecture

for deep learning workloads. He has received a best paper at FCCM 2022
and has over 10 years of experience in the semiconductor industry in design,
verification, testing and architecture roles.

Vaughn Betz received his B.Sc. degree in electrical
engineering from the University of Manitoba in
1991, his M.S. degree in electrical and computer
engineering from the University of Illinois at
Urbana–Champaign in 1993, and his Ph.D. degree
in electrical and computer engineering from the
University of Toronto in 1998. He is the original
developer of the widely used VPR FPGA CAD flow.
He co-founded Right Track CAD to commercialize
VPR, and joined Altera upon its acquisition of Right
Track CAD. He spent 11 years at Altera, ultimately

as Senior Director of software engineering, and is one of the architects of the
Quartus CAD system and the first five generations of the Stratix and Cyclone
FPGA families. He is currently a professor and the NSERC/Intel Industrial
Research Chair in Programmable Silicon at the University of Toronto. He
holds 102 US patents and has published over 100 technical articles in the
FPGA area, sixteen of which have won best or most significant paper awards.
He is a Fellow of the IEEE, the ACM, the National Academy of Inventors,
and the Engineering Institute of Canada. He is also a Faculty Affiliate of the
Vector Institute for Artificial Intelligence.

https://tinyurl.com/amdceskeynote

	Introduction
	FPGA for DL Acceleration
	Key DL Acceleration Requirements
	Performance
	Cost and Energy Efficiency
	Adaptability

	FPGA Strengths for DL Acceleration
	FPGA-Based DL Inference Acceleration Styles
	Examples of DL Acceleration on FPGAs
	Custom Hardware Generation Example (HPIPE)
	Overlay Example (NPU)
	Effect of FPGA Architecture Enhancements for DL


	FPGA Architecture & Opportunities for DL
	Programmable Logic & Routing
	Digital Signal Processing Blocks
	On-Chip Block Memories
	Interposers
	Networks-on-Chip and Embedded Accelerators

	FPGA Architecture Exploration
	Tools and Benchmarks
	Methodology
	Taxonomy of FPGA Architecture Enhancements for DL

	Enhancing Existing FPGA Fabric Blocks
	Logic Blocks
	DSPs
	BRAMs

	In-Fabric Tensor Blocks
	Beyond the FPGA Fabric
	Reconfigurable Acceleration Devices
	DL Chiplets

	Summary
	References
	Biography Section
	Biographies
	Andrew Boutros
	Aman Arora
	Vaughn Betz


