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Abstract—Field-programmable gate arrays (FPGAs) have
evolved beyond a fabric of soft logic and hard blocks
surrounded by programmable routing to also incorporate
high-performance networks-on-chip (NoCs), general-purpose
processor cores and application-specific accelerators. These
new reconfigurable acceleration devices (RADs) open up a
myriad of architecture research questions, but require new
computer-aided design tools for quantitative evaluation. In
this work, we first enhance an existing RAD architecture
simulator, RAD-Sim, to model high-bandwidth memory (HBM)
and conventional DDR interfaces. We also introduce RAD-Gen
which evaluates the silicon area and performance of the
different components of a candidate RAD. We showcase the
complete flow through a case study on accelerating deep
learning recommendation models (DLRMs). Using RAD-Sim
and RAD-Gen, we compare traditional FPGAs to RADs
that incorporate hard NoCs and matrix-vector multiplication
accelerators. This study demonstrates the utility of these
tools in evaluating both the performance and implementation
feasibility of different combinations of NoC and accelerator
architecture parameters. The resulting RAD achieves an order
of magnitude improvement in DLRM inference throughput and
latency compared to prior FPGA implementations.

I. INTRODUCTION

For several decades, field-programmable gate arrays (FPGAs)
have continuously increased in capacity and heterogeneity. This
has enabled the implementation of large customized hardware
systems with higher efficiency than general-purpose processors and
faster time-to-solution than application-specific integrated circuits
(ASICs) in many areas [1], [2]. However, the continued growth of
FPGAs faces two key challenges. First, as FPGAs and the designs
implemented on them get bigger and external interfaces get faster, it
becomes more challenging for the soft routing fabric to achieve the
tremendous on-chip bandwidth required. This significantly impacts
designer productivity as many optimization iterations are needed to
close timing. Secondly, the FPGA computer-aided design (CAD)
tools are having difficulty keeping compile times of ever-larger
designs and FPGAs reasonable, further exacerbating the designer
productivity problem. To face these challenges, new beyond-FPGA
reconfigurable acceleration devices (RADs) are emerging. An
exemplar of such devices is the Xilinx Versal architecture [3]. These
devices combine the flexibility of an FPGA fabric, the generality of
von-Neumann CPU cores, and the efficiency of application-specific
accelerator cores. These diverse components are connected with a
packet-switched network-on-chip (NoC). RADs mitigate the CAD
scalability problem by realizing system-level communication with a
NoC and moving some computation to coarse-grained accelerators.
This reduces the size of the placement and routing problem and
simplifies timing closure.

From an architect’s perspective, designing such RADs is
an arduous task as there are not only a large number of
design choices for the FPGA fabric, NoC, and accelerators
independently, but also complex interactions between these
components. Crucially, for these architectures, applications are
no longer just circuit netlists that can be used to evaluate a

Fig. 1: RAD architecture exploration and evaluation flow.

candidate architecture based on application-agnostic metrics such
as operating frequency or routed wirelength, as in conventional
FPGA architecture exploration. A RAD application can have some
portions running on software-programmable accelerators and other
parts on FPGA datapaths, interacting over an NoC that can suffer
from application-dependent problems such as deadlock. Finally, there
are not enough applications already designed for RADs to guide the
architecture exploration, and the existing FPGA-based applications
can not always be easily migrated to a RAD [4]. Therefore, a RAD
architect needs to co-design both the architecture and the applications.

Our work addresses this gap by providing tools for architects to
explore this whole new world of possibilities when building novel
RADs. We build on top of the open-source RAD-Sim tool [5]
to complete the RAD architecture exploration flow illustrated in
Fig. 1. The RAD-Sim component of the flow enables rapidly
simulating application designs on RADs that incorporate FPGA
fabrics, NoCs and specialized accelerators. This allows experimenting
with different architecture specifications (i.e. knobs) and capturing
their effect on end-to-end application performance. We enhance
RAD-Sim by integrating a full DRAM simulator, DRAMsim3 [6],
to enable modeling the cycle behavior and functionality of RADs
with external memory sub-systems such as high-bandwidth (HBM)
and double data rate (DDR) memories. We then introduce the
second component of the flow, RAD-Gen, which can evaluate the
ASIC implementation area and performance of the hard components
in a RAD (e.g. NoC, accelerator cores) using the ASAP 7nm
predictive process design kit (PDK) [7]. Together RAD-Sim and
RAD-Gen can explore performance-cost trade-offs for a wide variety
of candidate architectures. Finally, we showcase the flow and insights
it can provide through a case study on accelerating deep learning
recommendation model (DLRM) inference, which is a key datacenter
workload. Our contributions include:
• Enhancing RAD-Sim to model devices with a variety of external

memory subsystems (e.g. HBM, DDR).
• Introducing the RAD-Gen tool to evaluate the implementation cost

and feasibility of hard RAD components.
• Presenting a case study to showcase the toolflow with DLRM

inference acceleration as a key driving workload.

II. BACKGROUND & RELATED WORK
Embedded Hard NoCs in FPGAs: A large body of work

has evaluated the use of packet-switched NoCs as a system-level
interconnect solution for FPGAs. Some studies demonstrate the
benefits of using the programmable logic and routing of the FPGA
fabric to construct soft NoCs and ease timing closure in large FPGA



systems [8]–[10]. Other studies evaluated hardening a NoC in the
FPGA fabric. In this case, the NoC routers are embedded as hard
blocks in the fabric array, similar to digital signal processing blocks
(DSPs) and block memories (BRAMs), with direct dedicated links
between them. Hard NoCs were shown to be an order of magnitude
more area-efficient and faster than their soft counterparts [11]. More
recently, different variations of hard NoCs have been incorporated in
commercial FPGAs [12]–[14]. We believe hard NoCs will remain a
fundamental component in future RADs to efficiently interconnect all
the different system components, and therefore they are a key focus
of our RAD architecture exploration.

RAD-Sim: As shown in Fig. 1, RAD-Sim takes as inputs
architecture and NoC specifications, SystemC models of any
hard accelerators and application design modules that reside on
the programmable fabric, and location assignments of different
design modules to NoC router adapters. RAD-Sim internally uses
Booksim [15] for NoC performance modeling, but augments it to
model the functionality of NoC communication to enable verification
of entire application designs. In addition, it (1) provides simulation
infrastructure components such as AXI NoC adapters, (2) automates
interfacing between modules and the NoC adapters at specified
locations, and (3) includes telemetry utilities for recording and
visualizing execution traces. RAD-Sim enables rapid what-if analysis
of different design choices and evaluates the effect of these choices
on end-to-end application performance. Previously, RAD-Sim did
not model components outside the RAD chip, limiting the type of
applications that could be evaluated. In this work, we address this
limitation by extending RAD-Sim to model the performance and
functionality of RADs with external memory subsystems.

III. DRAM-ENHANCED RAD-SIM

Memory systems are a key focus in computer architecture research
and there are several open-source cycle-accurate DRAM simulators
to facilitate their exploration [16]–[18]. We integrate DRAMsim3 [6]
into RAD-Sim to enable modeling of RADs with external memories.
DRAMsim is written in C++ and ships with over 80 configuration
files that model the timing and features of a wide variety of modern
DRAM protocols (e.g. DDR4, GDDR6, HBM). It has also been
integrated in multiple CPU-system simulators such as Gem5 [19].

For our use case in RAD-Sim, we need to model scenarios
in which a design module (mapped to either the FPGA fabric
or a hard accelerator core) reads/writes data from/to an external
memory over the NoC. Therefore, we build a RAD-Sim-compatible
SystemC wrapper around DRAMsim which presents a standard AXI
memory-mapped (AXI-MM) interface to connect to the RAD-Sim
NoC on one side, and interfaces with DRAMsim on the other side. We
also add data book-keeping in our wrapper since RAD-Sim simulates
not only performance but also functionality, which requires sending
back the correct memory contents in a read response. This wrapper
module runs at the memory controller clock frequency, receives
AXI-MM transactions, and translates them to DRAMsim memory
requests. It also implements custom read/write callback functions that
are invoked by DRAMsim when a memory request is serviced. These
callback functions prepare an AXI-MM response transaction with the
memory contents at the requested address to be sent out over the NoC.
Our DRAMsim wrapper can also optionally implement reordering
logic to return responses in the order the requests were received.

We simulate an 8-channel HBM configuration in RAD-Sim
and compare the results to both RTL simulations and hardware
measurements of a similar HBM configuration on a Stratix 10
NX FPGA. The comparison shows similar trends for bandwidth
and latency, with DRAMsim3 being ∼20% pessimistic for burst-1
accesses which will add some conservatism to our case study detailed
in Section V. Our simulation results also agree with the HBM
characterization results in [20].

Fig. 2: Overview of the RAD-Gen tool flow.

IV. RAD-GEN

RAD-Sim only evaluates application performance on candidate
RAD architectures, but does not address the silicon cost (or even
feasibility) of their implementation. For example, a specific hard
accelerator core might provide huge cycle-count performance benefits
but might not fit within the silicon area budget or run at a
slower frequency than what RAD-Sim assumed. For this reason,
we introduce RAD-Gen, the second key component of the RAD
architecture exploration and evaluation flow in Fig. 1. After rapidly
iterating in RAD-Sim to narrow down the set of candidate RAD
architectures, RAD-Gen can be used to perform a more detailed
analysis of these options by evaluating the implementation area, speed
and power consumption of their key components. Fig. 2 shows the
internals of RAD-Gen. The inputs to the tool are parameterizable RTL
descriptions of common RAD infrastructure blocks (e.g. NoC routers)
and/or candidate accelerator cores, a list of RTL parameter values
to sweep, and ASIC flow configurations such as target frequencies,
placement constraints, and target standard cell density.

A. SRAM Mapper
Many RAD components contain embedded SRAM memories of

various sizes; RAD-Gen extracts all the SRAM configurations (width,
depth and number of ports) from its inputs and then builds appropriate
SRAM blocks. If an SRAM compiler is available for the target
process, it can be invoked to evaluate the area and delay of each
configuration. However, in many cases (including for the ASAP7
PDK we target) an SRAM compiler is not available so instead
RAD-Gen invokes a built-in SRAM mapper. The SRAM mapper
automatically composes the required configurations using the SRAM
macros available and external stitching logic. This results in a
sub-optimal implementation compared to a single SRAM bank, but
provides an upper bound on SRAM area in cases where an SRAM
compiler is not readily available.

B. Reusable Physical Design Flow using HAMMER
To run the ASIC physical design tools, RAD-Gen uses

HAMMER [21] from the UC Berkeley Chipyard framework [22]. It
is a Python tool that provides a unified syntax to enable design flow
reusability across different tools, vendors and process technologies.
It already ships with multiple backend plug-ins for most of the
commonly used Cadence, Synopsys and Siemens tools for synthesis,
place and route (PnR), and static timing analysis (STA). The
front-end RAD-Gen scripts use the provided inputs to generate project
directories with their corresponding HAMMER .yaml configuration
files for the different parameter variations specified by the user. Then
it launches these runs in parallel based on a user-specified CPU core
allocation for each run.

C. Post Processing Scripts
After Synthesis, PnR and STA complete, a set of post-processing

scripts parse the results and generate the final timing, area and power
reports for the different standalone RAD blocks/components. In some
cases, additional post-processing is also required. For example, the
ASAP 7nm PDK scales the library LEFs and QRC techfiles by
a factor of 16× to work around special license requirements for
sub-20nm processes in Cadence Innovus [23]. The HAMMER plug-in



for ASAP7 already provides a script that scales the output GDS file
back to 7nm, and our post-processing scripts automatically stream
the resulting scaled GDS file in the Cadence Virtuoso command line
interface, and extract its 7nm bounding box area to present the final
area results to the user. The extracted bounding box area provides a
conservative estimate when performing block-level analysis since in
a flat PnR some of the empty spaces inside the bounding box could
potentially be used by the physical design tools.

V. CASE STUDY FOR RAD ARCHITECTURE EXPLORATION

In this section, we present a full example case study to illustrate
how RAD-Sim and RAD-Gen can be used together to perform
application-driven architecture exploration for RADs. The process
typically starts with selecting key target workloads that represent
application domains of interest to drive the architecture exploration
of a new device. For our case study, we chose DLRM inference
acceleration as it is one of the major workloads in the deep learning
domain and is part of the MLPerf benchmark suite [24].

A. Deep Learning Recommendation Models (DLRMs)
DLRMs are a key workload for many online service providers

such as Facebook, Amazon, Alibaba, Netflix, and Google. They
are ubiquitously used to personalize online retail [25] and predict
click-through rates for advertisements, news feeds, and search
results [26]–[28], having direct impact on the revenue of these
companies. According to [29], DLRMs are the single biggest deep
learning workload in Facebook datacenters. There are different
variations of DLRMs, but Fig. 3a shows their general architecture.
The inputs to DLRMs are dense features that represent numerical data
(e.g. user age) and a set of sparse one/multi-hot-encoded categorical
information (e.g. country, previously liked products). The dense
features are optionally processed using a relatively small multi-layer
perceptron (MLP), commonly referred to as the bottom MLP. On
the other hand, N sparse feature vectors are treated as indicies for
looking up one or multiple dense vectors (followed by a pooling
operation) from each of the N corresponding embedding tables
(ETs). The embedding layer transforms the categorical inputs from a
D-dimensional sparse space into a d-dimensional dense space where
D >> d. Then, a feature interaction stage combines the dense
embedding vectors and the raw or processed dense features using
concatenation, weighted sum or element-wise multiplication, and then
feeds the resulting vector into the top MLP to compute the final model
prediction. Variations of DLRMs can differ in whether they include
a bottom MLP or not, the size of the MLPs, the feature interaction
operation, the number and sizes of embedding tables, and the number
of lookups per table. For our case study, we use two production
models from Alibaba which were also used in [30]. Both models omit
the bottom MLP, perform a single lookup per embedding table, and
have a 3-layer top MLP with hidden dimensions of 1024, 512, and
256 neurons. The small and large models have 47 and 98 embedding
tables with a memory footprint of 675 MB and 7.03 GB respectively,
when using half-precision floating point (fp16) numerical format.

B. DLRM Accelerator Architecture
First, we design a DLRM inference accelerator architecture

for conventional commodity FPGAs as depicted in Fig. 3b. The
embedding lookup module receives the input features (from a host
CPU or network interface) and issues memory read requests for the
different embedding tables. For simplicity, we store all embedding
tables in external memories. We interface with two DDR4 channels
and two stacks of HBM similar to what is available in modern
FPGA devices such as the Xilinx Alveo U280 or Intel Stratix 10
MX FPGAs [31]. Accessing as many embedding tables as possible
in parallel is key for achieving low DLRM inference latency. The
HBM in modern FPGA devices can operate in pseudo-channel
mode in which each of the 8 HBM channels can be split into

Fig. 3: (a) Typical DLRM organization, and block diagrams of the (b)
DLRM accelerator and (c) MVMs used for accelerating the MLPs.

TABLE I: Resources utilization breakdown for the DLRM accelerator
on a conventional FPGA.

Module ALMs DSPs BRAMs
Memory Interfaces 22,949 - -
Embedding Lookup 769 - -
Feature Interaction 2,329 - 100
MVMs & Collector 89,906 3,264 1,420
Total 115,953 (17%) 3,264 (82%) 1,520 (22%)

two half-width pseudo channels, providing 16 parallel lookups per
stack. However, a limitation of DRAMsim3 (which we integrate
in RAD-Sim) is that it does not support pseudo-channel modeling.
Therefore, we use the HBMs in their legacy 8-channel mode which
offers the same bandwidth as pseudo-channel mode but only 8 parallel
full-width lookups per stack. The memory read responses are sent
back to the feature interaction module which implements a per-model
customized crossbar and control finite-state machine (FSM) to select
and concatenate the valid bytes of each 64B memory response (since
embedding table entries have different sizes ranging from 4 to 32
elements in the models we study). Then, the concatenated vector is
passed to the MLP accelerator to compute the final prediction. For
the MLP acceleration, we implement a streaming-style matrix-vector
multiplication (MVM) engine as shown in Fig. 3c. It consists of
D fp16 dot-product engines (DPEs), each with L multiplication
lanes. Each DPE is tightly coupled with a persistent weight memory
which stores the MLP weight matrices. The incoming input vectors
are broadcast from the input FIFO to all the DPEs to be multiplied by
different rows of the matrix. This is followed by accumulators and a
scratchpad memory to accumulate results over time, and a reduction
unit to reduce the final accumulation outputs with those produced by
another MVM engine if needed. This MVM engine is orchestrated
by instructions stored in a small 64KB instruction memory, and has
AXI-Streaming (AXI-S) interfaces for input and output vectors with
direct MVM-to-MVM connections for inter-MVM reduction.

C. Results on a Conventional FPGA
We implement the embedding lookup, feature interaction, and

MVM modules in SystemVerilog and compile the full design for
the largest and fastest speed grade Intel Stratix 10 MX 2100 FPGA
using Quartus Prime Pro 22.4 to obtain the operating frequency and
resource utilization results1. Limited by DSP resources, we were
able to fit three MVMs with 32 DPEs each and 32 lanes per DPE
(D = L = 32) for the MLP acceleration portion. Table I shows the
resource utilization breakdown, and Fig. 4 shows the chip planner
view of the design placement and routing congestion heatmap. The

1At the time of writing, newer-generation Agilex devices with HBMs are
still not supported in the latest available Quartus version. Therefore, we use a
Stratix 10 device to capture a realistic FPGA placement and routing but scale
the area results to 7nm when we calculate the LAB-equivalent area of NoC
routers and accelerator core silicon area budget in Section V-D.



Fig. 4: Chip planner view for the placement and routing heatmap of
the DLRM inference accelerator on a conventional FPGA (a & c)
and hard-NoC-enhanced FPGA (b & d).

Fig. 5: (a) Example RAD for architecture exploration case study, and
(b) module placement and (c) routing heatmap of the fabric portion of
the DLRM accelerator on the RAD. The leftmost column of sectors
is reserved for ASIC accelerator cores.

HBM interfaces in the Stratix 10 MX device (highlighted in yellow
in Fig. 4a) are at the top and bottom of the device and the DDR
interfaces (green) use the I/O columns within the fabric. Therefore,
the feature interaction module (red) talking to the external memories
is stretched between these interfaces at opposite sides of the chip,
resulting in significantly long critical path delays. This, along with
the severe routing congestion caused by all the wide buses from/to the
memory interfaces and within the design modules (Fig. 4c), causes
the design to operate at 80 MHz.

We also implement a SystemC version of each of these modules to
be used in RAD-Sim. When simulating the end-to-end baseline design
in our DRAM-enhanced RAD-Sim, it achieves 139K inferences per
second at 12.5µs inference latency, and 82K inferences per second
at 19µs inference latency for the small and large Alibaba models,
respectively. These results show 31% and 17% lower latency but
0.46× and 0.42× the throughput of the state-of-the-art fp16 results
in [30] for the small and large models, respectively. Considering that
the accelerator from [30] runs at 1.5× higher frequency, uses 1.4×
more DSPs, and redesigns the data structure of embedding tables
to reduce the number of memory lookup rounds, these results give
us confidence that our baseline design on a conventional FPGA is
representative of state-of-the-art FPGA-based DLRM accelerators.

D. Area Budgets for Hard NoC and Accelerator Cores
In this case study, we want to explore RAD architectures similar

to that illustrated in Fig. 5a. These RADs incorporate a side complex
of hard accelerator cores for common functionalities and a hard NoC
that is the only way for modules implemented on the programmable
fabric to access external memories (similar to the Xilinx Versal
architecture [12]) and/or communicate with the hard accelerator
cores. To realize such RADs, some of the programmable fabric logic
blocks (LBs) would be replaced by NoC routers (a new type of
hard block), and some of the programmable fabric sectors would
be completely replaced by ASIC accelerator cores. Therefore, we
need to estimate the sector area to determine an area budget for
our accelerator cores, as well as the LB area to quantify the FPGA

Fig. 6: DLRM acceleration throughput (upper half) and latency (lower
half) for the two Alibaba models on RADs with different parameters.
The values in brackets are (NoC links witdth, VC buffer size).

capacity that would be sacrificed to embed NoC routers with a
specific configuration.

Since this data is proprietary, we perform a best-guess analysis
based on publicly disclosed information. Based on [32], the fabric die
area of a 2.8M logic element Stratix 10 device is 560mm2. Since
this device consists of 12×9 fabric sectors, a single sector area is
5.2mm2 at the 14nm process. Then, we scale this area by a factor of
3× (derived from ASAP7 results for various designs before and after
GDS scaling) to obtain a 1.7mm2 area budget for each accelerator
core at 7nm. We reserve a column of eight fabric sectors in the
Stratix 10 MX 2100 device we use in our experiments (as shown in
Fig. 5b) to be replaced by eight ASIC accelerator cores. Also, we
know that the relative areas of Stratix-V BRAMs and DSPs (which
did not change significantly for Stratix 10) to adaptive logic modules
(ALMs) are 40× and 30× respectively [33], and that IOs typically
consume around 20% of the FPGA die area in large devices [34].
Using these numbers along with the resource composition of the
Stratix 10 GX2800 device, we can estimate that 50% of the 560mm2

is consumed by LBs. Therefore, the area of a single LB is roughly
1000µm2 when scaled to 7nm.

We perform an experiment to evaluate the effect of embedding
a hard NoC on the placement and routing of our baseline DLRM
accelerator design. We reserve an 8×9 mesh of exclusive logic-locked
regions in the FPGA fabric to represent the hard NoC routers and their
NoC-to-fabric adapters as shown in Fig. 4b. Then, instead of directly
connecting the DLRM accelerator modules to each other, we connect
them to black-box (empty) router modules and manually assign these
router modules to their corresponding logic-locked regions to mimic
an FPGA fabric with an embedded hard NoC. Fig. 4b shows the effect
on the placement of modules; the (red) feature interaction module and
(yellow) HBM interfaces are no longer stretched across the fabric as
when connected using the programmable routing (Fig. 4a). Instead,
they are more localized close to their access point NoC routers.
However, when looking at the routing congestion heatmap of this
scenario in Fig. 4d, we observe that the routing congestion was not
improved. The main reason is that the three MVM modules are
very coarse grained (each consumes 27% of the fabric DSPs) and
very routing-intensive. The hard NoC provides efficient system-level
interconnect between modules; however, designers sometimes still
need to re-think the granularity of NoC-attached modules and their
intra-module routing to implement high-performance application
designs on RADs as detailed in [4].

E. DLRM Acceleration Performance on RADs
We first use RAD-Sim to simulate our DLRM inference accelerator

when mapped to different variations of RAD architectures. We
explore NoCs with different link widths of 131, 195, and 323 bits
(which packetize an AXI transaction with 512-bit data into 8, 4, and
2 flits respectively), and different VC buffer sizes of 8 and 16 flits.
We also explore MVM engines with different compute capabilities:
16× 16-lane DPEs, 32× 32-lane DPEs, and 64× 64-lane DPEs
(i.e. MVM-16, MVM-32, MVM-64). Although RAD-Sim allows



Fig. 7: RAD-Gen area results of
accelerator cores with different MVM
sizes and NoC link widths. Dashed
line is the area budget for the sectors.

TABLE II: Logic block (LB)
region reserved for a NoC
router and % of LBs replaced
by 8×8 mesh NoC.

NoC
Links
Width

Router
Size

(LBs)

Total
%

LBs
131 5×5 2.6%
195 6×6 3.7%
323 8×8 6.6%

experimenting with many more architecture aspects, we focus on
just three key parameters for showcasing the tool. For simulations,
we assume that the NoC, NoC adapters, MVM accelerator cores,
and soft logic modules run at 1.5 GHz, 1.2 GHz, 1 GHz, and 300
MHz, respectively. Later when we perform RAD-Gen experiments,
we verify that these frequencies are all achievable.

Fig. 6 presents the performance results for all RAD variations
swept for both the small and large Alibaba DLRM models. In
all experiments, changing the VC buffer size does not have any
noticeable effect on performance. The results also show that for both
models, the less compute capable MVM-16 engines are the bottleneck
when used, resulting in no change in performance when varying the
NoC-related parameters. Additionally, combining the narrowest NoC
links with the highest number of MVM lanes (and thus the highest
MVM input/output bitwidth) results in a large number of flits per
AXI transaction causing severe congestion in the NoC and eventually
leading to a deadlock. This highlights the utility of RAD-Sim
in uncovering (and potentially solving) such application-dependent
functionality problems for specific combinations of architectural
parameters. For the small DLRM model, increasing the compute
capability of the MVMs gradually shifts the bottleneck from the
MLP compute to the data movement. This is manifested by the
throughput improvement when increasing the width of the NoC links
from 131 to 195 and from 195 to 323 in the MVM-32 and MVM-64
cases, respectively. The large model shows a similar trend with the
NoC link width having less pronounced impact on performance. For
latency results, a significant improvement is achieved by moving from
MVM-16 to MVM-32, highlighting that the latency was dominated
by the MLP compute in the MVM-16 case. However, only a slight
latency improvement is achieved by further increasing the compute
capability of the MVMs. These results show that the MVM-64
variation is desirable for higher throughput, but requires wider NoC
links to be effective. On the other hand, medium-sized MVMs are
enough to achieve most of the latency reduction. RAD-Sim enables
efficient exploration of the architecture space – this entire parameter
sweep takes less than an hour on an Intel Core i5-12600 CPU clocked
at 3.7 GHz with 32 GB of RAM.

F. Physical Implementation Trade-offs
We use RAD-Gen to evaluate the implementation cost and

feasibility of the different RAD variations. Since RAD-Sim already
showed that VC buffer size does not affect performance, we only
evaluate the more area-efficient NoC routers with VC buffers of 8
flits. We use RAD-Gen with the ASAP 7nm PDK [7], and configure
it to use Cadence Genus v20.10 for synthesis, Cadence Innovus
v21.12 for PnR, and Synopsys PrimeTime v2017.09 for STA. We
set aggressive frequency targets of 1.75 GHz and 1.4 GHz for
the NoC routers and MVM components respectively, and a target
standard cell density of 70%. The tools reported that all the NoC
router and MVM component variations we experiment with can meet
timing at 1.6 GHz. Fig. 7 shows the silicon area breakdown of the
ASIC accelerator sectors (i.e. MVM engine and the NoC router it is
attached to) relative to the available area budget (dashed line) that
we calculated in Section V-D. It shows that the MVM-64 design
points are infeasible as they are 45− 47% bigger than the available
budget. The MVM-16 and MVM-32 data points are all feasible and

TABLE III: DLRM performance of future RADs in context with CPU
and state-of-the-art FPGA solutions (B: batch size).

CPU
(B=1)

CPU
(B=2048)

MicroRec
[30]

Candidate
RAD

Small Latency (ms) 3.34 28.18 0.0163 0.0008
Infer/s (×103) 0.3 72.7 305 5,117

Large Latency(ms) 7.48 56.98 0.0226 0.001
Infer/s (×103) 0.13 35.9 195 3,809

consume at most 28% and 58% of the available budget, leaving
space to harden additional functionality for other applications or
expand the SRAM capacity of these sectors (which can be used as
a bigger but higher access latency alternative to the fabric BRAMs).
Since the MVM-32 variations can achieve significant performance
improvements compared to MVM-16 based on RAD-Sim results,
they are a more reasonable design choice. The NoC router embedded
within each MVM constitutes a small portion of the accelerator area
(< 6%). However, since most of the NoC routers are embedded
in the FPGA fabric, their area impact is more significant in terms
of the soft logic replaced. Table II shows the amount of soft logic
replaced by embedding a mesh of 8×8 routers in the fabric for each
NoC variation as shown in Fig. 5b. This shows that NoC routers
with 131-bit or 195-bit wide links would replace 2.6% and 3.7%
of the Stratix 10 MX fabric respectively for embedding the whole
NoC (after excluding the resources replaced by the ASIC accelerator
sectors). Moving to even wider 323-bit wide links, increases this
cost to 6.6% but, when looking at RAD-Sim results, does not provide
noticeable performance gains. Therefore, a NoC with 195-bit links in
this case offers a better trade-off. Fig. 5c shows that moving the MVM
functionality to the hard accelerator cores reduces routing congestion,
and frees up the flexible FPGA fabric to implement any additional
(usecase-specific) pre/post-processing stages.

G. The Potential of RADs for DLRM Acceleration
Although this is not the key focus of the paper, Table III aims

to put the potential performance of the resulting candidate RAD
from our architecture exploration in context with existing CPU and
FPGA solutions for the Alibaba models used in our case study. We
compare our (conservatively modeled 7nm) RAD with eight MVM-32
accelerator cores and an 8×9 NoC with 195-bit wide links to results
from [30] for 16 vCPUs of an Intel Xeon E5-2686 @ 2.30GHz with
AVX2 FMA (Intel 14nm) and a state-of-the-art FPGA-based DLRM
inference accelerator on a Xilinx Alveo U280 (TSMC 16nm). This
comparison shows that next-generation RADs can achieve an order
of magnitude higher throughput and lower latency with up to 5.1M
inferences per second.

VI. CONCLUSION

General-purpose processors no longer improve performance only
by scaling up their core count, but also now often incorporate
specialized accelerators. Similarly, FPGA capabilities will grow not
just with ever-larger fine-grained programmable fabrics, but also with
diverse on-die specialized accelerator cores. Architecture exploration
of these beyond-FPGA reconfigurable devices requires new tooling
to model the interactions between soft fabrics, hard NoCs, accelerator
blocks and off-chip memory. To this end we have extended the
RAD-Sim tool to simulate off-chip memory, and developed the
RAD-Gen tool to enable area, performance and power estimates of
RAD components. Through a case study on DLRM acceleration,
we showed that RAD-Sim enables co-optimization of the NoC and
accelerator cores, while RAD-Gen evaluates the implementation cost
and feasibility of various design points.
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