
Field-Programmable Gate Array Architecture

Andrew Boutros and Vaughn Betz

Contents

Introduction . 2
Methodology and Tools for FPGA Architecture Evaluation . 4
Key FPGA Applications . 6
Programmable Logic Blocks . 7
Programmable Routing . 14
Programmable IO. 19
Programmable Clock Distribution Networks . 21
On-chip Memory . 23
DSP Blocks . 31
Processor Subsystems . 37
System-Level Interconnect: Network-on-Chip . 39
Interposers . 41
Configuration and Security . 43
Conclusion . 44
References . 44

Abstract

Since their inception more than thirty years ago, field-programmable gate arrays
(FPGAs) have grown more complex, more capable, and more diverse in their
applications. FPGAs can be reprogrammed at a fundamental level, changing
the function and interconnection of millions of elements. By reconfiguring
their hardware to match the application, FPGAs often achieve higher energy
efficiency, lower latency or faster time-to-market across a very wide range of
application domains. A modern FPGA combines many components, from logic

A. Boutros · V. Betz (�)
Department of Electrical and Computer Engineering (ECE), University of Toronto, Toronto, ON,
Canada
e-mail: andrew.boutros@mail.utoronto.ca; vaughn@eecg.utoronto.ca; vaughn@ece.utoronto.ca

© Springer Nature Singapore Pte Ltd. 2023
A. Chattopadhyay (ed.), Handbook of Computer Architecture,
https://doi.org/10.1007/978-981-15-6401-7_49-1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6401-7_49-1&domain=pdf
mailto:andrew.boutros@mail.utoronto.ca
mailto:vaughn@eecg.utoronto.ca
mailto:vaughn@ece.utoronto.ca
https://doi.org/10.1007/978-981-15-6401-7_49-1

2 A. Boutros and V. Betz

blocks, programmable routing and memory blocks to networks-on-chip and
processor subsystems. For best efficiency, each component must be carefully
architected to match the needs of a wide range of applications, and to mesh
well with the other components. Their design involves many different choices
starting from the high-level architectural parameters down to the transistor-level
implementation details. This chapter describes the evolution of these FPGA
components, their design principles and implementation challenges.

Keywords

FPGA architecture · Reconfigurable computing · Programmable logic · FPGA
applications

Introduction

The idea of reconfigurable computing originated in the 1960s with the Fixed Plus
Variable Structure Computer (Estrin 1960), which aimed to enhance a conventional
computing system with the capability to temporarily morph into a more application-
specialized architecture. This would be achieved using additional programmable
logic and interconnect circuitry to implement operations beyond the capabilities of
the fixed datapath processor. A variety of research efforts subsequently investigated
ideas for reconfigurable computer architectures that could combine both software-
like flexibility and hardware efficiency. However, it was over 20 years later that the
first commercially successful reconfigurable computing device, known as a field-
programmable gate array (FPGA), was created by Xilinx in 1985.

As illustrated in Fig. 1, FPGAs consist of a two-dimensional array of pro-
grammable blocks (logic, IO, and others) that can be flexibly connected using a
network of pre-fabricated wires with programmable switches between them. The
functionality of all the FPGA blocks and the connectivity of routing switches are
controlled using millions of configuration bits, usually stored in static random
access memory (SRAM) cells, that can be configured to implement arbitrary digital
circuits. The designer describes the desired functionality in a hardware description
language (HDL) such as Verilog/VHDL or possibly uses high-level synthesis to
translate a higher-level programming language (e.g., C++ or OpenCL) to HDL. The
HDL design is then compiled using a complex computer-aided design (CAD) flow
into the bitstream file, analogous to a software program executable, which is used
to program all the FPGA’s configuration SRAM cells.

FPGAs combine aspects of general-purpose processors and application-specific
integrated circuits (ASICs). Their programmability allows a single FPGA to imple-
ment many different applications similar to a software-programmable processor,
while the fact that their hardware is reconfigurable enables custom systems similar
to an ASIC. However, FPGAs have a significantly lower non-recurring engineering
cost and shorter time-to-market since they do not require the physical design, layout,
fabrication, and verification stages that a custom ASIC would normally go through.

Field-Programmable Gate Array Architecture 3

Fig. 1 Early FPGA
architecture with
programmable logic and IOs
vs. modern heterogeneous
FPGA architecture with
RAMs, DSPs, and other hard
blocks. All blocks are
interconnected using bit-level
programmable routing

Processor
Subsystem

PCIe
Controller

Memory
Controller

Block
RAMs

DSPsLogic
Blocks

Prog.
IOs

A pre-fabricated off-the-shelf FPGA can be used to implement a complete system
in a matter of weeks, and also enables continuous hardware upgrades to support
new features or fix bugs by simply loading a new bitstream after deployment
in-field, thus the name field-programmable. This makes FPGAs a compelling
solution for medium and small volume designs, especially with the fast-paced
product cycles in today’s markets. FPGAs can also implement the exact hardware
needed for each application (e.g., datapath bitwidth, pipeline stages, number of
parallel compute units, memory subsytem, etc.) instead of the fixed one-size-fits-
all architecture of general-purpose processors (CPUs) or graphics processing units
(GPUs). Consequently, they can achieve higher efficiency than CPUs or GPUs
by implementing instruction-free streaming hardware (Hall and Betz 2020) or
a processor overlay with an application-customized pipeline and instruction set
(Boutros et al. 2020).

However, the flexibility of FPGA hardware comes with an efficiency cost
compared to ASICs. Kuon and Rose (2007) show that circuits using only the FPGA’s
programmable logic blocks average 35× larger and 4× slower than corresponding
ASIC implementations. A more recent study (Boutros et al. 2018) shows that for
full-featured designs which heavily utilize the other FPGA blocks (e.g., RAMs and
DSPs), this area gap is reduced to 9×. FPGA architects seek to reduce this efficiency
gap as much as possible while maintaining the programmability that makes FPGAs
useful across a wide range of applications.

This chapter introduces key principles of FPGA architecture and highlights the
evolution of these devices over the past three decades. Figure 1 shows how FPGAs
evolved from simple arrays of programmable logic and IO blocks to complex
heterogeneous multi-die systems with embedded block RAMs (BRAMs), digital

4 A. Boutros and V. Betz

signal processing (DSP) blocks, processor subsystems, diverse high-performance
external interfaces, system-level interconnect, and more. The chapter first gives a
brief overview of the CAD flows and methodology used to evaluate new FPGA
architecture ideas, as well as key applications for FPGAs. Next, the design principles
and challenges for each of the key components of an FPGA architecture are detailed,
along with major innovations and future challenges.

Methodology and Tools for FPGA Architecture Evaluation

Figure 2 shows a simplified view of the FPGA architecture evaluation flow. It
consists of three main components: a set of benchmark applications, an architecture
model, and a CAD system. Unlike an ASIC built for a specific functionality, an
FPGA is a general-purpose device that is designed for many use cases, some of
which may not even exist when the FPGA is architected. Therefore, a candidate
FPGA architecture is evaluated based on its efficiency when used to implement a
variety of benchmark designs that are representative of the key FPGA markets and
application domains. Typically, each FPGA vendor has a carefully selected set of
benchmark designs collected from proprietary system implementations and different
customer applications. There are also several open-source benchmark suites such as
the classic MCNC20, the VTR (Murray et al. 2020a), and the Titan23 (Murray et al.
2013) suites which are commonly used in academic FPGA architecture and CAD
research. While early academic FPGA research used the MCNC suite of designs,
these circuits are now too small (thousands of logic primitives) and simple (only
IOs and logic) to represent modern FPGA applications. The VTR and particularly
the Titan suites are larger and more complex, making them more representative.
As FPGA capacity grows and key applications change, new benchmark suites will
continue to be needed to drive both FPGA architecture and CAD research.

The second component of the evaluation flow is the FPGA architecture model.
The design of an FPGA involves many different decisions from architecture-

Fig. 2 FPGA architecture
evaluation flow Benchmark

Applications

Architecture
Model

Architecture
Description File

Area & Timing
Models

Area, Timing &
Power Metrics

CAD System

Synthesis

Placement

Routing

Field-Programmable Gate Array Architecture 5

level organization (e.g., number and type of blocks, distribution of wire segment
lengths, size of logic clusters and logic elements), to micro-architectural details
(e.g., DSP and BRAM modes of operation, hard arithmetic in logic blocks, switch
block patterns), and down to transistor-level circuit implementation (e.g., pro-
grammable switch type, routing buffer transistor sizing, register implementation). It
also involves different implementation styles; the logic blocks and programmable
routing are designed and laid out as full-custom circuits, while most hardened
blocks (e.g., DSPs) mix standard-cell and full-custom design for the block core
and peripherals, respectively. Some blocks, such as BRAMs and high-speed IO,
even include significant analog circuitry. All these different components need to
be carefully modeled to evaluate the FPGA architecture in its entirety. Tools
such as COFFE (Yazdanshenas and Betz 2019) were developed to automate the
transistor-level design and modeling of FPGA blocks and programmable routing
components, speeding up FPGA architecture investigations. The area, timing, and
power models for each of these components are then typically combined in an
architecture description file, along with a specification of how these blocks and
routing components are organized into the overall architecture.

Finally, a re-targetable CAD system such as the Verilog-to-Routing (VTR) flow
(Murray et al. 2020a) is used to map the selected benchmarks to the described FPGA
architecture. Such a CAD system consists of a sequence of complex optimization
algorithms that synthesizes a benchmark written in an HDL into a circuit netlist,
maps it to the different FPGA blocks, places the mapped blocks at specific
locations on the FPGA, and routes the connections between them using the specified
programmable routing architecture. The implementation produced by the CAD
system is then used to evaluate several key metrics. Total area is the sum of the areas
of the FPGA blocks used by the application, along with the programmable routing
included with them. A timing analyzer finds the critical path(s) through the blocks
and routing to determine the maximum frequencies of the application’s clocks.
Power consumption is estimated based on resources used and signal toggle rates.
FPGAs are never designed for only one application, so these metrics are averaged
across all the benchmarks. Finally, the overall evaluation blends these average area,
delay, and power metrics appropriately depending on the architecture goal (e.g., high
performance or low power). Other metrics such as CAD tool runtime and routability
of the benchmarks on a candidate architecture are also often considered.

As an example, a key set of questions in FPGA architecture is: What functionality
should be hardened (i.e., implemented as a new ASIC-style block) in the FPGA
architecture? How flexible should this block be? How much of the FPGA die area
should be dedicated to it? Ideally, an FPGA architect would like the hardened
functionality to be usable by as many applications as possible at the least possible
silicon cost. An application that can make use of the hard block will benefit by being
smaller, faster and more power-efficient than a soft implementation that uses only
the programmable logic and routing. This motivates having more programmability
in the hard block to capture more use cases; however, higher flexibility generally
comes at the cost of larger area and reduced efficiency of the hard block. On the
other hand, if a hard block is not usable by an application circuit, its silicon area is

6 A. Boutros and V. Betz

wasted; the FPGA user would rather have more of the usable general-purpose logic
blocks in the area of the unused hard block. The impact of this new hard block on
the programmable routing must also be considered – does it need more interconnect
or lead to slow routing paths to and from the block? To evaluate whether a specific
functionality should be hardened or not, both the cost and gain of hardening it have
to be quantified empirically using the flow described in this section. FPGA architects
may try many ideas before landing on the right combination of design choices that
adds just the right amount of programmability to make this new hard block a net win.

In the rest of this chapter, we detail many different components of FPGAs and
key architecture questions for each. While we describe the key results without
detailing the experimental methodology used to find them, in general they came
from a holistic architecture evaluation flow similar to that in Fig. 2.

Key FPGA Applications

In this section, we present some of the key application domains of FPGAs and
highlight their advantages for use cases in these areas.

Wireless communications and (e.g., cell phone base stations) is a very large
market for FPGAs. The reconfigurability of FPGAs allows service providers to
implement a range of different standards and upgrade them in-field, while achieving
much higher energy efficiency compared to instruction-set-based DSP devices.
One of the key components in wireless communications is signal processing,
such as filtering. The direct hardware execution (without an instruction stream)
of FPGAs makes them very efficient for repetitive tasks of this nature. Table 1
compares the performance, power and energy efficiency of a Stratix IV FPGA to
two Texas Instruments DSP devices (scaled optimistically to the same 40 nm process
technology of the FPGA) when implementing simple signal filtering using a 51-tap
finite impulse response (FIR) filter. The results show that even a single instance of
the FIR filter (consuming only 2% of the FPGA resources) can achieve two orders of
magnitude higher performance compared to both DSPs, and 7.7× and 63.2× higher
energy efficiency compared to the C5505 and C674x, respectively. The FPGA can
achieve another order of magnitude higher performance by instantiating up to 49
instances of the FIR filter working in parallel at the cost of only 9× higher power
consumption since the FPGA static power (80% of the FPGA power in Table 1)
remains the same regardless of the amount of utilized resources.

Table 1 Performance, power, and energy efficiency comparison between a Stratix IV FPGA and
two DSP devices. The results of the DSPs are optimistically scaled to the FPGA’s 40 nm process
technology

Device Performance (Samples/s) Power (mW) Energy efficiency (Samples/W)

TI C5505 1.77 × 106 28 6.32 × 107

TI C674x 3.21 × 106 416 7.72 × 106

Stratix IV GX230 5.1 × 108 1046 4.88 × 108

Field-Programmable Gate Array Architecture 7

Wired communications and networking are also heavy users of FPGAs. The
richness and diversity of FPGA IOs are important in this use case, as many
different and very high-speed IO standards are used in chip-to-chip, server-to-
server and city-to-city communications. FPGAs are often used in high-end packet
processing and switching systems, which have a high degree of parallelism and a
need for high throughput and low latency (Zhao et al. 2020). This is well-suited to
an FPGA’s spatial architecture and the ability to customize processing pipelines
to the bare minimum required by the target application to reduce latency compared
to general-purpose processors with a fixed pipeline and memory hierarchy. The
hardened network transceivers in modern FPGAs along with the ability to
customize the network stack implementation also make FPGAs suitable for ultra-
low latency networking interfaces. This can also be useful in other domains,
including financial applications such as high-frequency trading (Lockwood et al.
2012) where FPGA reprogrammability allows integration of the rapidly changing
trading algorithms on the same chip as the low-latency networking interface.

More recently, FPGAs have also been deployed on a large scale in datacenters
where both their computation and networking capabilities are leveraged. The
Microsoft Catapult project couples every CPU server with an FPGA that can be
used to accelerate search engines, packet processing, encryption and compression
(Putnam et al. 2014; Caulfield et al. 2016). This achieved a 95% improvement in
the ranking throughput of their search engine infrastructure at the cost of only
10% higher power consumption. The network-connected FPGAs in the Catapult
project were also used to implement Brainwave, a datacenter-scale deep learning
accelerator for real-time low-latency inference (Fowers et al. 2018).

The hardware reprogrmmability of FPGAs has led to their extensive use in
ASIC prototyping (Krupnova and Saucier 2000), where either a part or the entirety
of an ASIC design is emulated on FPGAs to verify functionality or estimate
performance before fabrication. There are a myriad of other application domains
for FPGAs including embedded real-time video processing in autonomous vehicles
(Rettkowski et al. 2017), genomics (Turakhia et al. 2018), biophotonic simulations
(Young-Schultz et al. 2020), accelerated RTL simulation (Karandikar et al. 2018),
and many more.

These diverse applications are enabled by the various components of an FPGA
architecture working together, and in the following sections we detail the architec-
ture of each of these components.

Programmable Logic Blocks

A fundamental component of an FPGA is the programmable logic block that can
implement arbitrary logic functions.

The earliest reconfigurable computing devices were programmable array logic
(PAL) architectures. As shown in Fig. 3, PALs consisted of an array of AND gates
feeding another array of OR gates which could implement any Boolean logic
expression as a two-level sum-of-products function. Programmable switches are

8 A. Boutros and V. Betz

Fig. 3 Programmable array
logic (PAL) architecture with
an AND array followed by an
OR array. The crosses are
reconfigurable switches that
are programmed to
implement any Boolean
expression as a two-level
sum-of-products function

I0

AND array

OR array

Inputs

Outputs

I1 I2 I3 I4

O0 O1 O2 O3

flexibly configured to select the inputs to each of the AND/OR gates to implement
different Boolean expressions. The design tools for PALs were very simple since the
delay through the device is constant regardless of the logic function implemented.
However, PALs did not scale well; as device logic capacity increased, the wires
connecting the AND/OR grid became increasingly longer and slower and the number
of required programmable switches grew quadratically.

Subsequently, complex programmable logic devices (CPLDs) kept the AND/OR
arrays as the basic logic elements, but attempted to solve the scalability challenge
by integrating multiple PALs on the same die with a crossbar interconnect between
them at the cost of more complicated design tools. Shortly after, Xilinx pioneered
the first FPGA in 1985, which consisted of an array of SRAM-based lookup tables
(LUTs) with programmable interconnect between them. This style of reconfigurable
devices was shown to scale very well, with LUTs achieving much higher area
efficiency compared to the AND/OR logic in PALs and CPLDs. Consequently,
LUT-based architectures became increasingly dominant and today LUTs form the
fundamental logic element in all commercial FPGAs. Some research attempts
investigated replacing LUTs with a different form of configurable AND gates: a full
binary tree of AND gates with programmable output/input inversion known as an
AND-inverter cone (AIC) (Parandeh-Afshar et al. 2012). However, when thoroughly
evaluated in Zgheib et al. (2014), AIC-based FPGA architectures had significantly
larger area than LUT-based ones, with delay gains only on small benchmarks that
have relatively short and localized critical paths.

A K-LUT can implement any K-input Boolean function by storing its truth
table in 2K configuration SRAM cells. Figure 4a shows the transistor-level circuit
implementation of a 4-LUT using pass-transistor logic. The four inputs (A,B,C,

and D) are used as multiplexer select lines to choose an output from the 16 values

Field-Programmable Gate Array Architecture 9

Fig. 4 (a) Transistor-level
implementation of a 4-LUT
with internal buffers between
the second and third LUT
stages, and (b) Basic logic
element (BLE)

Vdd

Vdd

Vdd

Vdd

Vdd

A B C D

SRAMs Input
Buffers

Internal Buffers

Output
Buffer

K-
LU

T…

Basic Logic Element (BLE)

Ofeedback

Orou�ng

stupni
K

a

b

of the truth table in the SRAMs. In addition to the output buffer, an internal
buffering stage (shown between the second and third stages of the LUT in Fig. 4a)
is typically implemented to mitigate the quadratic increase in delay when passing
through a chain of pass-transistors. The sizing of the LUT’s pass-transistors and
the internal/output buffers is carefully tuned to achieve the best area-delay product.
Classic FPGA literature (Betz et al. 1999) defines the basic logic element (BLE)
as a K-LUT coupled with an output register and 2:1 bypassing multiplexers as
shown in Fig. 4b. Thus, a BLE can be used to implement just a flip-flop (FF)
with the LUT configured as an identity function, or any Boolean expression with
up to K inputs and optionally-registered output. As illustrated in Fig. 5a, BLEs
are typically clustered in logic blocks (LBs), such that an LB contains N BLEs
along with local interconnect. The local interconnect in the logic block consists
of multiplexers between signal sources (BLE outputs and logic block inputs) and
destinations (BLE inputs). These multiplexers are often arranged to form a local
full (Betz and Rose 1998) or partial (Lemieux et al. 2000) crossbar. At the circuit
level, these multiplexers are usually built as two levels of pass transistors, followed
by a two-stage buffer as shown in Fig. 5b; this is the most efficient circuit design
for FPGA multiplexers in most cases (Chiasson and Betz 2013a). Figure 5a also
shows the switch and connection block multiplexers forming the programmable
routing used for inter-LB communication; this routing is discussed in detail in
the “Programmable Routing” section.

10 A. Boutros and V. Betz

Fig. 5 (a) Logic block (LB)
internal architecture, and (b)
Two-level multiplexer
circuitry

Logic Block (LB)

BLE 1

BLE 2

BLE N

…

…

………
…

……
…

……
…

…

…
…

Horizontal
Rou�ng

Ver�cal
Rou�ng

Local Crossbar Switch Block
Mul�plexer

Connec�on Block
Mul�plexers

Ofeedback

Orou�ng

I inputs

Vdd

…I00 I01 I0N

…I10 I12 I1N

IM0 IM1 IMN
…

…

1st level

2nd level

Output
Buffer

SRAMs

a

b

Over the years, the size of LUTs (K) and LBs (N) have gradually increased
with growing device logic capacity. As K increases, more functionality can be
captured into a single LUT. Therefore, the same circuit can be implemented using
fewer LUTs with a smaller number of logic levels on the critical path, which
increases performance. In addition, the demand for inter-LB routing decreases as
more connections are captured into the fast local interconnect by increasing N . On
the other hand, the area of the LUT increases exponentially with K (due to the 2K

SRAM cells) and its speed degrades linearly (due to propagation through a chain
of K pass transistors with periodic buffering). The size of the local crossbar also
increases quadratically and its speed degrades linearly with increasing N . Ahmed
and Rose (2004) empirically evaluated these trade-offs and found that LUTs of size
4–6 and LBs of size 3–10 BLEs offer the best area-delay product for an FPGA
architecture, with 4-LUTs leading to a better area but 6-LUTs yielding a higher
speed. Historically, the first Xilinx FPGAs had an LB with only two 3-LUTs (i.e.,
N = 2,K = 3). LB size gradually increased over time and by 1999, Xilinx’s Virtex
family had four 4-LUTs and Altera’s Apex 20K family had ten 4-LUTs in each LB.

The next major logic feature was the fracturable LUTs introduced in 2003 by
Altera in their Stratix II architecture. Ahmed and Rose in (2004) showed that

Field-Programmable Gate Array Architecture 11

A
B
C
D
E

F

5-
LU

T
5-

LU
T

6-LUT

O1

O2

1

0

5-
LU

T
5-

LU
TA

B
C
D
E

F 6-LUT

G
H

O1

O2

1

1

0

a b

Fig. 6 6-LUT fracturable into two 5-LUTs with (a) no additional input ports, leading to 5 shared
inputs or (b) two additional input ports and steering multiplexers, leading to only 2 shared inputs

an LB with ten 6-LUTs achieved 14% better performance but increased area by
17% compared to an LB with ten 4-LUTs. In addition, an architecture with only
6-LUTs can suffer from significant under-utilization. Lewis et al. found that 64%
of the LUTs implemented for a commercial benchmark suite used fewer than
6 inputs, wasting some of the 6-LUT functionality (Lewis et al. 2005). Based on
these observations, fracturable LUTs were introduced to combine the best of both
worlds: the higher performance of larger LUTs and the superior area-efficiency of
smaller ones. A fracturable {K,M}-LUT can be configured as a single LUT of size
K or can be fractured into two LUTs of size up to K−1 that collectively use no more
than K + M distinct inputs. Figure 6a shows that a 6-LUT is internally composed
of two 5-LUTs plus a 2:1 multiplexer. Consequently, almost no circuitry (only the
red added output) is necessary to allow a 6-LUT to instead operate as two 5-LUTs
that share the same inputs. However, this requires the two 5-LUTs to share all their
inputs which limits how often both LUTs can be simultaneously used. Adding extra
routing ports as shown in Fig. 6b relaxes this constraint and makes it easier to find
two logic functions that can be packed together into a fracturable 6-LUT at the cost
of slightly increasing its area. The adaptive logic module (ALM) in the Stratix II
architecture implemented a {6, 2}-LUT that had 8 input and 2 output ports. Thus, an
ALM can implement a 6-LUT or two 5-LUTs sharing 2 inputs (and therefore a total
of 8 distinct inputs). Pairs of smaller LUTs could also be implemented without any
shared inputs, such as two 4-LUTs or one 5-LUT and one 3-LUT. With a fracturable
6-LUT, larger logic functions are implemented in 6-LUTs reducing the logic levels
on the critical path and achieving better performance. On the other hand, pairs of
smaller logic functions can be packed together (each using only half an ALM),
improving area-efficiency. The LB in Stratix II not only increased the performance
by 15%, but also reduced the logic and routing area by 2.6% compared to a baseline
4-LUT-based LB (Lewis et al. 2005).

Xilinx later adopted a similar approach in their Virtex-5 architecture in which
the 6-LUTs can also be decomposed into two 5-LUTs. However, they adopted a
LUT architecture similar to that shown in Fig. 6a with minimal changes compared
to the traditional 6-LUT (i.e., no extra input routing ports or steering multiplexers).

12 A. Boutros and V. Betz

This results in a lower area per fracturable LUT, but makes it more difficult to pack
two smaller LUTs together as they must use no more than 5 distinct inputs. While
subsequent architectures from both Altera/Intel and Xilinx have also been based
on fracturable 6-LUTs, recent work from Microsemi (Feng et al. 2018) revisited
the 4-LUT vs. 6-LUT efficiency trade-off for newer process technologies, CAD
tools and designs than those used in Ahmed and Rose (2004). It shows that a
LUT structure with two tightly coupled 4-LUTs, one feeding the other, can achieve
performance close to conventional 6-LUTs while maintaining the high utilization
and area efficiency of 4-LUTs. In terms of LB size, FPGA architectures from
Altera/Intel and Xilinx converged on the use of relatively large LBs with ten and
eight BLEs respectively, for several generations. However, the Versal architecture
from Xilinx further increases the number of BLEs per LB to thirty two (Gaide
et al. 2019). This significant increase in LB size is motivated by two main factors.
First, inter-LB wire delay is scaling poorly with process shrinks, so capturing more
connections within an LB’s local routing is increasingly beneficial. Second, ever-
larger FPGA designs tend to increase CAD tool runtime, but larger LBs can mitigate
this trend by simplifying placement and inter-LB routing.

The number of FFs per BLE and the circuit-level FF implementation are other
important architecture choices. Early FPGAs with non-fracturable LUTs had a
single FF to optionally register the LUT output as shown in Fig. 4b. When they
moved to fracturable LUTs, both Altera/Intel and Xilinx architectures added a
second FF to each BLE so that both outputs of the fractured LUT could be
registered, as shown in Fig. 6a and b. In the Stratix V architecture, the number of
FFs was doubled (i.e., four FFs per BLE) to accommodate the increasing demand
for FFs as designs became more deeply pipelined to achieve higher performance
(Lewis et al. 2013). Low-cost multiplexing circuitry allows sharing the existing
inputs between the LUTs and FFs to avoid adding more costly routing ports. Stratix
V also implements FFs as pulse latches instead of edge-triggered FFs. As shown
in Fig. 7b, this removes one of the two latches that would be present in a master-
slave FF (Fig. 7a), reducing the register delay and area. A pulse latch acts as a
cheaper FF with worse hold time as it latches the data input during a very short
pulse instead of a clock edge as in conventional FFs. However, it would be area-
inefficient to build a pulse generator for each latch. Instead, this cost is amortized

clk

clk

clk

clk

D
Q

QLatch

Master Latch Slave Latch

cpulse

cpulse

Q

Pulse Latch

D

a b

Fig. 7 Circuitry for (a) Master-slave positive-edge-triggered FF, and (b) Pulse latch

Field-Programmable Gate Array Architecture 13

by implementing only two configurable pulse generators per LB; each of the
40 pulse latches in an LB selects which generator provides its pulse input. The
FPGA CAD tools can also program the pulse width in these generators, allowing a
limited amount of time borrowing between source and destination registers. Soon
after, the Xilinx Ultrascale+ architecture also adopted the use of pulse latches as its
FFs due to their area and speed benefits (Ganusov and Devlin 2016).

Murray et al. found that 22% of logic elements in the Titan suite of benchmarks
implemented addition or subtraction (Murray et al. 2020b). When implemented with
LUTs, each bit of arithmetic in a ripple carry adder requires two LUTs, one for
generating the sum and another for the carry. This is inefficient as it results in high
logic utilization and a slow critical path due to having many cascaded LUTs in
series for computing the carries in multi-bit additions. Consequently, all modern
FPGA architectures include hardened arithmetic circuitry in their LBs. There are
many variants, but all have several common points. First, to avoid adding expensive
routing ports, the arithmetic circuits re-use the LUT routing ports or are fed by
the LUT outputs. Second, the carry bits are propagated on a special, dedicated
interconnect with little or no programmability so that the crucial carry path is fast.
The lowest cost arithmetic circuitry hardens ripple carry structures and achieves
a large speed gain over LUTs (3.4× for a 32-bit adder in Murray et al. 2020b).
Hardening more sophisticated structures like carry skip adders further improves
speed (an additional 20% speed-up at 32 bits in Yazdanshenas and Betz 2019).
The latest Versal architecture from Xilinx (Gaide et al. 2019) hardens the carry
logic for 8-bit carry look-ahead adders (i.e., the addition can only start on every
eighth BLE), while the sum, propagate and generate logic is all implemented in the
fracturable 6-LUTs feeding the carry logic as shown in Fig. 8a. This organization
allows implementing 1-bit of arithmetic per logic element. On the other hand,
the latest Intel Agilex architecture can implement two bits of arithmetic per logic

A[i]
Sum[i]

B[i]

C out [i-1]

C out [i]

prop

gen

4- LUT

4- LUT

4- LUT

4- LUT
B[i]

A[i]

B[i+1]

A[i+1]

Sum[i]

Sum[i+1]

Cout [i-1]

C out [i+1]

C
ou

t[
i]

4- LUT

4- LUT

4- LUT

4- LUT

a b

Fig. 8 Overview of the hard arithmetic circuitry (in red) in the logic elements of (a) Xilinx and
(b) Altera/Intel FPGAs. A[i] and B[i] are the ith bits of the two addition operands A and B. The
Xilinx logic elements compute carry propagate (prop) and generate (gen) in the LUTs, while the
Altera/Intel ones use LUTs to pass inputs to the hard adders. Unlabeled inputs are unused when
implementing adders

14 A. Boutros and V. Betz

element, with a dedicated interconnect for the carry as shown in Fig. 8b. It achieves
that by hardening 2-bit carry-skip adders that are fed by the four 4-LUTs contained
within a fracturable 6-LUT (Chromczak et al. 2020). The study by Murray et al.
(2020b) shows that the combination of fracturable LUTs and 2 bits of arithmetic
(similar to that adopted in Altera/Intel FPGAs) is particularly efficient compared to
architectures with non-fracturable LUTs or 1 bit of arithmetic per logic element.
It also concludes that having dedicated arithmetic circuits (i.e., hardening adders
and carry chains) inside the FPGA logic elements increases average performance
by 75% and 15% for arithmetic microbenchmarks and general benchmark circuits,
respectively.

Recently, deep learning (DL) has become a key workload in many end-user
applications, with its core operation being multiply-accumulate (MAC). Generally,
MACs can be implemented in DSP blocks as will be described in the “DSP Blocks”
section; however, low-precision MACs with 8-bit or narrower operands (which
are becoming increasingly popular in DL workloads) can also be implemented
efficiently in the programmable logic (Caulfield et al. 2016). In this case, LUTs
implement AND gates to generate partial products followed by an adder tree to
reduce the partial products and perform the accumulation. Consequently, multiple
recent studies (Rasoulinezhad et al. 2020; Eldafrawy et al. 2020) have investigated
increasing the density of hardened adders in the FPGA’s logic fabric to enhance
its performance when implementing arithmetic-heavy applications such as DL. The
work in Eldafrawy et al. (2020) proposed multiple different logic block architectures
that incorporate 4 bits of arithmetic per logic element arranged in one or two
carry chains with different configurations, instead of just 2 bits of arithmetic in
an Intel Stratix-like ALM. These proposals do not require increasing the number
of the (relatively expensive) routing ports in the logic clusters when implementing
multiplications due to the high degree of input sharing in a multiplier array (i.e.,
for an N -bit multiplier, only 2N inputs are needed to generate N2 partial products).
The most promising of these proposals increases the density of MAC operations by
1.7× while simultaneously improving their speed. It also reduces the required logic
and routing area by 8% for general benchmarks, highlighting that more arithmetic
density is beneficial for applications beyond DL.

Programmable Routing

Programmable routing commonly accounts for 50% or more of the fabric area and
the critical path delay of applications (Chiasson and Betz 2013b), so its efficiency
is crucial. Programmable routing is composed of pre-fabricated wire segments
connected via programmable switches. By programming an appropriate sequence
of switches to be on, a connection can be formed between any two function
blocks. There are two main classes of FPGA routing architecture. Hierarchical
FPGAs are inspired by the fact that designs are inherently hierarchical; higher-
level modules instantiate lower-level modules and connect signals between them,
with communication being more frequent between modules that are near each other
in the design hierarchy. As shown in Fig. 9, hierarchical FPGAs can realize these

Field-Programmable Gate Array Architecture 15

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

LB

Switch
Box

Switch
Box

Switch
Box

Switch
Box

Switch Box

Fig. 9 Hierarchical routing architecture. A distant connection (highlighted in red) traverses
through different levels of the hierarchy. Some blocks in physical proximity (highlighted in blue)
still require several wires and switches to connect

connections with short wires that connect small regions of the chip. To communicate
to more distant regions, a connection (highlighted in red) passes through multiple
wires and switches as it traverses different levels of the interconnect hierarchy.
This style of architecture was popular in many earlier FPGAs, such as Altera’s
Flex and Apex families, but it leads to very long wires at the upper levels of the
interconnect hierarchy which became problematic as process scaling made such
wires increasingly resistive. A strictly hierarchical routing architecture also results
in some blocks that are physically close together (e.g., the blue blocks in Fig. 9)
which still require several wires and switches to connect. Consequently, this routing
architecture is primarily used today for smaller FPGAs, such as the FlexLogix
FPGA IP cores that can be embedded in larger SoC designs.

The other type of FPGA interconnect is island-style, as depicted in Fig. 10.
This architecture was pioneered by Xilinx and is inspired by the fact that a
regular two-dimensional layout of horizontal and vertical directed wire segments
can be efficiently laid out. As shown in Fig. 10, island-style routing includes three
components: routing wire segments, connection blocks (multiplexers) that connect
function block inputs to the routing wires, and switch blocks (programmable
switches) that connect routing wires together to realize longer routes. The placement
engine in FPGA CAD tools chooses which function block implements each
element of a design in order to minimize the required wiring. Consequently, most
connections between function blocks span a small distance and can be implemented
with a few routing wires as illustrated by the red connection in Fig. 10.

16 A. Boutros and V. Betz

LBLBLB

LBLBLB

Fig. 10 Island-style routing architecture. Thick solid lines are routing wires while dashed lines
are programmable switches. Connection and switch blocks are shaded in yellow and green,
respectively

Creating a good routing architecture involves managing many complex trade-
offs. It should contain enough programmable switching and wire segments that the
vast majority of circuits can be implemented; however, too many wires and switches
waste area and complicate the routing CAD problem. A routing architecture should
also match the needs of applications. Ideally, short connections will be made with
short wires to minimize capacitance and layout area, while long connections can use
longer wiring segments to avoid the extra delay of passing through many routing
switches. FPGA routing architecture design is also challenging as it involves many
different and interacting choices. These choices include: how many routing wires
each logic block input or output can connect to (Fc), how many other routing wires
each wire can connect to (Fs), the lengths of the routing wire segments, the routing
switch pattern, the electrical design of the wires and switches themselves, and the
number of routing wires per channel (Betz et al. 1999). In Fig. 10 for example,
Fc = 3, Fs = 3, the channel width is 4 wires, and some routing wires are of length
1, while others are of length 2. Fully evaluating these trade-offs and selecting the
values for these architecture parameters for target applications and at a specific pro-
cess node requires experimentation using a full CAD flow as previously discussed
in the “Methodology and Tools for FPGA Architecture Evaluation” section.

Early island-style architectures incorporated only short wires that traversed a
single logic block between programmable switches. Later research showed that this

Field-Programmable Gate Array Architecture 17

resulted in more programmable switches than necessary, and that making all wiring
segments span four logic blocks before terminating reduced application delay by
40% and routing area by 25% (Betz and Rose 1999). Modern architectures include
multiple lengths of wiring segments to better match the needs of short and long
connections, but the most plentiful wire segments remain of moderate length, with
four logic blocks being a popular choice. Longer distance connections can achieve
lower delay using longer wire segments, but in recent process nodes wires that span
many (e.g., 16) logic blocks must use wide and thick metal traces on upper metal
layers to achieve acceptable resistance (Petelin and Betz 2016). The amount of such
long-distance wiring one can include in a metal stack is limited. To best leverage
such scarce wiring, Intel’s Stratix FPGAs allow long wire segments to be connected
only to short wire segments, rather than function block inputs or outputs (Lewis
et al. 2003). This creates a form of routing hierarchy within an island-style FPGA,
where short connections use only the shorter wires, but longer connections pass
through short wires to reach the long wire network. Another area where hierarchical
FPGA concepts are used within island-style FPGAs is within the logic blocks. As
illustrated in Fig. 5a, most logic blocks now group multiple BLEs together with local
routing. This means that each logic block is a small cluster in a hierarchical FPGA;
island-style routing interconnects the resulting thousands of logic clusters.

There has been a great deal of research into the optimal amount of switching,
and how to best arrange the switches. While there are many detailed choices, a few
principles have emerged. The first is that the connectivity between function block
pins and wires (Fc) can be relatively low: typically only 10% or less of the wires that
pass by a pin will have switches to connect to it. Similarly, the number of other wires
that a routing wire can connect to at its end (Fs) can also be low, but it should be at
least 3 so that a signal can turn left, right, or go straight at a wire endpoint. The local
routing in a logic cluster (described in the “Programmable Logic Blocks” section)
allows some block inputs and some block outputs to be swapped during routing
(i.e., general programmable routing can deliver a signal to one of several input
pins, which can then be routed to the right LUT input using the local crossbar). By
leveraging this extra degree of flexibility and considering all the options presented
by the multi-stage programmable routing network, the routing CAD tool can achieve
high completion rates even with low Fc and Fs values. Switch patterns that give
more options to the routing CAD tool also help routability; for example, the Wilton
switch pattern ensures that following a different sequence of channels lets the
router reach different wire segments near a destination block (Tang et al. 2019).
Some recent architectures have also created L-shaped routing segments (formed by
shorting a horizontal and vertical metal segment together) that allow connections
between diagonally nearby blocks with fewer routing switches (Sivaswamy et al.
2005; Petersen et al. 2021).

There are also multiple options for the electrical design of programmable
switches, as shown in Fig. 11. Early FPGAs used pass gate transistors controlled
by SRAM cells to connect wires. While this is the smallest switch possible, the
delay of routing wires connected in series by pass transistors grows quadratically,

18 A. Boutros and V. Betz

Configuration
SRAMs

Fig. 11 Different implementations for SRAM-controlled programmable switches using pass
transistors (left), tri-state buffers (middle), or buffered multiplexers (right)

making them very slow for large FPGAs. Adding some tri-state buffer switches
costs area, but improves speed (Betz and Rose 1999). Most recent FPGAs primarily
use a multiplexer built out of pass gates followed by a buffer that cannot be tri-
stated, as shown in detail in Fig. 5b. The pass transistors in this direct drive switch
can be small as they are lightly loaded, while the buffer can be larger to drive the
significant capacitance of a routing wire segment. Such direct drive switches create
a major constraint on the switch pattern: a wire can only be driven at one point, so
only function block outputs and routing wires near that point can feed its routing
multiplexer inputs and hence be possible signal sources. Despite this constraint,
both academic and industrial work has concluded that direct drive switches improve
both area and speed due to their superior electrical characteristics (Lewis et al. 2003;
Lemieux et al. 2004). The exception is expensive or rare wires such as long wires
implemented on wide metal traces on upper metal layers or the interposer-crossing
wires discussed later in the “Interposers” section. These wires often have multiple
tri-state buffers that can drive them, as the cost of these larger programmable
switches is merited to allow more flexible usage of these expensive wires.

A major challenge for FPGA routing is that the delay of long wires is not
improving with process scaling, which means that the delay to cross the chip
is stagnating or increasing even as clock frequencies rise. This has led FPGA
application developers to increase the amount of pipelining in their designs, thereby
allowing multiple clock cycles for long routes. To make this strategy more effective,
some FPGA manufacturers have integrated registers within the routing network
itself. Intel’s Stratix 10 device allows each routing driver (i.e., multiplexer followed
by a buffer) to be configured as a pulse latch as shown in Fig. 7b, thereby acting as
a register with low delay but relatively poor hold time. This allows deep pipelining
of interconnect without using expensive logic resources, at the cost of a modest
area and delay increase to the routing driver (Lewis et al. 2016). However, their
poor hold time means using pulse latches in immediately consecutive Stratix 10
routing switches would lead to hold time violations, so not all of these interconnect
registers can be simultaneously used. Therefore, Intel refined this approach in their
Agilex devices by integrating actual registers (with better hold time) on only one-
third of the interconnect drivers to mitigate the area cost (Chromczak et al. 2020).
Rather than integrating registers throughout the interconnect, Xilinx’s Versal devices
instead add bypassable registers only on the inputs to function blocks. Unlike Intel’s
interconnect registers, these input registers are full-featured, with clock enable and
clear signals (Gaide et al. 2019).

Field-Programmable Gate Array Architecture 19

Since neighboring LB are likely to implement related logic, FPGA architectures
also include dedicated interconnects to implement high-speed connections between
adjacent LBs. Such connections are realized by allowing the outputs of an LB to
drive the local input crossbar of its immediate neighbors without using the general
programmable routing. The FPGA CAD tools can then decide how to place the
implemented circuit such that critical inter-LB connections can benefit from these
dedicated interconnects. To further increase the efficiency of the routing architec-
ture, some recent studies build on this idea by analyzing a variety of benchmark
circuits to extract the most commonly used routing patterns and implement them
as dedicated routing structures (Nikolić et al. 2020). This results in a modest 3%
improvement in the average critical path delay of the studied benchmarks, but these
gains can be potentially improved through CAD enhancements to better exploit the
dedicated routing.

Programmable IO

One of the unique properties of FPGAs is their programmable IO structures that
allow them to communicate with a wide variety of other devices, making them
the communications hub of many systems. For a single set of physical IOs to
programmably support many different IO interfaces and standards, it requires adap-
tation to different voltage levels, electrical characteristics, timing specifications, and
command protocols. Both the value and the challenge of programmable IO are
highlighted by the large area devoted to IOs on FPGAs. For example, Altera Stratix
II (90 nm) devices devote 20% (largest device) to 48% (smallest device) of their die
area to IO-related structures and support 28 different IO standards.

As Fig. 12 shows, FPGAs address the challenges of programmable IO design
using a combination of approaches (Tyhach et al. 2004; Qian et al. 2018). First,

Logic
Blocks

IO
Banks

Bank 1

Bank 2

Vddio1

Vddio2 IOs

1 Different Vddio rails for the IO buffers
in different banks (e.g. Vddio1 and Vddio2)

Vddio

+
-

+

-

Single-Ended
IO

Single-Ended
IO

PDC

PDC

PDC

PDC

Out1EN

Out1

In1

In2

Out2

Out2EN

Di
ffe

re
nt

ia
l

IO

2
V

Each pair of IOs can be configured as
2 single-ended IOs or 1 differential IO

To
/F

ro
m

Fa
br

ic

4 Programmable Delay Chain (PDC)

3 Programmable drive strength of output
buffers via multiple parallel pull up/down
transistors and programmable termination
resistances to minimize signal reflections.

Im
pe

da
nc

e
Co

nt
ro

l

OutEN

Out
In

Drive Strength
Config. SRAMs

In
Out

Delay Config.
SRAMs

Serial-to-
Parallel

Single
Rate

Double Data
Rate 1

Double Data
Rate 2

From
IOTo

Fabric

In
pu

t/
O

ut
pu

t C
ap

tu
re

5 Different options for capturing input

Fig. 12 Overview of the different techniques for implementing programmable IOs in FPGAs

20 A. Boutros and V. Betz

FPGAs use IO buffers that can operate across a range of voltages. As shown in 1 ,
these IOs are grouped into banks (commonly on the order of 50 IOs per bank), where
each bank has a separate Vddio rail for the IO buffers. This allows different banks to
operate at different voltage levels. For example, IOs in one bank could be operating
at 1.8 V while those in a different bank operate at 1.2 V. Second, each IO can be
used separately for single-ended standards, or pairs of IOs can be programmed to
implement the positive and negative lines for differential IO standards as in 2 .
Third, IO buffers are implemented with multiple parallel pull-up and pull-down
transistors so that their drive strengths can be programmably adjusted by enabling
or disabling different numbers of pull-up/pull-down pairs. This is illustrated in part
3 of Fig. 12. By programming some pull-up or pull-down transistors to be enabled

even when no output is being driven, FPGA IOs can minimize signal reflections
by implementing different on-chip termination resistances. Programmable delay
chains, shown in 4 , provide a fourth level of configurability, allowing fine delay
adjustments of signal timing to and from the IO buffer.

In addition to electrical and timing programmability, FPGA IO blocks contain
additional hardened digital circuitry to simplify capturing and transferring IO data
to the fabric. Generally, some or all of this hardened circuitry can be bypassed
by SRAM-controlled muxes, allowing FPGA users to choose which hardened
functions are desirable for a given design and IO protocol. Part 5 of Fig. 12
shows a number of common digital logic options on the IO input path: a capture
register, double-to-single data rate conversion registers (used with DDR memories),
and serial-to-parallel converters to allow transfers to the programmable fabric
operating at a lower frequency. Most FPGAs now also contain bypassable blocks
that connect to a group of IOs and implement higher-level protocols like DDR
memory controllers. Together these approaches allow the general-purpose FPGA
IOs to service many different protocols, at speeds up to 3.2 Gb/s.

The highest speed IOs implement serial protocols, such as PCIe and Ethernet,
that embed the clock in data transitions and can run at 28 Gb/s or more. To achieve
these speeds, FPGAs include a separate group of differential-only IOs that can only
be used as serial transceivers and have less voltage and electrical programmability
(Upadhyaya et al. 2016). Just as for the general-purpose IOs, these serial IOs have
a sequence of high-speed hardened circuits between them and the fabric, some of
which can be optionally bypassed to allow end-users to customize the exact interface
protocol.

Overall, FPGA IO design is very challenging, due to the dual (and competing)
demands to make the IO not only very fast but also programmable. In addition,
the rest of the FPGA fabric should also be designed appropriately to keep up with
the IO bandwidth; distributing the very high data bandwidths from IO interfaces
requires wide soft buses to be configured using the programmable routing and logic.
This creates additional challenges that will be discussed later in the “System-Level
Interconnect: Network-on-Chip” section.

Field-Programmable Gate Array Architecture 21

Programmable Clock Distribution Networks

Since FPGA applications are often communicating with many different devices at
different speeds, they commonly include many different clock domains. Most of
these clocks are generated on-chip by programmable phase-locked loops (PLLs),
delay-locked loops (DLLs) and clock data recovery (CDR) circuits. Distributing that
many high-speed clocks to all the FFs on the chip using the general programmable
routing (discussed in the “Programmable Routing” section) would be extremely
challenging for several reasons:

1. Both the programmable routing architecture and the routing CAD algorithms
for general signals focus on optimizing delay and wire usage. However, routing
clock signals has a different objective: minimizing the clock skew (i.e., balancing
the delay) between different endpoints. While specialized low-skew routing CAD
algorithms have been devised, they still struggle to create balanced trees in
a general programmable interconnect that is not optimized for this case. The
difficulty increases for major system clocks, which can have fanouts of hundreds
of thousands of registers.

2. The programmable routing wires are optimized for density and speed rather than
minimal process variation, and this increases the uncertainty of clocks routed on
them, which in turn degrades timing. Another source of increased uncertainty
is the capacitive crosstalk between the densely spaced routing wires. A signal
(routed on an adjacent wire) toggling at the same time as the clock edge will add
significant clock jitter, degrading both setup and hold timing.

3. The very high toggle rate of clocks makes adding extra capacitance to their
routing highly undesirable, as it will have a significant power impact. The
inefficiency of the general routing wires in creating balanced trees due to both
extra switches and suboptimal switch patterns for this case will lead to higher
clock capacitance and power consumption.

As a result, FPGAs typically have dedicated interconnect networks for clock
distribution, which still have to be flexible enough since the clock domain of each
register can vary from one design to another.

Clock networks use routing wires and switch topologies that allow the construc-
tion of low-skew networks like H-trees. As shown in Fig. 13, these trees have a
fractal pattern in the shape of the letter H with the signal source at the center
and equal delays to reach the four endpoints. These distribution trees minimize
clock uncertainty by using wider metal wires with bigger buffers between tree
hierarchy levels to minimize process variation and shielded trees to reduce crosstalk-
induced jitter. However, an FPGA design can have dozens of clocks, with many
of them spanning sub-regions of the chip near the programmable IOs (e.g., a
single DDR3 interface typically uses 5–7 different clocks) (Hutton et al. 2005).
Pre-fabricating dozens of H-trees that span the entire chip would be one possible
clocking architecture, but it would be very expensive, as the lowest level of each of

22 A. Boutros and V. Betz

Fig. 13 An example programmable clock distribution network similar to that of Stratix V FPGAs.
It has 16 chip-wide global H-trees (black), 16 smaller H-trees per quadrant (blue), and spine-and-
ribs leaf distribution (red)

these H-trees would add approximately one (wide and shielded) wire to each routing
channel.

Consequently, several techniques are commonly used to implement cheaper
clock distribution networks. Since not all clocks are needed everywhere on the chip,
some global (chip-wide) H-trees for major clock domains are built along with some
smaller ones that cover only portions (e.g., quadrants) of the chip as marked by 1
and 2 in Fig. 13, respectively. For example, fabricating 16 global and 16 quadrant
H-trees enables the use of up to 80 different clocks (16 clocks on the global networks
+ 4 × 16 clocks on the quadrant clocks) at a cost equivalent to that of only 32 global
H-trees. Additional wire savings are achieved by implementing the leaf wiring in
a spine-and-ribs style as indicated by 3 and 4 in Fig. 13 instead of continuing
the H-tree fractal pattern down to individual blocks. The last wire level in an
H-tree is called a spine clock and it drives several rib clocks that each span a fraction
of an FPGA row. The clock skew is tolerable as long as the spine and rib wires
are kept reasonably short. To further reduce the cost of the leaf wires (ribs) of the
clock network, programmable multiplexers are added to select only a portion of the
possible spine clock sources to be routed to the rib clocks that functional blocks
can access. In Fig. 13 for example, 32 clock trees are multiplexed down to 6 rib
clocks, reducing the expensive wiring at the leaves of the clock networks by 81%.
This multiplexing leads to a constraint: all the function blocks spanned by a rib
clock (1/8 of a row in many Altera/Intel FPGAs) must together use no more than
6 distinct clocks. This constraint is enforced automatically by the placement CAD
tool during optimization.

The most recent FPGAs have made clocking networks more flexible. In the
Intel Stratix 10 architecture, the FPGA chip is divided into clock sectors where

Field-Programmable Gate Array Architecture 23

a b

Fig. 14 (a) Routable clock networks in Intel Stratix 10 and (b) Spine clock control in Xilinx
Ultrascale+

traditional spine-and-ribs clock distribution is used within each sector, as shown in
Fig. 14a. At the chip level, 32 more flexible distribution networks are implemented
with programmable buffers and switch boxes; these networks route each clock
to the center of each clock sector that uses it. This highly flexible network can
be used to implement a conventional full H-tree, multiple smaller H-trees, or
irregular skew-balanced trees as determined by the CAD tools to fit more clocks
and minimize clock skew (Ebeling et al. 2016). This clock distribution network has
many programmable switches, but unlike conventional programmable routing the
switch pattern is optimized for the creation of balanced structures like H-trees and
the wires are designed for low process variation and are shielded against crosstalk.

The Ultrascale+ architecture from Xilinx implements clock enable circuitry
for power reduction and programmable delay chains for time borrowing at the
spine level as illustrated in Fig. 14b. This causes a less than 1% increase in the
FPGA die size. When combined with pulse latches, these additional programmable
delay chains can increase clock frequency by 5–8%, depending on the available
hold margin (Ganusov and Devlin 2016). The Versal architecture leverages these
programmable delay chains further by calibrating them on power up to account
for process variations across the chip (Gaide et al. 2019). This adaptive deskewing
technique helps reduce the clock uncertainty and allows the chip to run faster by
having narrower guard bands in the timing models.

On-chip Memory

FFs in logic blocks were the first storage elements to be integrated into FPGAs, as
described in the “Programmable Logic Blocks” section. However, as FPGA logic

24 A. Boutros and V. Betz

capacity grew, they were used to implement more complex systems which almost
always require memory to buffer and re-use data. This motivated more on-chip
storage options, since building large RAMs out of registers and LUTs is over 100×
less dense than a dedicated SRAM memory array. At the same time, the memory
requirements of applications implemented on FPGAs are very diverse, including
(but not limited to) small coefficient storage RAMs for FIR filters, large buffers
for network packets, caches and register files for processor-like modules, read-
only memory for instructions, and FIFOs of myriad sizes to decouple computation
modules. This means that there is no single RAM configuration (capacity, word
width, number of ports) that can satisfy the needs of all FPGA designs, making it
challenging to decide on what kind(s) of RAM blocks should be added to an FPGA
such that they are efficient for a broad range of uses. The first FPGA to include hard
functional blocks for memory (block RAMs or BRAMs) was the Altera Flex 10 K in
1995. It included columns of small (2 Kb) BRAMs that connect to the rest of the
fabric through the programmable routing. Since then, the capacity and diversity of
FPGA on-chip memories have been gradually increasing and it is typical for ∼25%
of the area of a modern FPGA to be consumed by BRAM tiles (including their
programmable routing) (Tatsumura et al. 2016).

Figure 15 illustrates the organization of an SRAM-based BRAM. An FPGA
BRAM consists of a traditional SRAM memory array at its core, with additional
peripheral circuitry that makes them configurable for different purposes and
provides flexible connectivity to the programmable routing. The core memory array
consists of a two-dimensional array of SRAM cells to store bits, and a considerable
amount of peripheral circuitry to orchestrate access to these cells for read/write
operations. To simplify timing of the read and write operations, all modern FPGA
BRAMs register all their inputs; they also include output registers, but these are
configurable and can be bypassed. During a write operation, the column decoder
activates the write drivers (WD), which in turn charge the bitlines (BL and BL)
according to the input data to-be-written to the memory cells. Simultaneously, the
row decoder activates the wordline (WL) of the row specified by the input write
address, connecting one row of cells to their bitlines so they are overwritten with
new data. During a read operation, both the BL and BL are pre-charged high and
then the row decoder activates the wordline of the row specified by the input read
address. The contents of the activated cells cause a slight difference in the voltage
between BL and BL, which is sensed and amplified by the sense amplifier (SA)
circuit to produce the output data (Tatsumura et al. 2016).

BRAM capacity, data word width, and number of read/write ports are all key
architectural parameters. More capable BRAMs cost more silicon area, so architects
must carefully balance BRAM design choices while taking into account the most
common use cases in application circuits. For example, the area occupied by the
memory cells grows linearly with the capacity of the BRAM, but the area of the
peripheral circuitry and the number of routing ports grows sub-linearly. This means
that larger BRAMs have lower area per bit, making large on-chip buffers more
efficient. On the other hand, if an application requires only small RAMs, much
of the capacity of a larger BRAM may be left unused. Similarly, a BRAM with a

Field-Programmable Gate Array Architecture 25

ExtAddrA

Wen

log2(D)

WL0A

SRAM Cells

Ro
w

 D
ec

. A WL1A

WL2A

WL3A

rabssorClacoL

Output Crossbar

W
Cn

fg
De

c.

AddrA

SA

WD
W

WdataA Din

BL

W SA

WD
BL

SA

WD
BL

SA

WD
BL

SA

WD
BL

SA

WD
BL

SA

WD
BL

SA

WD
BL

W CSL

WenA

log2(W)

CB

SB
W

RdataA

CS
rddAtxE

Vdd

log2(D)+
log2(W)+

W+1

WLA

WLB
BLA BLA

BLB BLB

W

Wen

Din

Read/Write Circuitry B

Sen

BLA BLA

Dout

Row
 Dec. B

Sense Am
plifier

W
rite Driver

General-purpose Routing

On switch
Off switch

Fig. 15 Organization and circuitry of a conventional dual-port SRAM-based FPGA BRAM. The
components highlighted in blue are common in any SRAM-based memory module, while those
highlighted in green are FPGA-specific. This BRAM has a maximum data width of 8 bits, but the
output crossbar is configured for 4-bit output mode

larger data width can provide higher data bandwidth to downstream logic. However,
it costs more area than a BRAM with the same capacity but a smaller word width,
as the larger data word width necessitates more sense amplifiers, write drivers and
programmable routing ports. Finally, increasing the number of read/write ports to
a BRAM increases the area of both the SRAM cells and the peripheral circuitry,
but again increases the data bandwidth the BRAM can provide and allows more
diverse uses. For example, FIFOs (which are ubiquitous in FPGA designs) require
both a read and a write port. The implementation details of a dual-port SRAM cell
is shown at the bottom of Fig. 15. Implementing a second port to the SRAM cell
(port B highlighted in red) adds two transistors, increasing the area of the SRAM
cells by 33%. In addition, the second port also needs an additional copy of the sense
amplifiers, write drivers and row decoders (the “Read/Write Circuitry B” and “Row
Decoder B” blocks in Fig. 15). If both ports are read/write (r/w), we also have to
double the number of ports to the programmable routing.

26 A. Boutros and V. Betz

Because the FPGA on-chip memory must satisfy the needs of every application
implemented on that FPGA, it is also common to add extra configurability to
BRAMs to allow them to adapt to application needs (Wilton et al. 1995). FPGA
BRAMs are designed to have configurable width and depth by adding low-cost
multiplexing circuitry to the peripherals of the memory array. For example, in
Fig. 15 the actual SRAM array is implemented as a 4×8-bit array, meaning it
naturally stores 8-bit data words. By adding multiplexers controlled by 3 address
bits to the output crossbar, and extra decoding and enabling logic to the read/write
circuitry, this RAM can also operate in 8×4-bit, 16×2-bit or 32×1-bit modes. The
multipliexers in the width configurability decoder(“WCnfg Dec.” in Fig. 15) select
between Vdd and address bits to implement configurable width of between 1 and 8
bits per word for example. The multiplexers are programmed using configuration
SRAM cells and are used to generate column select (CS) and write enable (Wen)
signals that control the sense amplifiers and write drivers for narrow read and write
operations, respectively. For typical BRAM sizes (several Kb or more), the cost
of this additional width configurability circuitry is small compared to the cost of a
conventional SRAM array and it does not require any additional costly routing ports.

Another unique component of the FPGA BRAMs compared to conventional
memory blocks is their interface to the programmable routing fabric. This interface
is generally designed to be similar to that of the logic blocks described in
the “Programmable Logic Blocks” section; it is easier to create a routing architecture
that balances flexibility and cost well if all block types connect to it in similar
ways. Connection block multiplexers, followed by local crossbars in some FPGAs,
form the BRAM input routing ports, while the read outputs drive switch block
multiplexers to form the output routing ports. These routing interfaces are costly,
particularly for small BRAMs; they constitute 5% of the area of 256 Kb BRAM
tiles, and this portion grows to 35% for smaller 8 Kb BRAMs (Yazdanshenas et al.
2017). This motivates minimizing the number of routing ports to a BRAM as much
as possible without unduly comprising its functionality. Table 2 summarizes the
number of routing ports required for different numbers and types of BRAM read and
write ports. For example, a single-port BRAM (1r/w) requires W + log2(D) input
ports for write data and read/write address, and W output ports for read data, where
W and D are the maximum word width and the BRAM depth, respectively. The
table shows that a true dual-port (2r/w) BRAM requires 2W more ports compared
to a simple dual-port (1r+1w) BRAM, which significantly increases the cost of the
routing interfaces. While true dual-port memory is useful for register files, caches

Table 2 Number of routing
ports needed for different
numbers and types of BRAM
read/write ports (W : data
width, D: BRAM depth)

BRAM ports BRAM mode # Routing ports

1r Single-port ROM log2(D) + W

1r/w Single-port RAM log2(D) + 2W

1r+1w Simple dual-port RAM 2 log2(D) + 2W

2r/w True dual-port RAM 2 log2(D) + 4W

2r+2w Quad-port RAM 4 log2(D) + 4W

Field-Programmable Gate Array Architecture 27

and shared memory switches, the most common use of multi-ported RAMs on
FPGAs is for FIFOs, which require only one read and one write port (1r+1w rather
than 2r/w ports). Consequently, FPGA BRAMs typically have true dual-port SRAM
cores but with only enough routing interfaces for simple-dual port mode at the full
width supported by the SRAM core (W), and limit the width of the true-dual port
mode to only half of the maximum width (W/2).

Another way to mitigate the cost of additional BRAM ports is to multi-pump the
memory blocks by operating the BRAMs at a frequency that is a multiple of that
used for the rest of the design logic. By doing so, a physically single-ported SRAM
array can implement a logically multi-ported BRAM without the cost of additional
ports as in Tabula’s Spacetime architecture (Halfhill 2010). Multi-pumping can
also be used with conventional FPGA BRAMs by building the time-multiplexing
logic in the soft fabric (LaForest et al. 2012); however, this leads to aggressive
timing constraints for the time-multiplexing logic, which can make timing closure
more challenging and increase compile time. For example, Ahmed et al. (2019)
showed that careful design partitioning, floorplanning and iterative compilation are
necessary for meeting timing on the time-multiplexing logic especially when using
a large number of multi-pumped BRAMs. Altera introduced quad-port BRAMs in
its Mercury devices in the early 2000s to make shared memory switches (useful in
packet processing) and register files more efficent. However, this feature increased
the BRAM size and was not sufficiently used to justify its inclusion in subsequent
FPGA generations. Instead designers use a variety of techniques to combine dual-
ported FPGA BRAMs and soft logic to make highly-ported structures when needed,
albeit at lower efficiency (LaForest et al. 2012). We refer the interested reader to both
Tatsumura et al. (2016) and Yazdanshenas et al. (2017) for extensive details about
the design of BRAM core and peripheral circuitry.

In addtition to BRAMs, most FPGAs can re-use at least some of their LUTs
as memory. The truth tables in the logic block K-LUTs are 2K×1-bit read-only
memories; they are written once by the configuration circuitry when the design
bitstream is loaded. Since LUTs already have read circuitry (read out a stored
value based on a K-bit input/address), they can be used as small LUT-based
RAMs (LUT-RAMs) just by adding low-cost designer-controlled write circuitry.
However, a major concern is the number of additional routing ports necessary to
implement the write functionality to change a LUT to a LUT-RAM. For example, an
ALM in recent Altera/Intel architectures is a 6-LUT that can be fractured into two
5-LUTs and has 8 input routing ports, as explained in the “Programmable Logic
Blocks” section. This means it can operate as a 64×1-bit or a 32×2-bit memory
with 6 or 5 bits for read address, respectively. This leaves only 2 or 3 unused
routing ports, which are not enough for write address, data, and write enable (8
total signals) if we want to read and write in each cycle (simple dual-port mode),
which is the most commonly used RAM mode in FPGA designs. To overcome
this problem, an entire logic block of 10 ALMs is configured as a LUT-RAM to
amortize the control circuitry and address bits across 10 ALMs. The write address
and write enable signals are assembled by stealing a single unused routing port

28 A. Boutros and V. Betz

from each ALM and broadcasting the resulting address and enable to all the ALMs
in a logic block (Lewis et al. 2009). Consequently, a logic block can implement a
64×10-bit or 32×20-bit simple dual-port RAM, but has a restriction that a single
logic block cannot mix logic and LUT-RAM. Xilinx Ultrascale similarly converts
an entire logic block to LUT-RAM, but all the routing ports of one out of the eight
LUTs in a logic block are repurposed to drive the shared write address and enable
signals. Therefore, a Xilinx logic block can implement a 64×7-bit or 32×14-bit
simple dual-port RAM, or a slightly wider single-port RAM (64×8-bit or 32×
16-bit). Avoiding extra routing ports keeps the cost of LUT-RAM low, but it still
adds some area. Since it would be very unusual for a design to use more than
50% of the logic fabric as LUT-RAMs, both Altera/Intel and Xilinx have elected
to make only half (or less) of their logic blocks LUT-RAM capable in their recent
architectures, thereby further reducing the area cost.

Designers require many different RAMs in a typical design, all of which must
be implemented by the fixed BRAM and LUT-RAM resources on the chip. Forcing
designers to determine the best way to combine BRAM and LUT-RAM for each
memory configuration they need and writing Verilog to implement them would
be laborious and would also impede migration of the design to a new FPGA
architecture. Instead, the vendor CAD tools include a RAM mapping stage that
implements the logical memories in the user’s design using the physical BRAMs
and LUT-RAMs on the chip. The RAM mapper chooses the physical memory
implementation (i.e., memory type and the width/number/type of its ports) and
generates any additional logic required to combine multiple BRAMs or LUT-RAMs
to implement each logical RAM. An example of mapping a logical 2048×32-bit
RAM with 2 read and 1 write ports to an FPGA with physical 1024×8-bit dual-
port BRAMs is illustrated in Fig. 16. First, four physical BRAMs are combined in
parallel to make wider RAMs with no extra logic. Then, soft logic resources are
used to perform depth-wise stitching of two sets of four physical BRAMs, such that

Rdata0
[31:0]

Rdata1
[31:0]

32b

20
48

 w
or

ds

RAddr0
[10:0]

RAddr1
[10:0]

WAddr
[10:0]

Wdata
[31:0]

Wen

8b 8b 8b 8b

10
24

 w
or

ds

Rdata0
[31:0]

Wdata
[31:0]

RAddr0
[9:0]

WAddr
[9:0]

Wen
WAddr[10]

RAddr0[10]

8
8

8
8

8
8

8
8

8b 8b 8b 8b

10
24

 w
or

ds

8b 8b 8b 8b

10
24

 w
or

ds

Rdata1
[31:0]

Wdata
[31:0]

RAddr1[10]

8
8

8
8

8
8

8
8

8b 8b 8b 8b

10
24

 w
or

ds

Logical RAM Physical RAM

RAddr0
[9:0]

WAddr
[9:0]

Wen
WAddr[10]

RAddr1
[9:0]

WAddr
[9:0]

Wen
WAddr[10]

RAddr1
[9:0]

WAddr
[9:0]

Wen
WAddr[10]

Fig. 16 Mapping a 2048×32-bit 2r+1w logical RAM to an FPGA with 1024×8-bit 1r+1w
physical BRAMs

Field-Programmable Gate Array Architecture 29

1000 10k 100k 1M
0

20

40

60

80

100

120

140

350nm 150nm 130nm 90nm 65nm nm
28nm 14nm 10nm

No. of LEs (4-LUT equivalent)

M
em

or
y

bi
ts

 p
er

 L
E

512b/4kb/512kb

2kb
9kb/144kb

20kb

40

Fig. 17 Memory bits per logic elements for different generations of Altera/Intel FPGAs starting
from the 350 nm Flex 10K (1995) to the 10 nm Agilex (2019) architecture. FPGA on-chip memory
density has increased by a factor of 16× in the last 25 years. The labels show the sizes of BRAMs
in each generation

the most-significant bits of the write and read addresses are used as write enable
and read output multiplexer select signals, respectively. Finally, in this case, we
require two read ports and one write port while the physical BRAMs only support a
maximum of 2r/w ports. To implement the second read port, the whole structure is
either replicated as shown in the figure or double-pumped as previously explained.
Several algorithms for optimizing RAM mapping are described in Tessier et al.
(2007) and Lai and Lin (2016).

Over the past 25 years, FPGA memory architecture has evolved considerably
and has also become increasingly important, as the ratio of memory to logic on an
FPGA die has grown significantly. Figure 17 plots the memory bits per logic element
(including LUT-RAM) versus the number of logic elements in Altera/Intel devices
starting from the 350 nm Flex 10K devices (1995) to 10 nm Agilex devices (2019).
There has been a gradual increase in the memory richness of FPGAs over time, and
to meet the demand for more bits at a cheaper cost, modern BRAMs have larger
capacities (20 Kb) than the first BRAMs (2 Kb). Some FPGAs have had highly
heterogeneous BRAM architectures in order to provide some physical RAMs that
are efficient for small or wide logical RAMs, and others that are efficient for large
and relatively narrow logical RAMs. For example, Stratix (130 nm) had 3 types of
BRAM, with capacities of 512 b, 4 Kb and 512 Kb. The introduction of LUT-RAM
in Stratix III (65 nm) reduced the need for small BRAMs, so it moved to a memory
architecture with only medium and large size (9 Kb and 144 Kb) BRAMs. Stratix V
(28 nm) and later Intel devices have moved to a combination of LUT-RAM and a
single medium-sized BRAM (20 Kb) to simplify both the FPGA layout as well as
RAM mapping and placement. A similar trend can be observed in Xilinx devices
(Tatsumura et al. 2016); Xilinx’s RAM architecture also combines LUT-RAM and a

30 A. Boutros and V. Betz

medium-sized 18 Kb RAM, but also includes hard circuitry to combine two BRAMs
into a single 36 Kb block. However, Xilinx’s most recent devices add a large 288 Kb
BRAM (UltraRAM) to be more efficient for very large buffers, showing that there
is still no general agreement on the best BRAM architecture. Some recent Intel
devices further enhance their memory capacity by integrating the FPGA fabric with
one or more embedded SRAM (eSRAM) chiplets using interposer technology that
will be discussed in the “Interposers” section later. Each eSRAM chiplet implements
eight large simple dual-port memories with a combined capacity of 47 Mb in Stratix
10 and 18 Mb in Agilex. These memories are ideal for wide and deep buffers that
exceed on-chip storage capacity, but benefit from reduced latency; for example,
routing tables or packet headers in networking applications.

To give some insight into the relative areas and efficiencies of different BRAMs,
Table 3 shows the resource usage, silicon area, and frequency of a 2048×72-bit
logical RAM when it is implemented by Quartus (the CAD flow for Altera/Intel
FPGAs) in a variety of ways on a Stratix IV device. The silicon areas are computed
using the published Stratix III block areas from Wong et al. (2011) and scaling them
from 65 nm down to 40 nm, as Stratix III and IV have the same architecture but use
different process nodes. As this logical RAM is a perfect fit to the 144 Kb BRAM
in Stratix IV, it achieves the best area when mapped to a single 144 Kb BRAM.
Interestingly, mapping to eighteen 9 Kb BRAMs is only 1.9× larger in silicon
area (note that output width limitations lead to 18 BRAMs instead of the 16 one
might expect). The 9 Kb BRAM implementation is actually faster than the 144 Kb
BRAM implementation, as the smaller BRAMs have higher maximum operating
frequencies. Mapping such a large logical RAM to LUT-RAMs is inefficient,
requiring 12.7× more area and running at 40% of the frequency. Finally, mapping
only to the logic and routing resources highlights the importance of BRAMs; the
area is over 300× larger than the 144 Kb BRAM implementation. While the 144 Kb
BRAM is most efficient for this single test case, real designs have diverse logical
RAMs, and for small or shallow memories the 9 Kb and LUT-RAM options would
outperform the 144 Kb BRAM, motivating a diversity of on-chip RAM resources.
To choose the best mix of BRAM sizes and maximum word widths, one needs both
a RAM mapping tool and tools to estimate the area, speed and power of each BRAM
(Yazdanshenas et al. 2017). Published studies into BRAM architecture trade-offs for
FPGAs include (Yazdanshenas et al. 2017; Lewis et al. 2013).

Until now, all commercial FPGAs use only SRAM-based memory cells in their
BRAMs. With the desire for more dense BRAMs that would enable more memory-

Table 3 Implementation results for a 2048×72-bit 1r+1w RAM using BRAMs, LUT-RAMs and
registers on Stratix IV

Implementation Half-ALMs
BRAMs

Area (mm2) Freq. (MHz)
9K 144K

144K BRAMs 0 0 1 0.22 (1.0×) 336 (1.0×)

9K BRAMs 0 18 0 0.41 (1.9×) 497 (1.5×)

LUT-RAM 6597 0 0 2.81 (12.8×) 134 (0.4×)

Registers 165155 0 0 68.8 (313×) 129 (0.4×)

Field-Programmable Gate Array Architecture 31

rich FPGAs and SRAM scaling becoming increasingly difficult due to process
variation, a few academic studies have explored the use of other emerging memory
technologies such as magnetic tunnel junctions (MTJs) to build FPGA memory
blocks. According to Tatsumura et al. (2016), MTJ-based BRAMs could increase
the FPGA memory capacity by up to 2.95× with the same die size; however, they
would increase the process complexity.

DSP Blocks

Initially, the only dedicated arithmetic circuits in commercial FPGA architectures
were carry chains to implement efficient adders, as discussed in the “Programmable
Logic Blocks” section earlier. Thus, multipliers had to be implemented in the soft
logic using a combination of LUTs and carry chains, which for larger operand bit
widths incurs significant logic utilization and delay. As wireless communication
and signal processing became major FPGA markets, system designers proposed
novel implementations to mitigate the inefficiency of multiplier implementations
in soft logic. For example, the multiplier-less distributed arithmetic technique was
proposed to implement efficient FIR filter structures in LUTs (Meher et al. 2008).

With the prevalence of multipliers in FPGA designs from key application
domains and their lower efficiency when implemented in soft logic, they quickly
became a candidate for hardening as dedicated circuits in FPGA architectures. An
N -bit multiplier array consists of N2 logic gates to generate partial products and
compression trees to reduce them, with only 2N inputs and 2N outputs. Therefore,
the high gains of hardening the multiplier logic and the relatively low cost of
the programmable interfaces to the FPGA’s routing fabric strongly advocated for
adopting hard multipliers in subsequent FPGA architectures. As shown in the top
left of Fig. 18, Xilinx introduced its Virtex-II architecture with the industry’s first
18×18 bit hard multiplier blocks. To simplify the layout integration with the full-
custom FPGA fabric, these multipliers were arranged in columns right beside
BRAM columns. In order to further reduce the interconnect cost, the multiplier
block and its adjacent BRAM had to share some interconnect resources, limiting
the maximum usable data width of the BRAM block when the multiplier is used for
computation. Multiple hard 18-bit multipliers could be stitched together with soft
logic to form bigger multipliers or FIR filters.

In 2002, Altera adopted a different approach by introducing more fully-featured
DSP blocks targeting the communications and signal processing domains in their
Stratix architecture (Lewis et al. 2003) (see the second block in Fig. 18). The
main design philosophy of this DSP block was to minimize the amount of soft
logic resources used to implement common DSP algorithms by hardening more
functionality inside the DSP block and enhancing its flexibility to allow more
applications to use it. The Stratix DSP block was highly configurable with support
for different modes of operation and multiplication precisions unlike the fixed-
function 18-bit multipliers in Virtex-II. Each Stratix variable-precision DSP block
spanned 8 FPGA rows and could implement eight 9×9 bit multipliers, four 18×18
bit multipliers, or one 36×36 multiplier.

32 A. Boutros and V. Betz

Fig. 18 DSP block evolution in Altera/Intel and Xilinx FPGAs. Incrementally added features are
highlighted in red

These modes of operation selected by Altera highlight an important theme of
designing FPGA hard blocks: increasing the flexibility and utility of these blocks by
adding low-cost circuitry such that it becomes more broadly useful. For example,
an 18×18 multiplier array can be decomposed into two 9×9 arrays that together
use the same number of inputs and outputs (and hence routing ports). Similarly,
four 18×18 multipliers can be combined into one 36×36 array using cheap glue
logic. Figure 19 shows how an 18×18 multiplier array can be fractured into multiple
9×9 arrays. It can be split into four 9×9 arrays by doubling the number of input
and output pins. However, to avoid adding these costly routing interfaces, two of
the four 9×9 arrays are left unused (grey circles) and the other two (blue circles)
are used to perform the two multiplications A0 × B0 and A1 × B1. This is
done by splitting the partial product compressor trees at the positions indicated
by the red dashed lines and adding inverting capabilities to the border cells of the
top-right array, marked with crosses in Fig. 19 to implement two’s complement
signed multiplication using the Baugh-Wooley algorithm (the bottom left array
already has the inverting capability from the 18×18 array).

Field-Programmable Gate Array Architecture 33

Input A

Input B

Output

B0

B1

A0A1

A0 x B0A1 x B1

Fig. 19 Fracturing an 18×18 multiplier array into two 9×9 arrays with the same number of
input/output ports

In addition to the fracturable multiplier arrays, the Stratix DSP also incorporated
an adder/output block to perform summation and accumulation operations, as well
as hardened input registers that could be configured as shift registers with dedicated
cascade interconnect between them to implement efficient FIR filter structures.
Xilinx also adopted a fully-featured DSP block approach by introducing their
DSP48 tiles in the Virtex-4 architecture. Each DSP tile had two fixed-precision
18×18 bit multipliers with similar functionalities to the Stratix DSP block (e.g.,
input cascades, adder/subtractor/accumulator). Virtex-4 also introduced the ability
to cascade the adders/accumulators using dedicated interconnects on the output
side of the DSP blocks to implement high-speed systolic FIR filters with hardened
reduction chains.

An N -tap FIR filter performs a discrete 1D convolution between the samples of
a signal X = {x0, x1, . . . , xT } and certain coefficients C = {c0, c1, . . . , cN−1} that
represent the impulse response of the desired filter, as shown in Eq. (1).

yn = c0xn + c1xn−1 + . . . + cNxn−N =
N∑

i=0

cixn−i (1)

Many of the FIR filters used in practice are symmetric with ci = cN−i , for i = 0 to
N/2. As a result of this symmetry, the filter computation can be refactored as shown
in Eq. (2).

yn = c0[xn + xn−N] + . . . + cN/2−1[xn−N/2−1 + xn−N/2] (2)

34 A. Boutros and V. Betz

C0 C1 C2 C3

X

Y

Fig. 20 Systolic implementation of a symmetric FIR filter circuit

Figure 20 shows the structure of a systolic symmetric FIR filter circuit, which is
a key use case for FPGAs in wireless base stations. Both Stratix and Virtex-4 DSP
blocks can implement the portions highlighted by the dotted boxes, resulting in sig-
nificant efficiency gains compared to implementing them in the FPGA’s soft logic.
Interestingly, while FPGA CAD tools will automatically implement a multiplication
operation (written as a * operator in RTL) in DSP blocks, they will generally not
make use of any of the advanced DSP block features (e.g., accumulation, systolic
registers for FIR filters) unless a designer manually instantiates a vendor-supplied
DSP block IP in the proper mode. Consequently, using the more powerful DSP
block features makes a design less portable when migrating to another FPGA with
different DSP block capabilities. Some work has extended automatic DSP block
inference to sequences of multiply, add and subtract operations in RTL that exactly
match the DSP block capabities (Ronak and Fahmy 2015a). This can improve
automatic inference to some extent, but it will be difficult to extend to fully utilize
advanced DSP block features like coefficient re-use networks.

The Stratix III/IV DSP block was similar to the Stratix II one but could
implement four 18×18 multipliers per half a DSP block (instead of two) if their
results are summed to limit the number of output routing interfaces. Table 4 lists the
implementation results of both symmetric and asymmetric 51-tap 16-bit FIR filters,
with and without using the hard DSP blocks on a Stratix IV device. When DSP
blocks are not used, we experiment with two different cases: fixed filter coefficients,
and filter coefficients that can change at runtime. If the filter coefficients are fixed,
the multiplier arrays implemented in the soft logic are optimized by synthesizing
away parts of the partial product generation logic that correspond to zero bits
in the coefficient values. Hence, it has lower resource utilization than with input
coefficients that can change at runtime. For the symmetric filter, even when using
the DSP blocks, we still need to use some soft logic resources to implement the
input cascade chains and pre-adders, as shown in Fig. 20. Using the hard DSP
blocks results in 3× higher area efficiency vs. using the soft fabric in the case of
fixed coefficients. This gap grows to 6.2× for filter coefficients that are changeable
during runtime. For the asymmetric filter, the complete FIR filter structure can
be implemented in the DSP blocks without any soft logic resources. Thus, the

Field-Programmable Gate Array Architecture 35

Table 4 Implementation results for a 51-tap 16-bit FIR filter on Stratix IV with and without using
the hardened DSP blocks

Symmetric Filter

Implementation Half-ALMs DSPs Area (mm2) Freq. (MHz)

With DSPs 403 3 2
8 0.49 (1.0×) 510 (1.0×)

Without DSPs
3505 0 1.46 (3.0×) 248 (0.5×)

(fixed coeff.)

Without DSPs
7238 0 3.01 (6.2×) 220 (0.4×)

(variable coeff.)

Asymmetric Filter

Implementation half-ALMs DSPs Area (mm2) Freq. (MHz)

With DSPs 0 6 3
8 0.63 (1.0×) 510 (1.0×)

Without DSPs
5975 0 2.48 (3.9×) 245 (0.5×)

(fixed coeff.)

Without DSPs
12867 0 5.35 (8.5×) 217 (0.4×)

(variable coeff.)

area efficiency gap increases to 3.9× and 8.5× for fixed and variable coefficients,
respectively. These gains are large but still less than the 35× gap between FPGAs
and ASICs (Kuon and Rose 2007) usually cited in academia. The difference is
partly due to some soft logic remaining in most application circuits, but even in
the case where the FIR filter perfectly fits into DSP blocks with no soft logic,
the area reduction hits a maximum of 8.5×. The primary reasons for the lower
than 35× gain of Kuon and Rose (2007) are the interfaces to the programmable
routing and the general inter-tile programmable routing wires and muxes that must
be implemented in the DSP tile. In all cases, using the hard DSP blocks results in
about 2× frequency improvement as shown in Table 4. Similarly to BRAMs, the
high operating frequencies of DSP blocks mean they can often be multi-pumped
(run at a multiple of the soft logic frequency); this is mainly used for resource
reduction in DSP-bound designs as in Ronak and Fahmy (2015b).

The next few FPGA architecture generations from both Altera and Xilinx
witnessed only minor changes in the DSP block architecture. The main focus of
both vendors was to fine-tune the DSP block capabilities for emerging application
domains without adding costly programmable routing interfaces. In Stratix V, the
DSP block was greatly simplified to natively support two 18×18 bit multiplications
(suitable for signal processing) or one 27×27 multiplication (suitable for single-
precision floating-point mantissa multiplication). As a result, the simpler Stratix V
DSP block spanned a single row, which is more friendly to Altera’s row redundancy
scheme (i.e., the ability to skip single FPGA rows with fabrication faults in them
to increase the effective yield). In addition, input pre-adders as well as embedded
coefficient banks to store read-only filter weights were added, which allowed
implementation of the whole symmetric FIR filter structure shown in Fig. 20 inside
the DSP blocks without the need for any soft logic resources. Xilinx followed a
similar path in incorporating 27×18 multiplication with support for pre-adders in
Virtex-6 DSP blocks.

36 A. Boutros and V. Betz

As shown in Fig. 18, Xilinx DSP blocks since Virtex-5 have incorporated an
ALU that can perform logic operations as well as add and subtract; both the ALU
operation and the data paths through the DSP are selected by additional inputs so
they can change dynamically from cycle to cycle. This enhancement makes these
DSP blocks well suited for the datapath of a soft processor (Cheah et al. 2014).
Controlling DSP operations dynamically in this manner increases the flexibility of
the block, but has some area cost as adding routing input ports for dynamic control
signals is more expensive than adding configuration SRAM cells to statically select
operations.

As illustrated in Fig. 18, up to 2009 the evolution of the DSP block archi-
tecture was mainly driven by the precisions and requirements of communication
applications, especially in wireless base stations, with very few academic research
explorations. With the large-scale deployment of FPGAs in datacenters and the
emergence of DL as a key component of many applications both in datacenter and
edge workloads, the DSP block architecture has evolved in two different directions.
The first direction targets the high-performance computing (HPC) domain by adding
native support for single-precision floating-point (fp32) multiplication. Before
that, FPGA vendors would supply designers with IP cores that implement floating-
point arithmetic out of fixed-point DSPs and a considerable amount of soft logic
resources. This created a major barrier for FPGAs to compete with CPUs and GPUs
(which have dedicated floating-point units) in the HPC domain. Native floating-
point capabilities were first introduced in Intel’s Arria 10 architecture, with a key
design goal of avoiding a large increase in DSP block area (Langhammer and Pasca
2015). By reusing the same interface to the programmable routing, not supporting
uncommon features like subnormals, flags and multiple rounding schemes, and
maximizing the reuse of existing fixed-point hardware, the block area increase was
limited to only 10% (which translates to 0.5% total die area increase). Floating-point
capabilities are supported in all subsequent generations of Intel FPGAs and in the
DSP58 tiles of the Xilinx Versal architecture (Gaide et al. 2019).

The second direction targets increasing the density of low-precision integer
multiplication specifically for DL inference workloads. Prior work has demonstrated
the use of low-precision fixed-point arithmetic (8-bit and below) instead of fp32
at negligible or no accuracy degradation, but greatly reduced hardware cost (Wang
et al. 2019). However, the required precision is model-dependent and can even vary
between different layers of the same model. As a result, FPGAs have emerged as
an attractive solution for DL inference due to their ability to implement custom
precision datapaths. This has led both academic researchers and FPGA vendors to
investigate adding native support for low-precision multiplication to DSP blocks.
Boutros et al. (2018) enhanced the fracturability of an Intel-like DSP block to
support more int9 and int4 multiply and MAC operations, while keeping the
same DSP block routing interface and ensuring its backward compatibility. The
proposed DSP block could implement four int9 and eight int4 multiply/MAC
operations along with Arria-10-like DSP block functionality at the cost of 12%
DSP block area increase, which is equivalent to only 0.6% increase in total die
area. This DSP block increased the performance of 8-bit and 4-bit DL accelerators

Field-Programmable Gate Array Architecture 37

by 1.3× and 1.6× while reducing the utilized FPGA resources by 15% and 30%
respectively, compared to an FPGA with DSPs that do not natively support these
modes of operation. Another academic work (Rasoulinezhad et al. 2019) enhanced
a Xilinx-like DSP block by including a fracturable multiplier array instead of the
fixed-precision multiplier in the DSP48E2 block to support int9, int4 and int2
precisions. It also added a FIFO register file and special dedicated interconnect
between DSP blocks to enable more efficient standard, point-wise and depth-wise
convolution layers. Shortly after, the Intel Agilex DSP block added support for
an int9 mode of operation along with half-precision floating-point (fp16) and
brain float (bfloat16) precisions as well. Also, the Xilinx Versal architecture
now natively supports int8 multiplications in its DSP58 tiles (Gaide et al. 2019).

Throughout the years, the DSP block architecture has evolved to best suit the
requirements of key application domains of FPGAs, and provide higher flexibility
such that many different applications can benefit from its capabilities. The common
focus across all the steps of this evolution was reusing multiplier arrays and routing
ports as much as possible to best utilize both these costly resources. However,
this becomes harder with the recent divergence in the DSP block requirements
of key FPGA application domains between high-precision floating-point in HPC,
medium-precision fixed-point in communications, and low-precision fixed-point in
DL. As a result, Intel introduced its first domain-specialized FPGA optimized for
artificial intelligence (AI) workloads, the Stratix 10 NX. This new FPGA replaces
conventional DSP blocks with AI tensor blocks (Langhammer et al. 2021). The
tensor blocks drop the support for legacy DSP modes and precisions that were
targeting the communications domain and adopt new ones targeting the DL domain
specifically. This tensor block significantly increases the number of int8 and int4
MACs to 30 and 60 per block respectively, at almost the same die size. Feeding
all multipliers with inputs without adding more routing ports is a key concern.
Accordingly, the NX tensor block introduces a double-buffered data reuse register
network that can be sequentially loaded from a smaller number of routing ports,
while allowing common DL compute patterns to make the best use of all available
multipliers. Recent work has shown that the Stratix 10 NX with tensor blocks can
deliver an average 3.5× performance boost compared to FPGAs with conventional
DSP blocks for real-time DL inference workloads (Boutros et al. 2020).

Processor Subsystems

As the complexity of FPGA applications increased, many designs required a
software-programmable processor for lightweight control, housekeeping, perfor-
mance monitoring, or debugging. Therefore, designers had to build and optimize
their own soft processors out of the FPGA’s programmable function blocks and
routing (as shown in Fig. 21a), which was a significantly laborious and challenging
task. To facilitate the integration of processor subsystems in FPGA designs, FPGA
vendors supplied heavily optimized and parameterized soft processor IPs that
designers can readily use such as the Nios and Microblaze soft processors from

38 A. Boutros and V. Betz

a

b

c d

Fig. 21 (a) Early Xilinx FPGA with a MicroBlaze soft processor implemented in soft logic, (b)
Xilinx Virtex-II Pro FPGA with 2 hard PowerPC blocks whose peripherals are implemented in
soft logic, (c) Xilinx Zynq Ultrascale+ with a complete hard processor subsystem, and (d) Xilinx
Versal architecture with both a hard scalar processor subsystem and a spatial vector processor array

Altera and Xilinx, respectively. This alleviated the design burden from FPGA users
while still allowing them to flexibly configure their architecture parameters (e.g.,
instruction/data cache sizes, number of cache levels, ALU capabilities, etc.) to
match the application requirements. However, these soft processors are still area-
inefficient, slower, and have limited capabilities (e.g., scalar, single-issue, in-order
microarchitecture) compared to mainstream CPUs, which makes them more suitable
for lightweight control and housekeeping tasks rather than compute-oriented ones.
The gap is even larger compared to direct hardware execution on repetitive tasks.
For example, a Nios II soft processor on a Stratix IV FPGA runs at 250 MHz
and consumes 1130 LUTs, 4 DSPs, and 11 BRAMs. When used to compute a
simple third-degree polynomial, it has 50× less performance, 130× higher energy,
and 2× higher LUT utilization compared to a dedicated hardware implementation
(configured into the FPGA) of the same function. Some studies attempt to optimize
scalar soft processors for more compute-intensive tasks by adding support for vector
instructions. Yiannacouras et al. show that a vector soft processor can improve
performance by 25× over a scalar soft processor; while area increases, the area-
delay product is still 3× better than a scalar soft processor (Yiannacouras et al.
2009).

As more systems incorporated processors for control and less compute-intensive
tasks, FPGA vendors began to harden processor cores to increase performance
vs. soft processors. For example, the Xilinx Virtex-II Pro architecture had up to

Field-Programmable Gate Array Architecture 39

2 IBM PowerPC RISC processor blocks as illustrated in Fig. 21b, while Altera
integrated an ARM core in the Apex architecture. These initial efforts hardened
only the raw processor core with primitive wire interfaces to the programmable
fabric, while the rest of the processor subsystem (e.g., memory controller and
peripherals) had to be implemented in the soft logic. This was still time-consuming
and did not show enough efficiency gains compared to soft processors to justify
the higher design effort and reduced configurability; consequently, these hardened
processor-core-only systems were not very successful. With FPGAs growing into
more complex and heterogeneous platforms, complete hard processor subsystems
(i.e., processors along with their key peripherals) have been incorporated in recent
FPGA architectures. This approach has been much more successful as it provides
designers with an easy-to-use software environment for implementing portions
of their applications, while still achieving a significantly higher performance and
energy efficiency compared to soft processors. Consequently, high-performance
full-featured hard processor subsystems are now available in most FPGA families.
For example, Xilinx’s Zynq Ultrascale+ (in Fig. 21c) has an embedded quad-core
ARM Cortex-A53 processor along with a cache coherency unit, a memory man-
agement unit, direct memory access controller, and many different IO peripherals
(e.g., USB, I2C, UARTs, GPIOs, etc.) to communicate with the outside world, as
well as the tightly coupled FPGA fabric. These hybrid devices can be used in many
applications where the processor handles strictly serial and branching portions of
the workload while the highly-parallel compute-intensive portions are offloaded to
the FPGA – this echoes the initial vision for reconfigurable computer architectures
in the 1960s (Estrin 1960).

The Xilinx Versal architecture integrates not only an FPGA fabric and a tradi-
tional hard processor subsystem, but also a many-core vector processor complex
with bus-based reconfigurable interconnect, as shown in Fig. 21d. This architecture
still has a spatial nature (similar to an FPGA), and combines the software-
level programmability of vector processors with the flexibility of programmable
interconnects, making processor cores essentially another form of logic blocks
in reconfigurable devices. This new architecture is initially targeted at 5G signal
processing and AI, two large and compute-intensive markets for FPGAs. New tools
for architecture exploration and evaluation of these highly heterogeneous devices
are also emerging (Boutros et al. 2022), enabling new research into both their
programming models and efficiency in various applications.

System-Level Interconnect: Network-on-Chip

As FPGAs have grown in both capacity and IO speed, distributing ever higher
bandwidth data streams throughout an ever larger fabric has become challenging.
Traditionally the system-level interconnect that connects high-speed IO interfaces
such as DDR, PCIe and Ethernet to modules implemented in the FPGA fabric has
been implemented as soft buses. These soft buses include multiplexing, arbitration,
pipelining and wiring between the relevant endpoints. As the data bandwidth of

40 A. Boutros and V. Betz

external IO interfaces has increased, these soft buses have been forced to become
very wide to carry the larger data streams, increasing their resource utilization and
making timing closure harder. For example, a single channel of high-bandwidth
memory (HBM) has a 128-bit double data rate interface operating at 1 GHz,
so a bandwidth-matched soft bus running at 250 MHz must be 1024 bits wide.
With recent FPGAs incorporating up to 8 HBM channels as well as numerous
PCIe, Ethernet and other interfaces, system level interconnect can rapidly use
a major fraction of the FPGA logic and routing resources. In addition, system-
level interconnect tends to span long distances. The combination of very wide and
physically long buses makes timing closure challenging and usually requires deep
pipelining of the soft bus, further increasing its resource use. The system-level
interconnect challenge is becoming more difficult in advanced process nodes, as
the number and speed of FPGA external interfaces increases, and the metal wire
parasitics (and thus interconnect delay) scales poorly (Bohr 1995).

Abdelfattah and Betz (2013) proposed embedding a hard, packet-switched
network-on-chip (NoC) in the FPGA fabric to enable more efficient and easier-
to-use system-level interconnect. Although a full-featured packet-switched NoC
could be implemented using the soft logic and routing of an FPGA, an NoC with
hardened routers and links is 23× more area efficient, 6× faster, and consumes
11× less power compared to a soft NoC. Designing a hard NoC for an FPGA is
challenging since the FPGA architect must commit many choices to silicon (e.g.,
number of routers, link width, NoC topology) yet still maintain the flexibility of an
FPGA to implement a wide variety of applications using many different external
interfaces and communication endpoints. Work in Abdelfattah and Betz (2013)
advocates for a mesh topology with a moderate number of routers (e.g., 16) and
fairly wide (128-bit) links; these choices keep the area cost to less than 2% of
the FPGA while ensuring the NoC is easier to lay out and a single NoC link can
carry the entire bandwidth of a DDR channel. A hard NoC must also be able
to flexibly connect to user logic implemented in the FPGA fabric. Abdelfattah
et al. (2015) introduced the fabric port which interfaces the hard NoC routers to
the FPGA programmable fabric by performing width adaptation, clock domain
crossing and voltage translation. This decouples the NoC from the FPGA fabric
such that the NoC can run at a fixed (high) frequency, and still interface to FPGA
logic and IO interfaces of different speeds and bandwidth requirements with very
little glue logic. Hard NoCs also appear very well suited to FPGAs in datacenters.
Datacenter FPGAs are normally configured in two parts: a shell provides system-
level interconnect to the external interfaces, and a role implements the application
acceleration functionality (Caulfield et al. 2016). The resource use of the shell can
be significant: it requires 23% of the device resources in the first generation of
Microsoft’s Catapult systems (Putnam et al. 2014). Yazdanshenas and Betz (2018)
showed that a hard NoC significantly improves resource utilization, operating
frequency and routing congestion in datacenter FPGAs. Other studies have proposed
FPGA-specific optimizations to increase the area efficiency and performance of soft
NoCs (Kapre and Gray 2017; Papamichael and Hoe 2012). However, Yazdanshenas

Field-Programmable Gate Array Architecture 41

Specialized Engines

Transceivers

 ro sse co rP
metsysbuS

Memory Controllers & High-Speed IOs

Routers

Links

Transceivers

Security & Config.

srellortnoC yro
me

M

M
em

ory Controllers

Mem. Controllers

NoC
Row

NoC
Column

Peripheral
Ring NoC

a b

Fig. 22 Network-on-Chip system-level interconnect in next-generation (a) Xilinx Versal and (b)
Achronix Speedster7t architectures

and Betz (2018) showed that even optimized soft NoCs still trail hard NoCs in usable
bandwidth, latency, area and routing congestion.

Recent Xilinx Versal and Achronix Speedster7t FPGAs integrate a hard NoC
similar to the academic proposals discussed above. Versal uses a hard NoC
for system-level communication between various endpoints (Gigabit transceivers,
processor, AI subsystems, soft fabric), and is in fact the only way for external
memory interfaces to communicate with the rest of the device (Swarbrick et al.
2019). It uses 128-bit wide links running at 1 GHz, matching a DDR channel’s
bandwidth. Its topology is related to a mesh, but with all horizontal links pushed
to the top and bottom of the device to make it easier to lay out within the FPGA
floorplan. The Versal NoC contains multiple rows (i.e., chains of links and routers)
at the top and bottom of the device, and a number of vertical NoC columns (similar
to any other hard block columns such as DSPs) depending on the device size as
shown in Fig. 22a. The NoC has programmable routing tables that are configured at
boot time and provides standard AXI interfaces as its fabric ports. The Speedster7t
NoC topology is optimized for external interface to fabric transfers. It consists of
a peripheral ring around the fabric with NoC rows and columns at regular intervals
over the FPGA fabric as shown in Fig. 22b. The peripheral ring NoC can operate
independently without configuring the FPGA fabric to route the traffic between
different external interfaces. There is no direct connectivity between the NoC rows
and columns; the packets from a master block connecting to a NoC row will pass
through the peripheral ring to reach a slave block connected to a NoC column.

Interposers

FPGAs have been early adopters of interposer technology that allows dense
interconnection of multiple silicon dice. As shown in Fig. 23a, a passive interposer is

42 A. Boutros and V. Betz

Fig. 23 Different interposer
technologies used for
integrating multiple chips in
one package in: (a) Xilinx
multi-die interposer-based
FPGAs and (b) Intel devices
with EMIB-connected
transceiver chiplets

Package Substrate

FPGA 1

Interposer

FPGA 2

Microbumps Through-Silicon
Vias

Package Substrate

FPGA

Transceiver
Chiplets

TX TX

Microbumps

Interposers

a

b

a silicon die (often in a trailing process technology to reduce cost) with conventional
metal layers forming routing tracks and thousands of microbumps on its surface
that connect to two or more dice flipped on top of it. One motivation for interposer-
based FPGAs is achieving higher logic capacity at a reasonable cost. Both high-end
systems and emulation platforms to validate ASIC designs before fabrication
demand FPGAs with high logic capacity. However, large monolithic (i.e., single-
silicon-die) devices have poor yield, especially early in the lifetime of a process
technology (exactly when the FPGA is state-of-the-art). Combining multiple smaller
dice on a silicon interposer is an alternative approach that can have higher yield. A
second motivation for 2.5D systems is to enable integration of different specialized
chiplets (possibly using different process technologies) into a single system. This
approach is also attractive for FPGAs as the fabric’s programmability can bridge
disparate chiplet functionality and interface protocols.

Xilinx’s largest devices starting from the Virtex-7 (28 nm) generation use passive
silicon interposers to integrate three or four FPGA dice that each form a portion
of the FPGA’s rows. The largest interposer-based devices provide more than twice
the logic elements of the largest monolithic FPGAs at the same process node.
The FPGA programmable routing requires a large amount of interconnect, raising
the question of whether the interposer microbumps (which are much larger and
slower than conventional routing tracks) will limit the routability of the system.
For example, in Virtex-7 interposer-based FPGAs, only 23% of the vertical routing
tracks cross between dice through the interposer (Nasiri et al. 2015), with an
estimated additional delay of ∼1 ns (Chaware et al. 2012). The study in Nasiri et al.

Field-Programmable Gate Array Architecture 43

(2015) showed that CAD tools that place the FPGA logic to minimize crossing of
an interposer boundary combined with architecture changes that increase the switch
flexibility to the interposer-crossing tracks can largely mitigate the impact of this
reduced signal count. The entire vertical bandwidth of the NoC in the Xilinx Ver-
sal architecture (discussed in the “System-Level Interconnect: Network-on-Chip”
section) crosses between dice, helping to provide more interconnect bandwidth.
An embedded NoC makes good use of the limited number of wires that can cross
an interposer, as it runs its links at a high frequency and they can be shared by
different communication streams as they are packet-switched. Xilinx has also used
their interposer technology for heterogeneous integration by incorporating HBM,
starting with their 16 nm Virtex Ultrascale+ generation.

Intel FPGAs instead use smaller interposers called embedded multi-die inter-
connect bridges (EMIB) carved into the package substrate as shown in Fig. 23b.
Intel Stratix 10 devices use EMIB to integrate a large FPGA fabric die with smaller
IO transceiver or HBM chiplets in the same package, decoupling the design and
process technology choices of these two crucial elements of an FPGA. Some recent
studies (Nurvitadhi et al. 2018, 2019) used EMIB technology to tightly couple an
FPGA fabric with specialized ASIC accelerator chiplets for DL applications. This
approach offloads specific kernels of the computation (e.g., matrix-matrix or matrix-
vector multiplications) to the more efficient specialized chiplets, while leveraging
the FPGA fabric to interface to the outside world and to implement rapidly changing
DL model components.

Configuration and Security

An FPGA’s configuration circuitry loads the bitstream into the millions of SRAM
cells that control the LUTs, routing switches and configuration bits in hard blocks.
On power up, a configuration controller loads this bitstream serially from a source
such as on-board flash. When a sufficient group of configuration bits are buffered,
they are written in parallel to a group of configuration SRAM cells, in a manner
similar to writing a (very wide) word to an SRAM array. This configuration circuitry
can also be accessed by the FPGA fabric and embedded processor subsystems,
allowing partial reconfiguration of one part of the device while another portion
continues processing. For high-reliability applications, this configuration circuitry
can also be used to continuously read back the programmed configuration of the
device and compute a cyclic redundancy check (CRC) in order to detect if any
configuration SRAM cells have been upset by soft errors (such as those induced
by high energy radiation).

A complete FPGA application is very valuable intellectual property, and without
security measures it could be cloned simply by copying the programming bitstream.
To avoid this, FPGA CAD tools can optionally encrypt a bitstream, and FPGA
devices can have a private decryption key programmed in by the manufacturer to
be used by the configuration controller, making a bitstream usable only by a single
customer who purchases FPGAs with the proper key.

44 A. Boutros and V. Betz

Conclusion

FPGAs have evolved from simple arrays of programmable logic blocks and IOs
interconnected via programmable routing into complex multi-die systems with
many different embedded components such as BRAMs, DSPs, high-speed external
interfaces, and system-level NoCs. The recent adoption of FPGAs in the HPC and
datacenter domains, along with the emergence of new high-demand applications
such as deep learning, is ushering in a new phase of FPGA architecture design.
These new applications and the multi-user paradigm of the datacenter create
opportunities for architectural innovation. At the same time, process technology
scaling is changing in fundamental ways. Wire delay is scaling poorly which
motivates rethinking programmable routing architecture. Interposers and 3D inte-
gration enable entirely new types of heterogeneous systems. Controlling power
consumption is an overriding concern, and is likely to lead to FPGAs with more
power-gating and more heterogeneous hard blocks. We do not claim to predict the
future of FPGA architecture, except that it will be interesting and different from
today!

References

Abdelfattah MS, Betz V (2013) The case for embedded networks on chip on field-programmable
gate arrays. IEEE Micro 34(1):80–89

Abdelfattah MS et al (2015) Take the highway: design for embedded NoCs on FPGAs. In:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp 98–
107

Ahmed E, Rose J (2004) The effect of LUT and cluster size on deep-submicron FPGA performance
and density. IEEE Trans Very Large Scale Integr (VLSI) Syst 12(3):288–298

Ahmed I et al (2019) FRoC 2.0: automatic BRAM and logic testing to enable dynamic voltage
scaling for FPGA applications. ACM Trans Reconfig Technol Syst (TRETS) 12(4):1–28

Betz V, Rose J (1998) How much logic should go in an FPGA logic block? IEEE Des Test Comput
15(1):10–15

Betz V, Rose J (1999) FPGA routing architecture: segmentation and buffering to optimize speed
and density. In: ACM International Symposium on FPGAs, pp 59–68

Betz V et al (1999) Architecture and CAD for deep-submicron FPGAs. Springer Science &
Business Media. New York, USA

Bohr MT (1995) Interconnect scaling – the real limiter to high performance ULSI. In: Proceedings
of International Electron Devices Meeting. IEEE, pp 241–244

Boutros A et al(2018) You cannot improve what you do not measure: FPGA vs. ASIC efficiency
gaps for convolutional neural network inference. ACM Trans Reconfig Technol Syst (TRETS)
11(3):1–23

Boutros A et al (2018) Embracing diversity: enhanced DSP blocks for low-precision deep learning
on FPGAs. In: IEEE International Conference on Field Programmable Logic and Applications
(FPL), pp 35–357

Boutros A et al (2020) Beyond peak performance: comparing the real performance of AI-optimized
FPGAs and GPUs. In: IEEE International Conference on Field-Programmable Technology
(FPT), pp 10–19

Boutros A et al (2022) Architecture and application co-design for beyond-FPGA reconfigurable
acceleration devices. IEEE Access 10:95067–95082

Field-Programmable Gate Array Architecture 45

Caulfield AM et al (2016) A cloud-scale acceleration architecture. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp 1–13

Chaware R et al (2012) Assembly and reliability challenges in 3D integration of 28 nm FPGA
die on a large high density 65 nm passive interposer. In: IEEE Electronic Components and
Technology Conference, pp 279–283

Cheah HY et al (2014) The iDEA DSP block-based soft processor for FPGAs. ACM Trans
Reconfig Technol Syst (TRETS) 7(3):1–23

Chiasson C, Betz V (2013a) COFFE: fully-automated transistor sizing for FPGAs. In: IEEE
International Conference on Field-Programmable Technology (FPT), pp 34–41

Chiasson C, Betz V (2013b) Should FPGAs abandon the pass gate? In: International Conference
on Field-Programmable Logic and Applications, pp 1–8

Chromczak J et al (2020) Architectural enhancements in intel agilex FPGAs. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 140–149

Ebeling C et al (2016) Stratix 10 high performance routable clock networks In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 64–73

Eldafrawy M et al (2020) FPGA logic block architectures for efficient deep learning inference.
ACM Trans Reconfig Technol Syst (TRETS) 13(3):1–34

Estrin G (1960) Organization of computer systems: the fixed plus variable structure computer. In:
Western Joint IRE-AIEE-ACM Computer Conference, pp 33–40

Feng W et al (2018) Improving FPGA performance with a S44 LUT structure. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 61–66

Fowers J et al (2018) A configurable cloud-scale DNN processor for real-time AI. In: ACM/IEEE
International Symposium on Computer Architecture (ISCA), pp 1–14

Gaide B et al (2019) Xilinx adaptive compute acceleration platform: versal architecture. In:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp 84–
93

Ganusov I, Devlin B (2016) Time-borrowing platform in the Xilinx ultrascale+ family of
FPGAs and MPSoCs. In: IEEE International Conference on Field Programmable Logic and
Applications (FPL), pp 1–9

Halfhill TR (2010) Tabula’s time machine. Microprocess Rep 131:0–0
Hall M, Betz V (2020) From tensorflow graphs to luts and wires: automated sparse and physically

aware CNN hardware generation. In: IEEE International Conference on Field-Programmable
Technology (FPT), pp 56–65

Hutton M et al (2005) Efficient static timing analysis and applications using edge masks. In:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp 174–
183

Kapre N, Gray J (2017) Hoplite: a deflection-routed directional torus NoC for FPGAs. ACM Trans
Reconfig Technol Syst (TRETS) 10(2):1–24

Karandikar S et al (2018) FireSim: FPGA-accelerated cycle-exact scale-out system simulation in
the public cloud. In: International Symposium on Computer Architecture (ISCA). . IEEE, pp
29–42

Krupnova H, Saucier G (2000) FPGA-based emulation: industrial and custom prototyping
solutions. In: International Workshop on Field-Programmable Logic and Applications (FPL).
. Springer, pp 68–77

Kuon I, Rose J (2007) Measuring the gap between FPGAs and ASICs. IEEE Trans Comput-Aided
Des Integr Circuit Syst 26(2):203–215

LaForest CE et al (2012) Multi-ported memories for FPGAs via XOR. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 209–218

Lai B-CC, Lin J-L (2016) Efficient designs of multiported memory on FPGA. IEEE Trans Very
Large Scale Integr (VLSI) Syst 25(1):139–150

Langhammer M, Pasca B (2015) Floating-point DSP block architecture for FPGAs. In:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp 117–
125

46 A. Boutros and V. Betz

Langhammer M et al (2021) Stratix 10 NX architecture and applications. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 57–67

Lemieux G et al (2000) Generating highly-routable sparse crossbars for PLDs. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 155–164

Lemieux G et al (2004) Directional and single-driver wires in FPGA interconnect. In: IEEE
International Conference on Field-Programmable Technology (FPT), pp 41–48

Lewis D et al (2003) The Stratix routing and logic architecture. In: ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pp 12–20

Lewis D et al (2005) The Stratix II logic and routing architecture. In: ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pp 14–20

Lewis D et al (2009) Architectural enhancements in Stratix-III and Stratix-IV. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 33–42

Lewis D et al (2013) Architectural enhancements in Stratix V. In: ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pp 147–156

Lewis D et al (2016) The Stratix 10 highly pipelined FPGA architecture. In: ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA), pp 159–168

Lockwood JW et al (2012) A low-latency library in FPGA hardware for high-frequency trading.
In: Annual Symposium on High-Performance Interconnects (HOTI), pp 9–16

Meher PK et al (2008) FPGA realization of FIR filters by efficient and flexible systolization using
distributed arithmetic. IEEE Trans Signal Process 56(7):3009–3017

Murray K et al (2013) Titan: enabling large and complex benchmarks in academic CAD. In: IEEE
International Conference on Field-Programmable Logic and Applications (FPL), pp 1–8

Murray K et al (2020a) VTR 8: high-performance cad and customizable FPGA architecture
modelling. ACM Trans Reconfig Technol Syst (TRETS) 13(2):1–55

Murray K et al (2020b) Optimizing FPGA logic block architectures for arithmetic. IEEE Trans
Very Large Scale Integr (VLSI) Syst 28(6):1378–1391

Nasiri E et al (2015) Multiple dice working as one: CAD flows and routing architectures for silicon
interposer FPGAs. IEEE Trans Very Large Scale Integr (VLSI) Syst 24(5):1821–1834

Nikolić S et al (2020) Straight to the point: intra- and intercluster LUT connections to mitigate
the delay of programmable routing. In: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp 150–160

Nurvitadhi E et al (2018) In-package domain-specific ASICs for intel Stratix 10 FPGAs: a case
study of accelerating deep learning using TensorTile ASIC. In: IEEE International Conference
on Field-Programmable Logic and Applications (FPL), pp 106–1064

Nurvitadhi E et al (2019) Why compete when you can work together: FPGA-ASIC integration
for persistent RNNs. In: IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp 199–207

Papamichael MK, Hoe JC (2012) CONNECT: re-examining conventional wisdom for design-
ing NoCs in the context of FPGAs. In: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp 37–46

Parandeh-Afshar H et al (2012) Rethinking FPGAs: elude the flexibility excess of LUTs with and-
inverter cones. In: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), pp 119–128

Petelin O, Betz V (2016) The speed of diversity: exploring complex FPGA routing toplogies for
the global metal layer. In: IEEE International Conference on Field-Programmable Logic and
Applications (FPL), pp 1–10

Petersen MB et al (2021) NetCracker: a peek into the routing architecture of Xilinx 7-series
FPGAs. In: International Symposium on Field-Programmable Gate Arrays (FPGA)

Putnam A et al (2014) A reconfigurable fabric for accelerating large-scale datacenter services. In:
ACM/IEEE International Symposium on Computer Architecture (ISCA), pp 13–24

Qian T et al (2018) A 1.25 Gbps programmable FPGA I/O buffer with multi-standard support. In:
IEEE International Conference on Integrated Circuits and Microsystems, pp 362–365

Rasoulinezhad S et al (2019) PIR-DSP: an FPGA DSP block architecture for multi-precision
deep neural networks. In: IEEE International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp 35–44

Field-Programmable Gate Array Architecture 47

Rasoulinezhad S et al (2020) LUXOR: an FPGA logic cell architecture for efficient compressor
tree implementations. In: ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), pp 161–171

Rettkowski J et al (2017) HW/SW co-design of the HOG algorithm on a xilinx zynq SoC. J Parallel
Distrib Comput 109:50–62

Ronak B, Fahmy SA (2015a) Mapping for maximum performance on FPGA DSP blocks. IEEE
Trans Comput-Aided Design Integr Circuits Syst 35(4):573–585

Ronak B, Fahmy SA (2015b) Minimizing DSP block usage through multi-pumping. In: Interna-
tional Conference on Field Programmable Technology (FPT)

Sivaswamy S et al (2005) HARP: hard-wired routing pattern FPGAs. In: International Symposium
on Field-Programmable Gate Arrays (FPGA)

Swarbrick I et al Network-on-chip programmable platform in versal ACAP architecture. In:
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp 212–
221

Tang X et al (2019) A study on switch block patterns for tileable FPGA routing architectures. In:
IEEE International Conference on Field-Programmable Technology (FPT), pp 247–250

Tatsumura K et al (2016) High density, low energy, magnetic tunnel junction based block RAMs for
memory-rich FPGAs. In: IEEE International Conference on Field-Programmable Technology
(FPT), pp 4–11

Tessier R et al (2007) Power-efficient RAM mapping algorithms for FPGA embedded memory
blocks. IEEE Trans Comput-Aided Des Integr Circuits Syst 26(2):278–290

Turakhia Y et al (2018) Darwin: a genomics co-processor provides up to 15,000x acceleration on
long read assembly. ACM SIGPLAN Not 53(2):199–213

Tyhach J et al (2004) A 90 nm FPGA I/O buffer design with 1.6 Gbps data rate for source-
synchronous system and 300 MHz clock rate for external memory interface. In: IEEE Custom
Integrated Circuits Conference, pp 431–434

Upadhyaya P et al (2016) A fully-adaptive wideband 0.5–32.75 Gb/s FPGA transceiver in 16 nm
FinFET CMOS technology. In: IEEE Symposium on VLSI Circuits, pp 1–2

Wang E et al (2019) Deep neural network approximation for custom hardware: where we’ve been,
where we’re going. ACM Comput Surv (CSUR) 52(2):1–39

Wilton S et al (1995) Architecture of centralized field-configurable memory. In: ACM International
Symposium on Field-Programmable Gate Arrays (FPGA), pp 97–103

Wong H et al (2011) Comparing FPGA vs. custom cmos and the impact on processor microar-
chitecture. In: ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), pp 5–14

Yazdanshenas S, Betz V (2018) Interconnect solutions for virtualized field-programmable gate
arrays. IEEE Access 6:10497–10507

Yazdanshenas S, Betz v (2019) COFFE 2: automatic modelling and optimization of complex and
heterogeneous FPGA Architectures. ACM Trans Reconfig Technol Syst (TRETS), 12(1):1–27

Yazdanshenas S et al (2017) Don’t forget the memory: automatic block RAM modelling,
optimization, and architecture exploration. In: ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), pp 115–124

Yiannacouras P et al (2009) Data parallel FPGA workloads: software versus hardware. In: IEEE
International Conference on Field-Programmable Logic and Applications (FPL), pp 51–58

Young-Schultz T et al (2020) Using openCL to enable software-like development of an FPGA-
accelerated biophotonic cancer treatment simulator. In: ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pp 86–96

Zgheib G et al (2014) Revisiting and-inverter cones. In: ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pp 45–54

Zhao Z et al (2020) Achieving 100 Gbps intrusion prevention on a single server. In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pp 1083–1100

	Field-Programmable Gate Array Architecture
	Contents
	Introduction
	Methodology and Tools for FPGA Architecture Evaluation
	Key FPGA Applications
	Programmable Logic Blocks
	Programmable Routing
	Programmable IO
	Programmable Clock Distribution Networks
	On-chip Memory
	DSP Blocks
	Processor Subsystems
	System-Level Interconnect: Network-on-Chip
	Interposers
	Configuration and Security
	Conclusion
	References

