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Abstract—Field-programmable gate array (FPGA) architec-
tures have recently incorporated hardened networks-on-chip
(NoCs) to enable more efficient and easier system-level inte-
gration. However, the embedding of hard NoCs presents a new
challenge for FPGA computer-aided design (CAD); the tools need
to optimize the placement of circuit netlist primitives to not
only minimize total wirelength and critical path delay, but also
consider the NoC traffic patterns between modules to minimize
their aggregate bandwidth and/or meet latency constraints. This
work enables flexible modeling of FPGA architectures with hard
NoCs in the open-source versatile place & route (VPR) CAD flow,
facilitating both CAD and architecture research. We enhance
the placement engine in VPR to co-optimize traditional circuit
implementation metrics (e.g. wirelength, critical path delay) and
NoC performance metrics (e.g. congestion, bandwidth utilization,
latency) when mapping an application design with NoC-attached
modules to a candidate NoC-enhanced FPGA architecture. We
test our VPR enhancements using a variety of synthetic bench-
marks and verify that the placement engine can effectively
optimize NoC aggregate bandwidth and meet specified latency
constraints. Then, we present a complete flow that integrates VPR
with a high-level SystemC architecture simulator, RAD-Sim, that
can capture the NoC traffic flows of complete application designs
and use it to drive VPR’s placement optimizations. We showcase
this combined flow using a real application design from the deep
learning domain. The results show that our NoC-enhanced VPR
flow can result in 2× reduction in NoC aggregate bandwidth (on
average) compared to a NoC-agnostic flow, without affecting the
design’s wirelength or critical path delay.

I. INTRODUCTION

Modern field-programmable gate arrays (FPGAs) contain
millions of programmable logic elements, along with thou-
sands of block RAMs (BRAMs), digital signal processing
(DSP) blocks, high speed I/Os, and more [1]. This enables
the implementation of large complex FPGA systems, and
to maintain design productivity, these systems typically con-
sist of many intellectual property modules (IPs). The FPGA
fine-grained programmable routing provides the flexibility to
implement any custom connectivity within an IP, as well
as the larger-scale connectivity between IPs. While bit-level
programmable routing is well suited to customized, local
communication, it can be challenging to use it to implement
efficient system-level interconnect which links multiple IPs.

Closing timing on such cross-system links is becoming
more challenging as process technology advances provide
more logic density but increased long-distance wire delays [2].
For example, a recent study showed that the number of
interconnect pipeline stages required to run a 32-bit bus
connecting two IPs at opposite corners of a mid-size FPGA
at 400 MHz has increased from 3 stages in a 20 nm Arria 10
device to 10 stages in a 14 nm Stratix 10 device [3]. The
difficulty of designing system-level interconnect is further
exacerbated by the ever-increasing bandwidth of memory and

*Both authors contributed equally to this work.

Fig. 1: Illustration of the NoC placement problem: (a) logical view of
the system, (b) circuit netlist with logical NoC router instantiations,
and (c) placement of logical NoC routers and user modules to
physical NoC routers and FPGA resources.

I/O interfaces in FPGAs. For example, many recent FPGAs
have multiple high-bandwidth memory (HBM) stacks, 100
Gbps Ethernet interfaces, as well as several PCIe and DDR
memory controllers [4]. To distribute this tremendous band-
width to different design IPs on the FPGA fabric, the soft
(i.e. programmable) FPGA routing must implement very wide
buses, consuming significant resources and leading to further
timing closure challenges. Developing a bespoke system-level
interconnect for each application not only costs resources but
also slows time-to-market by adding a complex integration
task and increasing design iterations to close timing.

To ease these system-level interconnection challenges, FP-
GAs have begun embedding hard packet-switched networks-
on-chip (NoCs). A hardened mesh NoC with 16 routers and
128-bit links would cost less than 2% of the FPGA die area
and provide the same bandwidth of a conventional soft bus
using 14% of the FPGA resources while consuming an order
of magnitude less power [5]. In addition, a hard NoC com-
pletely decouples computation from communication enabling
easier and faster integration of various IPs in a complex
system. Designers can just focus on optimizing independent
IPs to meet timing and connect them to the NoC for inter-IP
communication, which guarantees system-level interconnect
timing closure. Due to the substantial gains they offer at
a relatively low silicon cost, embedded hard NoCs were
recently introduced in commercial FPGAs from AMD [6],
Achronix [7], and Intel [4].

However, embedding a hard NoC in the FPGA fabric comes
with two major challenges. Firstly, the reconfigurable nature
of an FPGA means that the performance requirements and use
cases of the NoC are unknown when architecting the device.
Therefore, FPGA architects have to select NoC specifications
(e.g. number of routers, network topology, link bandwidth,
number of virtual channels) that can achieve efficient system-
level communication across a wide variety of applications
to maintain the FPGA generality and flexibility. But since
most FPGA application designs are developed for conventional
FPGAs, an application-architecture co-design framework is
necessary for exploring the design space of NoC-enhanced
reconfigurable devices. Secondly, the FPGA physical design



tools must also be NoC-aware; while optimizing the conven-
tional circuit netlist placement to minimize critical path delay
(CPD), the FPGA CAD tools need to simultaneously optimize
the placement of NoC-connected modules to minimize NoC
congestion, bandwidth utilization and/or latency. We refer to
this as the NoC placement problem, which is our main focus.

An illustration of the NoC placement problem is shown
in Fig. 1. To connect modules to the embedded NoC, the
designer would instantiate logical routers in their design and
connect them to the corresponding module interfaces. The
NoC placement is the mapping of these logical routers to
physical router locations on the FPGA. This is analogous to
mapping circuit netlist primitives to logic block, BRAM, and
DSP locations in conventional FPGA placement to minimize
the delays of the netlist connections between these primitives.
However, the inter-module communication patterns over the
NoC cannot be captured as connections in the circuit netlist
as they depend on the runtime behavior of the user application.
Therefore, the NoC traffic flows (i.e. communication between
logical routers over the NoC) along with their bandwidth
requirements and optional latency constraints must also be
input to the CAD tool to optimize NoC placement. These
traffic flows can be directly specified by the designer based
on their knowledge of the application; however, this can
be challenging especially for large and complex application
designs. Another alternative is to use trace-based traffic flows
extracted from end-to-end application simulation. This would
benefit from a fast high-level simulator for NoC-enhanced
FPGAs to avoid the long runtime of register transfer level
(RTL) simulations of the whole system. Such a simulator
could also potentially evaluate the quality of different NoC
placement solutions proposed by the physical design tools in
intermediate optimization steps.

In this work, we first enhance the open-source versatile
place & route (VPR) tool [8] to enable modelling of hard em-
bedded NoCs in a given FPGA architecture*. We also specify a
new input file format for describing NoC traffic flows and de-
velop new steps in the CAD flow for routing these traffic flows
over the NoC and optimizing the NoC placement. We test
our new NoC-enhanced VPR flow using a variety of synthetic
benchmarks to show that the new flow can indeed optimize
the NoC placement and minimize the utilized aggregate NoC
bandwidth. Finally, we showcase our NoC placement approach
using a real application design from the deep learning (DL)
domain. We extract trace-based traffic flows of the application
using RAD-Sim [9], a SystemC architecture simulator for
NoC-enhanced reconfigurable acceleration devices (RADs), to
drive the NoC placement optimization and then evaluate the
proposed placement solutions from VPR. To the best of our
knowledge, this work is the first to:
• support modelling of hard embedded NoCs in an open-

source FPGA CAD flow to enable architecture exploration
of NoC-enhanced FPGA architectures,

• integrate NoC placement optimization in VPR and showcase
its utility using a variety of synthetic benchmarks, and

• use the combination of an application-driven architecture
simulator and FPGA physical design tools (RAD-Sim and
VPR) for automated trace-based NoC placement.

*Our enhancements are integrated in the Verilog-to-Routing master
branch at https://github.com/verilog-to-routing/vtr-verilog-to-routing

II. BACKGROUND & RELATED WORK

A. FPGA Packet-Switched NoCs
It is becoming increasingly challenging to distribute the

ever-growing transceiver and external memory bandwidth to
various application modules in modern FPGA systems. These
external interfaces typically run at significantly higher clock
speeds than the FPGA programmable logic and routing, and
therefore require wide deeply-pipelined buses on the FPGA
fabric (i.e. soft buses) to match their data rates. For example,
a Xilinx Ultrascale+ device comes with two HBM stacks,
each of which has 16 independent 64-bit channels running
at 900 MHz double data rate [10]. This tremendous HBM
bandwidth can only be matched using an 8192-bit soft bus
running at a relatively high 450 MHz clock frequency. Such
system-level interconnect can rapidly use a major fraction
of the FPGA logic and routing resources, especially when
spanning large distances and requiring deep pipelining to meet
timing. Furthermore, the HBM hardened memory controllers
are typically located on one side of the chip (to facilitate
the implementation of soft or hard inter-channel crossbar
switch [11]) resulting in severe routing hot spots.

As an alternative, packet-switched NoCs have been exten-
sively studied as a more efficient system-level interconnect
for FPGAs. Soft NoCs with routers and links implemented
using the FPGA’s programmable logic and routing were ex-
plored as a solution that can be implemented on off-the-
shelf conventional FPGAs. Starting from the system-level
interconnect requirements, an expert designer would manually
design the soft NoC and pre-compile it as an interconnect
overlay that can be directly instantiated to connect user design
modules [12], [13]. An FPGA-specific soft NoC generator was
also introduced in [14] to automate the NoC design process
and democratize the use of NoCs in modern FPGA designs.
Although soft NoCs can facilitate timing closure of system-
level interconnect, they still consume a considerable portion
of the valuable programmable FPGA resources [15].

Abdelfattah and Betz evaluated the area cost and efficiency
gains of the alternative approach of embedding a hard packet-
switched NoC into the FPGA fabric [16]. In this case, the NoC
routers are implemented using ASIC standard cells (similar to
other FPGA hard blocks) with dedicated links between them
and fabric ports to interface with the programmable routing
and implement width adaptation, clock domain crossing as
well as any necessary arbitration. It was shown that a full-
featured, hard mesh NoC is 23× more area efficient, 6× faster,
and consumes 11× less power than its soft implementation [5].
This comes at the cost of less than 2% of the FPGA die size for
a 4×4 mesh NoC with 128-bit links. In [17], the authors also
showed that hard NoCs can be very well suited for virtualized
datacenter FPGAs; they can significantly improve resource
utilization, operating frequency and routing congestion of the
FPGA shell connecting one or multiple user design roles to
various external interfaces.

More recently, FPGA vendors have incorporated hard NoCs
in their latest commercial architectures. The Xilinx Versal
device embeds a hard NoC that provides standard AXI inter-
faces to connect user modules on the FPGA fabric to different
system components such as the software-programmable ARM
cores, AI vector processors, and high-speed transceivers [18].
The NoC has 128-bit links running at 1 GHz (to match a
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DDR3 channel bandwidth) and is organized in a squished
mesh topology where the horizontal links are pushed to the
top and bottom of the device to minimize the disruption to the
FPGA’s column-based layout [6]. The Achronix Speedster7t
device also has a hard NoC that consists of a high-bandwidth
peripheral ring topology connected to many high-bandwidth
external interfaces (e.g. Gen5×16 PCIe, 4×400 Gbps Ethernet
interfaces, 8×GDDR6 interfaces), and independent horizon-
tal/vertical NoCs to distribute this bandwidth throughout the
programmable fabric [7]. The recent Intel Agilex-M device
incorporates two hard NoCs at the top and bottom of the device
to distribute the bandwidth of two HBM2e stacks and several
off-chip memories to user modules on the FPGA fabric [4].
These NoCs allow users to efficiently implement designs with
a fully hardened crossbar, where any on-fabric initiator can
read/write data to any target memory interface.

In this work, we focus on the implications of incorporating
hard packet-switched NoCs on the FPGA computer-aided
design (CAD) tools, and more specifically the placement of
a design netlist on the FPGA fabric while considering inter-
module communication over the NoC. However, our approach
is not fundamentally limited to hard NoCs and can be applied
to the placement of designs that include a pre-compiled soft
NoC overlay as a system-level interconnect solution.

B. NoC Simulators
Almost every modern many-core CPU and GPU chip, as

well as many custom application-specific accelerators, use
some form of an NoC as a system-level interconnect so-
lution. Booksim [19] is a C++ open-source NoC simulator
commonly used to evaluate the performance of different NoC
architectures, micro-architecture implementations, and routing
policies under different synthetic statistically generated traffic
patterns. It was leveraged by many architecture simulators
(e.g. GPGPU-Sim [20] and SIAM [21]) to model the overall
system performance including NoCs. Unlike CPU, GPU and
custom (ASIC) accelerator architectures, the design of FPGA
NoCs is a more challenging task since both the functional-
ity and placement of NoC-attached processing elements are
determined only at compile time due to the FPGA’s recon-
figurability. FPGA architects have to design the system-level
NoC to be suitable for various key FPGA use cases without
compromising flexibility.

Several CAD tools were introduced to aid the design of
FPGA embedded NoCs. RTL2Booksim [22] allows the co-
simulation of FPGA RTL modules and a C++ Booksim NoC
model. It was used to evaluate the performance of several
application designs implemented on a NoC-enhanced FPGA.
However, this approach suffered from slow turnaround time
due to the long runtime of RTL simulation. It also required
implementing all application modules in a low-level hardware
description language (HDL), which can be a labor-intensive
process, especially at early design stages when both the
application and the NoC architectures are being co-optimized.

More recently, Boutros et al. introduced RAD-Sim, an
application-driven simulator that can be used for architecture
exploration of novel reconfigurable devices that incorporate
an FPGA fabric, a system-level NoC, and coarse-grained
accelerator blocks [23]. A high-level SystemC description of
application modules along with RAD architecture specifica-
tions and NoC placement constraints are given as inputs to

RAD-Sim, which performs rapid cycle-accurate simulation
and produces end-to-end application performance and NoC
traffic reports. They presented a case study using a DL
inference overlay to demonstrate the utility of RAD-Sim in
rapidly co-optimizing application and device architecture as
well as modeling the complex interactions between different
system parameters for a wide variety of monolithic, 2.5D and
3D integrated RADs [9]. In this work, we use RAD-Sim to
simulate an application design and output its NoC traffic flows
to drive the NoC placement optimization in VPR.

C. The NoC Mapping & Placement Problem

Prior work has investigated the problem of mapping com-
pute cores (in a system-on-chip) onto a given NoC architecture
to optimize performance and energy, or ensure deadlock-free
operation [24]–[27]. This is performed once at the design
phase and then the optimized organization of the chip is physi-
cally implemented by ASIC design tools. Due to the hardware
reconfigurability of FPGAs, the NoC mapping and placement
have to be performed during bitstream compilation for each
new design implemented on the FPGA. The FPGA resource
utilization and programmable routing congestion along with
the NoC traffic patterns and latency/bandwidth constraints all
have to be considered when optimizing the NoC placement
as well as the placement of the circuit netlist primitives.
In [28], the authors introduced LYNX, a CAD tool that can
automatically connect FPGA application modules using an
embedded NoC. Starting from a user-specified application con-
nectivity graph and NoC architecture specification, it clusters
the application modules, decides which connections should
be mapped to the NoC vs. programmable routing, maps the
clustered modules to NoC routers, and finally generates RTL
wrappers for the user to drop in their application modules.
However, LYNX uses an analytical cost function and simulated
annealing to perform NoC mapping, without consideration of
the dynamic changes in the communication patterns of the
application or the interaction between the placement of circuit
netlist primitives and the suggested NoC mapping.

AMD provides a NoC compiler that performs the NoC
placement and routing for the Versal device family as part
of their Vitis toolflow [6], [29]. The NoC compiler takes a de-
scription of NoC traffic flows (source, destination, bandwidth
requirement, priority) as input from the user. It then places
the endpoints of traffic flows to NoC interfaces and routes
between them. Finally, it evaluates the produced solution and
informs the user whether the specified constraints are met
or not. While the details of the Vitis NoC compiler are not
published, its user guide [30] mentions that it can be invoked
by the placement engine to generate a new NoC placement if
the initial one causes legality issues or appears to be a poor
match to the global placement of the programmable logic. In
contrast, our work integrates the NoC placement optimization
into VPR’s detailed placement engine, allowing simultaneous
co-optimization of the NoC mapping and placement of con-
ventional FPGA resources. The placement algorithm optimizes
the mapping of logical routers to physical router locations
similarly to any other netlist primitive. As well, AMD Vitis
is closed-source and targets specific AMD devices, precluding
use by FPGA architecture researchers and those wishing to
implement new CAD algorithms.



III. OUR NOC PLACEMENT FLOW

In this section, we present an overview of our NoC place-
ment flow that combines RAD-Sim for application-driven
simulation with a NoC-enhanced version of VPR for physical
design. We will also introduce the implementation details of
our VPR enhancements to support NoC modeling, traffic flow
description, and NoC placement optimization.

A. Definitions
To precisely detail our flow, we first define the following terms:
• A logical router represents a black-box NoC router module

instantiated in the user design netlist and connected to an
application module that requires access to the NoC.

• A physical router is the actual hard block NoC router
embedded in the FPGA fabric.

• A link is the set of wires connecting two physical routers.
• The NoC topology is the organization of physical routers

and the links between them to form an on-chip communi-
cation network (e.g. mesh, butterfly, fat tree).

• A flit is the smallest quantum of data traversing the NoC.
One or more flits constitute a packet which represents a
complete message transferred from a source module to a
destination module over the NoC.

• The unloaded router latency is the best-case delay for a
flit to traverse through a physical router, i.e. when there is
no queuing delay.

• The link latency is the delay for a flit to traverse from one
physical router to the next through a NoC link.

• A connection (s, d) is a one-way communication from a
source logical router s to a destination logical router d.

• The connection bandwidth is the application-dependent
data transfer rate for a connection in bits per second (bps).

• The connection latency constraint is the maximum allow-
able delay for data transfers in a given connection.

• The connection priority is the importance/criticality of a
connection relative to other connections in the user design.

• A traffic flow is the encapsulation of a connection and its
characteristics (bandwidth, latency constraint, priority).

• The traffic flow aggregate bandwidth is the total link
bandwidth utilized by a traffic flow after its source and
destination logical routers are mapped to physical routers,
and the connection between them is routed over the NoC
(i.e. one or more physical routers and links are traversed to
get from source to destination). It can be calculated as:

BWagg(T ) = Nlinks ×BW (T ) (1)

where Nlinks is the number of links in the routed path and
BW (T ) is the connection bandwidth of traffic flow T .

• The traffic flow latency is the total time of a traffic flow
data transfer after its source and destination logical routers
are mapped to physical routers, and the connection between
them is routed over the NoC. It can be calculated as:

Lat(T ) = Nlinks × Llink +Nrouters × Lrouter (2)

where Nlinks and Nrouters are the numbers of traversed
links and routers on the routed path, Llink is the link latency,
and Lrouter is the unloaded router latency. Congestion in
the NoC could increase the traffic flow latency above this
value, but during placement optimization, we are guided by
this lower bound.

Fig. 2: Our proposed flow combines NoC-enhanced VPR and
application-driven simulation using RAD-Sim. VPR co-optimizes the
placement of circuit netlist primitives and NoC logical routers driven
by application NoC traffic flows generated using RAD-Sim.

B. Flow Overview

Fig. 2 shows an overview of our proposed NoC placement
flow. In the first component of the flow, RAD-Sim takes as
inputs a SystemC description of the user design modules
along with user-defined NoC specifications. It performs end-
to-end simulation assuming a random assignment of user
design modules to NoC routers (i.e. random NoC placement)
to generate the application traffic flows. On the other hand, the
HDL implementation of the complete user design (including
black-box instantiations of logical routers connected to design
modules that require access to the NoC as illustrated in
Fig. 1) is synthesized using the Intel Quartus Prime tool. The
synthesis and technology mapping steps can be alternatively
performed using one of the Verilog-to-Routing (VTR) open-
source front-ends (e.g. ODIN-II [31] or Yosys [32]). However,
in this work, we use the Intel Quartus synthesis front-end due
to its better language coverage and quality of results.

Then, we use the VQM2BLIF tool from the Titan flow [33]
to convert the technology-mapped netlist generated by Quartus
as a Verilog Quartus Mapping (VQM) file into the Berkeley
Logic Interchange Format (BLIF) consumed by VPR. We also
extend the XML VPR architecture description file with new
tags to allow the description and modeling of embedded NoCs.
The FPGA architecture description file, the BLIF netlist of the
user design, and the application NoC traffic flows generated
by RAD-Sim are then passed as inputs to VPR. During the
placement stage, our NoC-enhanced VPR optimizes the NoC
placement to minimize the NoC aggregate bandwidth and
latency while simultaneously considering the effect of NoC
placement on the placement of the rest of the circuit netlist
primitives and the programmable routing connections between
them. Finally, VPR produces the FPGA implementation results
(resource utilization and maximum operating frequency) as
well as its NoC placement solution. This NoC placement can
be also fed back to RAD-Sim to evaluate its effect on end-to-
end application performance compared to the initial random
NoC placement.

Our proposed approach integrates the NoC placement op-
timization into the conventional placement step of the FPGA
CAD tools. This gives the placement optimization engine full
flexibility when mapping logical routers to physical router
locations, similarly to any other circuit netlist primitive, to
co-optimize both circuit performance metrics (e.g. timing,



wirelength) and NoC performance metrics (e.g. aggregate
bandwidth, latency). Our approach not only allows the user
to manually specify traffic flows and arbitrary NoC latency
constraints if desired (similar to the AMD Vitis NoC com-
piler), but also enables the automatic generation of application-
specific traffic flows from RAD-Sim to drive the NoC place-
ment optimization. This requires SystemC and HDL imple-
mentations of the same user design modules to drive both
RAD-Sim and the physical design tools, respectively. How-
ever, this can be avoided by either generating HDL from
SystemC using a high-level synthesis tool such as Catapult
HLS [34], or extending RAD-Sim to perform HDL/SystemC
co-simulation at the cost of longer runtime.

C. VPR Enhancements for NoC Modeling and Optimizations
In this work, we enhance both the front-end and the core

placement engine in VPR to enable future research on FPGA
architecture and CAD for devices with hard embedded NoCs.
To maintain the generality of VPR, we first extend its XML-
based FPGA architecture description syntax to enable users to
flexibly model hard NoCs with different specifications. Then,
we introduce a new VPR input file that specifies the traffic
flows between logical routers to drive the NoC placement
optimizations. Finally, we modify the VPR placement engine
to co-optimize for NoC-related metrics such as latency and
aggregate bandwidth. In this sub-section, we cover the imple-
mentation details of these three main enhancements.

1) NoC Description in VPR Architecture File: The first
step in modeling hard NoCs in VPR is to allow users to
flexibly describe the NoC specifications as part of the FPGA
architecture they are experimenting with. Listing 1 is a snippet
from an architecture description file that shows how users
can now specify an embedded hard NoC in their architecture.
The <noc> tag provides high-level NoC specifications such
as the link bandwidth, link latency, and the physical router
tile/block name. Then, the subtag <topology> is used to
describe the general NoC organization. Each entry in this
subtag specifies the identifier (id) and XY grid locations
(positionx, positiony) of a physical router, as well
as the IDs of the physical routers to which it is connected
(connections). This allows the specification of any desired
custom NoC topology. The example in Listing 1 describes a
simple 2×2 regular mesh NoC with routers at grid locations
(0, 0), (0, 5), (5, 0) and (5, 5), link bandwidth of 120 Gbps and
link/router latencies of 1 ns. The NoC description is parsed
from the architecture file and stored in internal VPR data
structures to be used by the placement optimization engine.
We also enhance the VPR graphical user interface to visualize
the specified hard NoC as shown in Fig. 3 for an example
AMD-Versal-like topology.

2) NoC Traffic Flows Input File: To be able to co-optimize
for NoC-related metrics (e.g. latency, aggregate bandwidth)
during placement, the CAD tool needs a description of the
NoC traffic flows in the design. Therefore, we introduce a
new XML-based input file to VPR which specifies the traffic
flows between logical NoC routers. This file can be manually
written by the user based on their knowledge of the appli-
cation design (as in our experiments with synthetic designs
in Section IV) or automatically generated by simulating the
application design (as in our case study using RAD-Sim in
Section V). Listing 2 shows an example traffic flow input file.

1 <!-- Description of a 2x2 mesh NoC-->
2 <noc link_bandwidth="1.2e9" router_latency="1e-9"

link_latency="1e-9"
3 noc_router_tile_name="noc_router_adapter">
4 <topology>
5 <router id="0" positionx="0" positiony="0"

connections="1 2"/>
6 <router id="1" positionx="5" positiony="0"

connections="0 3"/>
7 <router id="2" positionx="0" positiony="5"

connections="0 3"/>
8 <router id="3" positionx="5" positiony="5"

connections="1 2"/>
9 </topology>

10 </noc>

Listing 1: A snippet from a VPR architecture description file
specifying a simple 2×2 mesh NoC.

Fig. 3: A screenshot from the VPR GUI showing a device with a
custom AMD-Versal-like hard NoC topology. The routers and links
of the NoC are shown as black squares and lines, respectively.

The <single_flow> tag specifies the source/destination
logical routers and the bandwidth of this flow. The traffic flow
description can also optionally include a latency constraint
(analogous to a conventional timing constraint) and/or a flow
priority which specifies the weighting factor of this flow in
the NoC placement optimization cost function. If a latency
constraint is not specified, the NoC placement optimization
tries to minimize the latency of the traffic flow as much as
possible, and by default, all traffic flow priorities are set to 1.

3) NoC Placement Optimization: The standard VPR place-
ment engine starts with random initial placement and then uses
simulated annealing (SA) to optimize this initial solution [8].
In SA, a random swap or a directed move [35] is proposed for
one or more netlist primitives, and a certain cost function is
calculated for the new placement. If the cost is improved, the
placement perturbation is accepted and if the cost is degraded,
it can be randomly accepted with a probability that decreases
throughout the placement iterations (based on the annealing
temperature). This allows the placement optimization to es-
cape local minima by sometimes accepting worse solutions,
and also gradually reduces the probability of accepting worse
solutions as the optimization progresses toward a more stable
solution. The cost function of the standard VPR placement
engine (Cnetlist) focuses on minimizing conventional circuit
implementation metrics such as the wirelength and CPD and
would not consider the effect of placement perturbations on
NoC performance metrics. In other words, perturbing the
assignment of logical routers to physical routers using the
standard VPR placer would result in random changes to



1 <traffic_flows>
2 <single_flow src="m0" dst="m1" bandwidth="2.3e9"

latency_cons="3e-9"/>
3 <single_flow src="m0" dst="m2" bandwidth="5e8"/>
4 <single_flow src="ddr" dst="m0" bandwidth="1.3e8

" priority=3/>
5 <single_flow src="m3" dst="m2" bandwidth="4.8e9"

latency_cons="5e-9" priority=2/>
6 </traffic_flows>

Listing 2: An example description of application design traffic flows.

the NoC performance, as the optimization engine would not
evaluate if one NoC placement solution is better or worse
than another. Therefore, we modify the standard VPR placer
to co-optimize both conventional as well as NoC performance
metrics by introducing two new components to the SA cost
function:
• NoC Aggregate Bandwidth: The sum of the aggregate

bandwidths of all traffic flows. Minimizing this metric
reduces NoC bandwidth utilization and congestion by avoid-
ing long travel paths for traffic flows (i.e. fewer physical
NoC routers and links are traversed by a traffic flow).

• NoC Latency: The sum of the unloaded latencies of all
traffic flows. Minimizing this metric reduces the NoC com-
munication latency between application modules and helps
meet any maximum latency constraints specified.
Eq. 3 and 4 are the two new cost function components

for NoC aggregate bandwidth (Cbw) and latency (Clat).
BWagg(Ti) and Lat(Ti) are the aggregate bandwidth and
latency of the traffic flow Ti as defined in Eq. 1 and 2, P (Ti)
and LatConst(Ti) are the priority and maximum latency
constraint of the traffic flow Ti from the traffic flows input
file, and α and β are empirically determined hyper-parameters
to specify different weights for the two terms of Clat. Al-
though not shown in the formulae, these two components
have different units and value ranges (e.g. Cbw ∼ 109 bps
and Clat ∼ 10−9 sec). Therefore, they are first normalized to
equalize their magnitudes and then added to the conventional
placement cost function (Cnetlist) to calculate the new SA cost
function as shown in Eq. 5. Another hyper-parameter, ω, is
used to control the weight of the NoC-related cost components
relative to the conventional ones.

Cbw =
∑
Ti∈T

P (Ti)×BWagg(Ti) (3)

Clat =
∑
Ti∈T

P (Ti)×
(
α × max

(
0, Lat(Ti)−LatConst(Ti)

)
+ β × Lat(Ti)

)
(4)

CTotal = Cnetlist + ω × (Cbw + Clat) (5)

We modify the SA algorithm to update the additional
NoC-related cost components only when the netlist primitives
moved are logical routers. For each logical router moved, we
iterate over all the traffic flows with this router as the source
or destination, and re-route these flows to calculate their new
aggregate bandwidth and latency. We implement two common
NoC routing algorithms: dimension-ordered (XY) routing for
the 2D mesh topology [36] and minimal breadth-first search
routing for any other NoC topology. Our NoC placement

Fig. 4: Modules connected to black-box logical router (LR) IPs as
access points to the NoC. Our modified Titan flow pushes the design
through Quartus synthesis & generates a BLIF netlist for VPR.

optimization is generic and the code is written so that a
new NoC routing algorithm (which must be deterministic)
can be added by writing an implementation of the abstract
NoCRouting class.

IV. FLOW EVALUATION USING SYNTHETIC DESIGNS

In this section, we test our VPR enhancements for NoC
placement using a set of synthetic designs and manually
written NoC traffic flows. These test cases can be considered
micro-benchmarks for which we know the expected outcome
to verify that the enhanced VPR placement engine is behaving
as intended. We first explain how a design is prepared and
pushed through our NoC-enhanced VPR, and then we describe
the set of synthetic benchmarks that we experiment with.
Finally, we present the results of our NoC placement flow to
show that they match the desired outcomes for these designs.

A. Design Preparation
To implement designs with NoC-attached logic, we imple-

ment a black-box logical router Verilog module that can be
instantiated and connected to modules that need to access the
NoC. Our logical router IP presents a standard master/slave
AXI-streaming (AXIS) interface to the application modules
as illustrated in Fig. 4. The logical router module internally
consists of the NoC router along with a NoC adapter that
is responsible for packetizing an AXIS transaction into NoC
flits and vice versa, as well as performing any required
frequency/width adaptation similar to that in [9]. From an
implementation standpoint, the NoC adapter can either be
hardened as part of the physical hard router or mapped to
the FPGA’s soft logic. Studying the trade-off between a hard,
soft, or mixed NoC adapter is tangential to this work and, for
simplicity, we assume a hardened NoC adapter (i.e. a logical
router is directly mapped to a physical router without any
additional soft logic).

To prepare a design for our NoC-enhanced CAD flow,
we write the design top-level to instantiate all the design
modules and connect them to each other and to logical
router modules when they access the NoC. We also modify
the Titan flow [33] to support custom hard blocks. It can
now automatically set user-specified modules that should be
implemented with new hard blocks (logical routers in our case)
as empty design partitions, and adds synthesis directives to
prevent the tool from optimizing away the input/output port
registers of these modules during synthesis. Then, it pushes
the design through the Quartus synthesis engine and uses our
modified VQM2BLIF tool to convert the Quartus synthesized
netlist to a BLIF netlist with logical routers instantiated as hard
block netlist primitives to be later mapped by VPR to physical
router blocks described in the FPGA architecture XML file.



Fig. 5: Communication patterns and example high quality NoC place-
ments for our 1D chain, star, and 2D nearest neighbor benchmarks.

B. Synthetic Benchmarks
To test our NoC placement, we create a set of synthetic

benchmarks that have different NoC traffic patterns, bandwidth
requirements, latency constraints, and the number and size
of application modules. These benchmarks are designed such
that high-quality (sometimes optimal) placements for them are
known, allowing us to evaluate the achieved NoC placement
quality against these known solutions; similar techniques have
been used to evaluate ASIC placement tool quality [37]. Fig. 5
depicts the three different types of synthetic benchmarks we
implement as well as an example of expected high-quality
placement for each of them. Our synthetic benchmarks can be
described as follows:

1) 1D Chain: This benchmark contains NoC-attached mod-
ules with traffic flows going from one module to the next
in a serial 1D chain (A → B → C → ...). The traffic
flows between logical routers have tight latency constraints
that can be met only if they span a single NoC link. An
optimal solution would place communicating logical routers
at neighboring physical router locations in a snake-like layout.

2) Star: This benchmark creates a 1-to-N scatter commu-
nication pattern where one application module communicates
with all other modules in the design (A → {B,C,D, ...}). We
implement two variations of this benchmark: one with equal
bandwidth requirements and no latency constraints for all
traffic flows, and another with gradually decreasing bandwidth
requirements and relaxing latency constraints for different traf-
fic flows. For both variations, high-quality solutions place the
single source logical router at a central physical router with all
other destination logical routers placed around it. Additionally,
for the second variation, we expect the destination logical
routers with higher bandwidth and tighter latency traffic flows
to be placed closer to the central source router (as shown by
the red bold traffic flows from A to B,C,D,E in Fig. 5).

3) 2D Nearest Neighbor: The last type of synthetic bench-
marks implements a 2D grid of application modules with one
direction nearest neighbor traffic flows (A → {B,D}, B →
{C,E}, ...) as shown in Fig. 5. Similarly to the 1D chain
benchmark, we set the latency constraints of the traffic flows
to be satisfied only when the communicating logical routers
are mapped to neighboring physical routers.

Fig. 6: Effect of the value of ω on different metrics. ω = 0.6 achieves
most of the benefits for NoC aggregate bandwidth and latency with
almost no effect on post-placement estimated wirelength and CPD.

For each of these benchmark types, we implement two
variations (which we refer to as simple and complex for the
rest of this section). For the simple variations, the application
modules connected to logical routers are simple 32-bit coun-
ters and accumulators (i.e. tens of netlist primitives). On the
other hand, the complex variations have relatively larger and
more complex application modules implementing FIR filters
and SHA encryption cores (i.e. hundreds to thousands of netlist
primitives). For the results in this section, we use the nam-
ing convention <s/c>-<type>-<R>r-<X>bw/<Y>lat to
specify the simple/complex (s/c) variation, the benchmark
type (as 1D chain, star, or 2D nearest neighbors), number
of logical routers (R), and the number of different bandwidth
requirements (X) or latency constraints (Y) for the travel flows.
For example, c-nn2d-64r-112lat identifies the complex
variation of the 2D nearest neighbor benchmark with 64
logical routers and 112 latency constraints.

C. Experimental Results

We run all our experiments on an Intel Xeon Gold 6146
CPU with a 3.2 GHz clock speed and 768 GB of RAM. Our
NoC-enhanced VPR builds on top of the latest VPR 8 version
from the Verilog-to-Routing Github repository [38]. All the
results presented in the rest of this paper are averaged across 5
seeds to minimize the effect of CAD noise and run variations.

1) Tuning Hyper-parameters: We run experiments to em-
pirically select the placement cost function hyper-parameters
(α, β, ω) in Eq. 4 and 5. We first set both α and β values to
1, and sweep the value of ω for a suite of our simple and
complex synthetic benchmarks. Fig. 6 shows the geometric
average of the NoC metrics (aggregate bandwidth and latency)
as well as post-placement estimates of wirelength and CPD
relative to running with NoC placement optimization disabled
(ω = 0). The results show that increasing the value of ω
beyond 0.6 does not provide any additional benefits for the
NoC aggregate bandwidth and latency. On the other hand, the
estimated wirelength and CPD slightly increase when ω > 0,
but are almost unaffected by the value of ω. Therefore, we
pick ω = 0.6, which achieves good NoC performance without
negatively affecting the optimization of conventional metrics.

Fig. 7 shows the percentage of the user-specified latency
constraints satisfied by the placement engine when α = 0
and α = 1 (i.e. the effect of adding the latency constraint
term to the cost function in Eq. 4). The results show that
when α is set to 1, the tool successfully satisfies almost all
the latency constraints. Note that in some of our benchmarks,
we deliberately specify latency constraints that are impossible
to satisfy to also test the tool under extreme conditions. Setting
α to 1 also does not result in any noticeable degradation



Fig. 7: Effect of the latency constraint cost term on the percentage
of satisfied latency constraints.

Fig. 8: Effect of the (lower bound) percentage of logical router moves
during placement on different metrics. Setting this value in the range
of 40-60% improves NoC aggregate bandwidth and latency without
significantly impacting estimated wirelength and CPD.

in the post-placement estimated wirelength and CPD results.
Following the same methodology, we select β = 0.05 which
achieves a good trade-off between NoC performance metrics,
wirelength, and CPD. We omit the detailed results for brevity.

2) Percentage of NoC Router Moves: We also study the
effect of the number of logical router moves during placement
on the quality of results. Since the number of logical router
blocks can be a very small portion of all netlist blocks,
randomly selecting a block for a placement move can result in
fewer logical router moves than needed to fully optimize the
NoC placement. Therefore, we counteract this by introducing
a hard lower bound router move percentage (Prouters). For
example, a lower bound percentage of 20% means that after
every 4 block moves of any type selected by the placement
reinforcement learning (RL) agent [35], a logical router block
move is suggested. Fig. 8 shows the effect of increasing this
lower bound percentage from 0% (baseline RL agent move se-
lection) to 100% (only move logical router blocks) on different
metrics. The results show that the NoC aggregate bandwidth
and latency cost improve by 5-10% as more router moves are
performed. On the other hand, the estimated wirelength and
CPD are degraded as fewer placement moves are allocated to
other netlist primitives, which negatively affects these metrics.
A ratio of 20-60% of the placement moves dedicated to logical
routers achieves a reasonable trade-off for these benchmarks.
For the rest of this work, we manually set this value to 40% but
in future work, we are planning to enhance the RL placement
agent to also dynamically select the block type as well as the
move type depending on the annealing stage. For example,
the RL agent might find it more useful to suggest more router
block moves earlier in the anneal, rather than later when
moving a logical router location can be more disruptive to
the placement solution.

3) NoC Placement Optimization Results: After empirically
picking the cost function hyper-parameters (ω = 0.6, α = 1,
β = 0.05) and the lower bound percentage of router moves
(Prouters = 0.4), we run all our 27 complex synthetic
benchmarks through the NoC-enhanced VPR flow and mea-

Fig. 9: Effect of NoC placement optimization on NoC aggregate
bandwidth, NoC latency, estimated wirelength, and CPD for our
complex synthetic benchmarks.

sure different placement quality metrics. Fig 9 shows the
normalized results for the NoC aggregate bandwidth, NoC
latency, post-placement estimated wirelength, and CPD. For
the NoC aggregate bandwidth and latency, we also manually
calculate the results for an optimal NoC placement of these
benchmarks and compare them to our NoC placement opti-
mization solutions. The results show that our NoC-enhanced
VPR can optimize the NoC placement of these benchmarks
and significantly reduce the NoC aggregate bandwidth and
latency by a factor of 2× on average. As shown in the top
two bar charts in Fig. 9, VPR results when optimizing NoC
placement are very close to those of the optimal solution in
most cases. The bottom two graphs of Fig. 9 also show that
the added NoC placement optimization has little effect on the
conventional placement quality metrics. The average increases
in estimated wirelength and CPD are 5% and 1%, respectively.

V. CASE STUDY: RAD-SIM & NOC-ENHANCED VPR
In this section, we present a case study that showcases

our full flow shown in Fig. 2 with a real application design
from the DL domain. We use RAD-Sim [9] to simulate the
application design and automatically generate the traffic flows
of real workloads to drive VPR’s NoC placement optimization.

A. Application Design: Multi-Layer Perceptron Accelerator
For our case study, we develop a complete application

design from the DL domain, both in SystemC to be simulated
in RAD-Sim, and HDL to be pushed through the physical
design flow. We implement a streaming-style accelerator for
multi-layer perceptron (MLP) models that uses the NoC for
communication between its compute engines. MLP models are
feedforward neural networks in which each layer is a linear
transformation of its input vector, followed by a non-linear



Fig. 10: Mapping of MLP to matrix-vector multiplications and
mapping of each matrix-vector multiplication to MVM engines.

activation function (e.g. ReLU). Therefore, an MLP can be
viewed as a sequence of back-to-back matrix-vector multipli-
cations (MVMs) and non-linear activations, as illustrated in
the upper part of Fig. 10.

To perform the computation of each layer, we tile the MVM
into column blocks (highlighted with different colors in the
bottom part of Fig. 10), and map alternating tiles to Ml differ-
ent MVM compute engines. By doing that, all MVM engines
dedicated to a specific layer can start processing different tiles
in parallel, accumulate the partial results of different tiles over
time steps, and finally reduce the accumulated partial results
across MVM engines to produce the final result. The output is
then passed through the activation function and distributed by
the last MVM engine of layer l to the Ml+1 MVM engines
of the next layer l + 1, as shown in Fig. 10 for M2 = 2 and
M3 = 4. Our MVM engines are designed to fully parallelize
the multiplication of a 16-element vector by a 16×16 matrix.
If the matrix has more rows (e.g. 16N in Fig. 10), groups of
16 rows are processed sequentially over multiple time steps
before processing the next column block.

Fig. 11 shows the internal architecture of an MVM engine.
It has AXIS input/output interfaces to interface with the logical
router IP discussed in Section IV. An input arbitration block
steers incoming data to the instruction memory, input FIFO,
or reduce FIFO depending on an associated tag value. The
instruction memory stores program instruction words that
orchestrate the execution of the MVM engine. The input
and reduce FIFOs buffer the multiplication input vectors and
partial result vectors for reduction across engines of the same
layer, respectively. The MVM engine has 16 dot product
engines, each of which is 16 lanes wide, to multiply a broad-
cast input vector by 16 distinct matrix rows from the local
matrix memory banks. These are followed by accumulators to
accumulate partial results from different matrix column blocks
over time and store them in the accumulation memory. Then,
the reduction units add the final accumulated results to those
produced by another MVM in the same layer and buffered
in the reduce FIFO. Finally, the results are concatenated,

Fig. 11: MVM engine internal architecture.

TABLE I: MLP Acceleration test cases. I is the input vector size, H
is the hidden dimensions of MLP layers, and LR is the total number
of logical NoC routers in the design.

Layers I H MVMs/Layer LR
MLP1 4 512 {512, 512, 256, 128} {4, 3, 2, 2} 16
MLP2 2 512 {512, 512} {4, 4} 13
MLP3 4 256 {256, 256, 256, 256} {2, 2, 2, 2} 11
MLP4 3 1024 {512, 256, 128} {2, 2, 2} 9

passed through the activation block, and buffered in the
MVM output FIFO. When synthesized for a Stratix-IV-like
architecture [33] with Arria-10-style DSP blocks supporting
floating-point precision [39], a single MVM engine utilizes
17, 441 logic elements, 288 DSPs, and 538 9Kb BRAMs.
Besides the MVM engines, we implement input dispatcher
modules that send initial input vectors to the MVMs of the first
layer and a result collector module to which the last MVM of
the last layer sends the final outputs.

We also implement a model compiler that takes as input
an MLP description (number of layers, input size, hidden
layer dimensions, number of MVM engines dedicated to each
layer) and produces matrix memory initialization files, test
inputs, and their corresponding golden results, and program
instructions for each MVM engine such that all MVM engines
collectively implement the described MLP. The outputs of
this compiler are used to drive the RAD-Sim simulation and
generate NoC traffic flows for realistic MLP workloads.

B. Experimental Results

Table I lists the parameters of the different MLP acceleration
test cases that we experiment with. We first simulate all four
test cases using RAD-Sim with a random NoC placement to
generate the end-to-end application NoC traffic flows. Then,
we pass the NoC traffic flow files and the HDL implementation
of each test case through our physical design flow shown in
Fig. 2 (our modified Titan flow for synthesis using Quartus
followed by our NoC-enhanced VPR). Fig. 12 shows the
effect of the NoC and circuit placement co-optimization (in
comparison to no NoC placement optimization) on different
implementation metrics. Fig. 12a and 12b show that our NoC-
enhanced VPR can effectively optimize the NoC placement
of large realistic designs and reduce the NoC aggregate band-
width and latency by 2× and 1.6× on average, respectively.
These improvements are achieved while preserving the circuit
implementation quality. As shown in Fig. 12c and 12d, the
final operating frequency and routed wirelength are within
3% of their values when no NoC placement optimization
is performed. Finally, adding NoC placement optimization
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Fig. 12: Results for the MLP acceleration test cases with and
without NoC placement optimization: (a) aggregate NoC bandwidth,
(b) NoC latency, (c) post-routing frequency, (d) router wirelength,
and (e) placement runtime. Our NoC-enhanced VPR optimizes NoC
aggregate bandwidth and latency without affecting the final operating
frequency and routed wirelength.

Fig. 13: Comparison of NoC traffic patterns (red arrows) of MLP1 test
case when using a random NoC placement (left) vs. optimized NoC
placement produced by VPR (right). D is input dispatcher, L •M⋄
is MVM ⋄ of layer •, and C is result collector.

increases the placement runtime by 8-25% (17% on average)
as shown in Fig. 12e. As expected, we can see that the
optimized NoC placement produced by VPR results in much
simpler and more regular NoC communication as shown by
the visualizations generated by RAD-Sim in Fig. 13 for the
MLP1 test case as an example.

C. The Benefit of Co-Optimization
The approach we present in this work integrates the NoC

placement optimization into the conventional placement en-
gine of the CAD flow. Another alternative is to perform a
two-phase optimization in which the NoC placement is first
optimized based on traffic flow information and then after
NoC router locations are fixed, the rest of the circuit is placed
using the conventional CAD tool placement engine. To the best
of our knowledge, the two-phase approach is similar to that
used by the NoC compiler in the AMD Vitis flow to optimize
NoC placement for Versal devices [6], [29], although Vitis can
iterate this 2-step flow multiple times in the case of legality
or quality problems [30]. In this subsection, we evaluate the
quality of results of both approaches using a variation of the
MLP1 test case that uses a mix of programmable routing
(between MVMs of the same layer) and NoC-based (between
layers) communication.

To perform a two-phase optimization, we first run our NoC-
enhanced VPR to optimize logical router locations with no
logic attached to them using the application’s traffic flows.
Then, we fix these logical router locations to optimize NoC

Fig. 14: Results for 2-phase placement optimization (NoC placement
then circuit placement) vs. NoC & circuit placement co-optimization.

performance and run the tool again with the full MVM logic
attached to the routers. Fig. 14 shows the results of this
approach compared to our NoC and circuit placement co-
optimization approach. Both approaches achieved the same
NoC performance results, showing their effectiveness in find-
ing performant NoC placement solutions. However, the final
operating frequency and routed wirelength achieved by the
two-phase optimization are 13% and 2% worse than that
of the co-optimization approach, respectively. This highlights
that some NoC placement solutions can result in a more
difficult place and route problem for the rest of the circuit
netlist, degrading the quality of results. Although the co-
optimization approach increases placement time by 7% in this
case, it resulted in a much easier routing problem that took
approximately half the time to solve compared to the two-
phase approach, as shown in the last two graphs of Fig. 14.

VI. CONCLUSION

In this paper, we enhanced the open-source VPR CAD
flow to allow the exploration of new FPGA architectures with
hard NoCs as well as new CAD algorithms for them. First,
we extended the VPR FPGA architecture modeling language
to describe embedded NoCs with different specifications and
defined a traffic flow input file to capture a design’s NoC
communication patterns. Then, we modified the VPR place-
ment engine to co-optimize NoC performance along with the
conventional circuit metrics of wirelength and CPD. On a suite
of synthetic benchmarks, the resulting flow achieves optimal
or near-optimal NoC bandwidth and latency metrics, with little
degradation in circuit wirelength or CPD.

Finally, we showcased the full flow integrating our NoC-
enhanced VPR and RAD-Sim, a SystemC architectural sim-
ulator for novel reconfigurable acceleration devices. We use
RAD-Sim to simulate four variations of an application design
from the DL domain and generate NoC traffic flows for
realistic workloads, which are then used to drive the NoC
placement optimization in VPR. Enabling NoC placement
optimization in VPR reduced the NoC aggregate bandwidth
and latency of these application designs by 2× on average,
with minimal impact on the achieved operating frequency and
routed wirelength. We also show that our NoC and circuit
placement co-optimization approach results in better quality
of results and faster routing runtime compared to a two-phase
approach in which the NoC placement is separately optimized
first and then the remaining netlist placement is optimized after
using a conventional FPGA CAD flow.
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