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Deep neural networks (DNNs) have become key solutions in the natural language processing (NLP) domain.

However, the existing accelerators customized for their narrow target models cannot support diverse NLP

models. Therefore, naively running complex NLP models on the existing accelerators often leads to very

marginal performance improvements. For these reasons, architects are now in dire need of a new accelerator

that can run various NLP models while taking its full performance potential. In this article, we propose

FlexRun, an FPGA-based modular accelerator to efficiently support diverse and complex NLP models. First,

we identify key components commonly used by NLP models and implement them on top of a current state-

of-the-art FPGA-based accelerator. Next, FlexRun conducts an in-depth design space exploration to find the

best accelerator architecture for a target NLP model. Last, FlexRun automatically reconfigures the accelerator

based on the exploration results. Our FlexRun design outperforms the current state-of-the-art FPGA-based

accelerator by 1.21×–2.73× and 1.15×–1.50× for BERT and GPT2, respectively. Compared to Nvidia’s V100

GPU, FlexRun achieves 2.69× higher performance on average for various BERT and GPT2 models.
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1 INTRODUCTION

Recently, deep neural network (DNN)-based natural language processing (NLP) models are
rapidly developing, bringing a breakthrough in the field of NLP. There are two types of DNN-based
NLP models, and both types show high accuracy in various NLP tasks. For example, recurrent
neural network-based [30] models are good at speech recognition [16]. Meanwhile, attention-based
models show good performance for tasks such as question answering and language modeling.

There are various types of services that use NLP models. Some of these NLP tasks have strict real-
time constraints (i.e., real-time interactive services [11]) while others are performed offline with
relaxed latency requirements (e.g., text summarization). For the real-time NLP tasks, it is necessary
to support a fast batch-1 inference for the immediate responses. However, it is challenging to
accelerate NLP models in a single batch due to their following characteristics: (1) diverse and
complex operations, (2) various ranges of dimensions, (3) various parameter configurations, and
(4) heterogeneous vector operations. In this article, we focus on accelerating NLP tasks for real-
time interactive NLP services.

These characteristics of NLP models incur three challenges (i.e., non-negligible vector opera-
tions’ latency, a wide range of dimensions and irregular matrix operations, heterogeneity of vec-
tor operations). First, challenge 1: We need to reduce the overhead of vector operations. According
to characteristic (1), NLP models have a number of complex vector operations, resulting in non-
negligible overhead. Second, challenge 2: We should cover a wide range of dimensions and deal
with irregular matrix operations in the models. Due to characteristics (2) and (3), NLP models’ sizes
and dimensions span a very wide range, and there are many irregular matrix operations. Last, chal-
lange 3: We should handle the heterogeneity of vector operations because in characteristic (4), NLP
models consist of vector operations of different types, orders, and lengths.

However, existing accelerators [1, 11–13, 26] cannot solve these three challenges. For example,
GPUs show low utilization when running NLP models in a single batch or running models with
small dimensions because they are throughput-oriented. Also, some works design ASICs for
target models. But ASICs made for a particular model and configuration [13] perform poorly on
different models or the same model with different configurations. Therefore, prior approaches
degrade the performance of NLP models that they are not originally targeting. Also, they fail to
support various NLP models due to the absence of functional units required by some NLP models.

In this article, we propose FlexRun, an FPGA-based modular architecture approach to solve the
three challenges of accelerating NLP models. FlexRun exploits the high reconfigurability of FPGAs
to dynamically adapt the architecture to the target model and its configuration. FlexRun includes
three main schemes, FlexRun:Architecture, FlexRun:Algorithm, and FlexRun:Automation.

First, FlexRun:Architecture is an FPGA-based flexible base architecture template. Our base ar-
chitecture template alleviates the overhead of vector operations by adopting a deeply pipelined
architecture, resolving challenge 1. Most importantly, it consists of parameterized pre-defined ba-
sic modules so we can configure the architecture to fit the input model and its configuration.

Next, we suggest FlexRun:Algorithm, design space exploration algorithms to get the optimal
compute unit (i.e., matrix unit, vector unit) design by finding the best modules and parameters
set for the input models, resolving challenge 2 and challenge 3. For FlexRun:Algorithm, we define
the design space of the base architecture template (i.e, matrix unit: three dimensions of matrix
multiplication unit, vector unit: vector operators’ types, order, and number).

Last, we propose an automatic tool, FlexRun:Automation, which automates the entire flow
to find the best architecture and implement it. FlexRun:Automation reconfigures compute units,
memory units, and interconnects according to the results of FlexRun:Algorithm. Also, it generates
a new decoder so instructions can be properly decoded to the modified architecture.
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Fig. 1. Architecture of RNN-based models 1(a) and detailed cell operations of an LSTM 1(b).

For evaluation, we compare FlexRun with Intel’s Brainwave-like architecture [26] on FPGA
(Stratix10 GX and MX) and equivalent GPU (Tesla V100) with tensor cores enabled. First, com-
pared to the FPGA baseline, FlexRun achieves an average speedup of 1.59× on various configu-
rations of BERT. For GPT2, FlexRun gets 1.31× average speedup. Next, when comparing to the
GPU implementation, FlexRun improves the performance by 2.79× and 2.59× for BERT and GPT2,
respectively. Last, we evaluate the scalability of FlexRun by doubling the compute and memory re-
sources of FPGAs, modeling hypothetical next-generation FPGAs. The results show that FlexRun
is able to get the scalable performance improvement, showing 1.57× additional speedup compared
to current generation FPGAs.

2 BACKGROUND

2.1 Neural Network-based NLP Models

There are two types of DNN-based NLP models. The first is Recurrent Neural Networks (RNNs)

models such as SRNN, long short term memory (LSTM) [17], and gated recurrent neural

networks (GRU) [30]. The other is attention-based NLP models, which include Transformer [35],
BERT [10], and GPT2 [27]. Both types are used for various NLP tasks such as speech recognition
and question-answering. For example, RNN-based models are mainly for speech recognition [16].
Meanwhile, attention-based models exhibit high accuracy in question-answering tasks [28].

2.1.1 RNN-based NLP Models. First, we introduce RNN-based NLP models (e.g., LSTM, GRU). In
Figure 1(a), RNNs are structures in which cells of the same operations are repeated with incoming
inputs over time. The operations in the cell differ, depending on the type of RNNs, but they usually
consist of matrix-vector multiplications and vector operations. The cells are stacked for higher
accuracy, which is called a multi-layer model. As an example, we describe the cell operations of
LSTM [17]. An LSTM’s cell consists of four gates (i.e., forget, input, cell, output) and each gate has
two weight matrices and one bias vector (Wf ,Uf ,bf ,Wi ,Ui ,bi ,Wc ,Uc ,bc ,Wo ,Uo ,bo ) of the same

dimensions (W ∈ Rdhidden×dhidden , b ∈ R1×dhidden ). Figure 1(b) illustrates each gate’s operations.
In Figure 1(b), xt ,ht , it , ft , ct , and ot indicate the input, state vector, input gate, forget gate, cell
state, and output gate of time t , respectively. They are vectors of the same dimension, R1×dhidden .
Also, “∗,+, siдmoid, tanh (hyperbolic tanдent )” are element-wise vector operations, while “×” is
a matrix-vector multiplication. In Figure 1(b), we highlight the vector operations with red boxes,
and we omit bias add operations for simplicity.

2.1.2 Attention-based NLP Models. Next, attention-based NLP models such as BERT [10] and
GPT2 [27] achieve high accuracy, thanks to attention operations [5] that can catch the relation-
ship between words. In addition to the attention operations, they include many other complex
operations.
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Fig. 2. Operations for a one layer of BERT.

We describe BERT as an example of the attention-based NLP models. As shown in Figure 2, BERT

consists of multiple layers, and each layer has weights of diverse dimensions (e.g.,W
Q

i /W
K

i /W
V
i ∈

R
dhidden×dhead , b

Q
i /b

K
i /b

V
i ∈ R1×dhead , W att ∈ Rdhidden×dhidden , W f f 1 ∈ Rdhidden×df f , bf f 1 ∈

R
1×df f , W f f 2 ∈ Rdf f ×dhidden , bf f 2/дamma1,2/beta1,2, ∈ R1×dhidden where i = 1 . . . #head). When

BERT receives input I (I ∈ RS×dhidden ), the operations of Figure 2 are repeated as many as the
number of layers. We highlight the vector operations (i.e., Softmax, +, Layer Normalization, gelu)
with red check marks. Layer Normalization is complex operations that include several basic vector
operations such as addition or multiplication. Note that we omit the bias operations in Figure 2
for simplicity, too.

Other attention-based NLP models are similar to BERT, but they have some differences. For ex-
ample, GPT2 [27] does the same operations as BERT, but it has dependencies between incoming
input vectors. The next input vector cannot start processing until the operations on the previous
input vector are complete. Such structures with dependencies between the inputs are called de-
coder structures. However, BERT has no dependency between its inputs. The structures like BERT
are called encoder structures. In the case of a Transformer [35], it includes both an encoder and a
decoder structure, and ReLU is used as an activation function instead of gelu.

2.2 Fast Inference Support for NLP Tasks

For NLP tasks, fast inference in a single batch is very important [11]. This is because there are
many real-time interactive services (e.g., speech recognition, translation) that use NLP models.
Interactive services require immediate responses; otherwise, their quality of service (QoS) will be
seriously compromised. For immediate responses, we cannot deploy batch processing that collects
multiple inputs and processes them at once. Instead, the input should be processed as soon as it
arrives. For example, two inference scenarios of MLPerf [29] that target responsiveness-critical
applications (e.g., online translation) set their batch size as 1 and use latency as the key evaluation
metric.

3 MOTIVATION

3.1 Characteristics of NLP Models

3.1.1 Diverse and Complex Operations. The NLP models consist of diverse and complex

operations. In Figure 3(a), the y-axis indicates how many different types of operations each NLP
model has (e.g., gemv, gemm, transpose, exponent, sigmoid, tanh, ReLU, gelu, add/sub, multipli-
cation, reduction, square, sqrt, reciprocal). In the figure, NLP models include several different
operations. For example, BERT-LARGE has 10 different types of operations. In detail, we list the
operations each NLP model contains in Table 1. As shown in Table 1, NLP models, especially

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 11. Publication date: February 2023.



A Fast and Flexible FPGA-based Accelerator for NLP Neural Networks 11:5

Fig. 3. Figure 3(a) shows the number of operation types (y-axis) and ranges of dimensions (x-axis) for GPT2-

MEDIUM, BERT-LARGE, LSTM-1024, and SRNN-1024. The word and number after the hyphen represents

the parameter scales. Figure 3(b) shows some gemm (general matrix multiplications) operations in BERT-

LARGE.

Table 1. Matrix and Vector Operation Types in NLP Models

NLP model
Matrix Operations Vector Operations

gemv gemm transpose activation exp add/sub mul reduction square/sqrt/div

SRNN ✓ - - tanh - ✓ ✓ - -
LSTM ✓ - - sig/tanh - ✓ ✓ - -
GRU ✓ - - sig/tanh - ✓ ✓ - -

Transformer ✓ ✓ ✓ ReLU ✓ ✓ ✓ ✓ ✓
BERT - ✓ ✓ gelu ✓ ✓ ✓ ✓ ✓
GPT2 ✓ ✓ ✓ gelu ✓ ✓ ✓ ✓ ✓

gemv and gemm are general matrix-vector and matrix-matrix multiplications, respectively. In case of the vector

operations, all operations except reduction are element-wise operations. tanh, sig, exp, mul, and div stand for tangent

hyperbolic, sigmoid, exponential, multiplication, and division operations, respectively.

attention-based NLP models (i.e., BERT, GPT2) have a number of complex operations such as
exponent or reduction.

3.1.2 Various Range of Dimensions. NLP models have operations of various dimensions.
First, NLP models have to deal with a wide range of dimensions. In Figure 3(a), the x-axis is the
dimension range of different NLP models. Dimension range is the minimum and maximum values
of the operations’ dimensions in the models. The figure shows that attention-based NLP models
such as BERT and GPT2 consist of operations of varying dimensions. For example, BERT-LARGE
has dimension sizes ranging from 64 to 4,096.

Also, gemm operations in attention-based NLP models have very irregular dimensions rather
than a square. For example, in Figure 3(b), we can observe that the first gemm operation of BERT-
LARGE has two dimensions, 64 and 256, that differ by four times.

3.1.3 Various Parameter Configurations. For each NLP model, there are many different

parameter configurations. Table 4 shows some parameter configurations for BERT. In the ta-
ble, there are many versions of BERT according to parameter scales, from TINY to MG3 (Mega-

tron3) [33]. These different versions do the same operations but with totally different parameter
scales. For example, BERT-MG3 uses 24× larger dhidden dimensions (3,072) than BERT-TINY (128).
Other NLP models also have various parameter configurations.

3.1.4 Heterogeneous Vector Operations. NLP models have heterogeneous vector opera-

tions. Figure 4 visualizes the lists of vector operations that are executed sequentially (i.e.,
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Fig. 4. The lists of sequential-vector-operations in SRNN, LSTM, GRU, and BERT. Sequential-vector-

operations are marked with s# in the figure.

Fig. 5. The latency breakdown of BERT-TINY, BERT-BASE, and BERT-LARGE on Tesla V100. We use XLA [8],

the compiler optimization provided by TensorFlow [4]. Refer to Section 5.2.2 for a detailed experimental

setup.

sequential-vector-operation, marked as s in the figure) in SRNN, LSTM, GRU, and BERT. From
the figure, we can observe that most NLP models have quite heterogeneous sequential-vector-
operations. For example, there is no overlap between BERT’s sequential-vector-operations (i.e.,
s1 ~ s4) and GRU’s sequential-vector-operations (i.e., s1 ~ s3). Also, s2 and s4 of BERT greatly differ
in both lengths and types of vector operations.

We summarize the characteristics of NLP models as follows:

• NLP models have various and complex operations. Specifically, attention-based NLP models
have much more complex and diverse operations.
• NLP models consist of a wide range of dimensions and irregular matrix operations.
• NLP models have a large diversity in terms of parameter configurations.
• The sequential-vector-operations of NLP models are heterogeneous.

3.2 Challenges of NLP Models

From the characteristics of NLP models, we derive challenges that make fast inference support
difficult for NLP models in a single batch environment.

3.2.1 Challenge 1: Non-negligible Vector Operations’ Latency. First, complex vector operations
of NLP models have non-negligible overhead. They take a dominant portion of total latency in a
single batch environment. Figure 5 is a latency breakdown of BERT-TINY, BERT-BASE, and BERT-
LARGE on GPU Tesla V100 [1]. For BERT-LARGE, vector operations take 66.7% of total latency,
which is comparable to twice the matrix operations. Also, as the size of the model shrinks, the
portion taken by vector operations grows. In BERT-BASE and BERT-TINY, vector operations take
72.9% and 88.5% of total latency, respectively. Note that we apply XLA [8], the compiler optimiza-
tion of TensorFlow [4] that minimizes the vector operations’ latency by applying layer fusion.
Therefore, to achieve high performance for NLP models, we should further reduce the overhead
of vector operations.

3.2.2 Challenge 2: Wide Range of Dimensions and Irregular Matrix Operations. Next, NLP mod-
els cover a very wide range of dimensions, as shown in Figure 3(a). Also, in attention-based NLP
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models, most matrix operations are irregular (Figure 3(b)). In addition, there are diverse parame-
ter configurations in the same model (Table 4). Therefore, the NLP accelerator should be able to
run both small and big models quickly while dealing with various dimensions of irregular matrix
operations. However, the conventional accelerators (e.g., big square systolic array) exhibit slow
inference due to the low utilization of matrix operations, as they cannot deal with diversity and
irregularity of dimensions.

3.2.3 Challenge 3: Heterogeneity of Vector Operations. As shown in the Figure 4, the NLP mod-
els consist of vector operations of different types, orders, and lengths. As previously mentioned,
there is no overlap between the models’ sequential-vector-operations (i.e., BERT: s1 ~ s4 and GRU:
s1 ~ s3). Also, sequential-vector-operations vary within the same model, too. In Figure 4, BERT’s
s3 and s4 are different in the types, orders, and lengths of the vector operations. So, to accelerate
the NLP models, it is essential to efficiently support all models’ vector operations.

3.3 Limitations of Previous Works

There have been many works to accelerate the NLP models. They generally take the following ap-
proaches: using a general-purpose accelerator (i.e., GPU) or designing the specialized architecture
for the specific models (i.e., ASICs). Some works [14, 22, 23, 34, 37, 39] propose techniques (i.e.,
pruning, compression, and approximation) to make the models lightweight and design architec-
ture exploiting their techniques as well. However, those approaches cannot properly deal with the
three challenges of NLP models.

3.3.1 GPU (General-purpose Accelerator). GPUs are the most commonly used accelerators for
various DNN models. Thanks to a convenient framework and highly parallel architecture, GPUs
can support various models and achieve high performance for big models or models with a large
batch size [24]. However, GPUs cannot well handle the NLP models in the single batch environ-
ment. Figure 6 shows the average utilization of tensor cores (matrix compute units) and CUDA
Cores (vector compute units) in V100 for different versions of BERT, assuming a single batch envi-
ronment. We observe that GPUs are severely underutilized in a single batch environment even for
a large model (Tensor cores: 5.55%, CUDA Cores: 0.21% for BERT-LARGE). In addition, utilization
dramatically decreases as the model’s size diminishes. For example, BERT-BASE has 4.23% and
0.22% effective utilization for tensor cores and CUDA Cores, respectively, while BERT-TINY has
only 0.15% and 0.05%.

Also, GPUs cannot run vector operations efficiently, as they mainly focus on matrix operations.
Figure 7 is the change in utilizations over time when running single batch BERT-LARGE on V100.
In Figure 7, the latency of vector operations (CUDA Cores) is exposed and takes a larger portion
than the gemm operations (Tensor cores). Also, utilization of vector operations is very low (0.78%
at maximum). This severe underutilization is due to the working mechanism of GPU, where data go
down into memory between every gemm and vector operation, resulting in frequent memory ac-
cess. In conclusion, GPUs are not adequate for running NLP models in a single batch environment.

3.3.2 ASICs and FPGA. Previous works [12, 13] implement ASICs for specific models. ASICs
usually show a great performance for a target model and configuration. They are exploiting unique
characteristics of the target model and have the best setting for the target configurations. However,
ASICs fail to resolve challenge 2 (i.e., diversity and irregularity of dimensions) and challenge 3 (i.e.,
heterogeneous vector operations) of NLP models, as they are fixed architectures.

First, ASICs optimized for a specific model and configuration may not show good performance
for the same models with different parameter configurations. However, there are diverse parameter
configurations for the same NLP models. Also, we can arbitrarily change parameters as in previous
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Fig. 6. Tesla V100’s (Tensor cores and CUDA Cores) utilization on different versions of BERT.

Fig. 7. The utilization of V100 on BERT-LARGE over time. The gray boxes are gemm operations using tensor

cores, and the shaded boxes are vector operations using CUDA Cores.

studies [32, 33]. For example, A3 [13] focuses on the attention operations of NLP models, making
attention-specialized units. A3 sets one of its specialized units’ size as the same as dhead size (64)
of BERT-LARGE/BASE. However, if we change dhead size to 32 [33], then utilization will be cut in
half.

Also, ASICs may fail to run NLP models that they do not cover. For example, ASICs optimized
for LSTM cannot run the attention-based NLP models like BERT due to the absence of required
units (e.g., transpose, reduction, sqrt). They can run the models by adding a few units, but it will
be inefficient without optimization for new models. However, changing existing architecture or
designing new architecture for every upcoming model is impossible, because new models are re-
leased at such a rapid pace, resulting in excessive engineering costs.

There are some previous works that exploit FPGAs for accelerating NLP workloads [11, 26]. But
they also focus on accelerating specific NLP models (e.g., LSTM) and fail to solve the challenges
of NLP models. However, FPGAs have many advantages in running DNN workloads. First, FPGAs
have high reconfigurability. Also, FPGAs support various data precision (e.g., FP32, INT8) and
some products have HBM on chip [7]. New FPGA products with many operators and large on-
chip memory for DNN workloads are actively entering the market recently [7].

3.3.3 Hardware-software Co-Design. There are works that propose software techniques and
design the hadrware exploiting their techniques. References [22, 23, 34, 37] make the models
lightweight by proposing some techniques such as pruning, compression, and approximation.
Meanwhile, Reference [14] exploits sparsity in the model. Those works also design hardware that
exploits their techniques. However, since they are ASICs, they cannot solve challenge 2 and chal-
lenge 3 as mentioned above. Also, their hardware design loses generality, because it is dependent
on the techniques that they propose. For example, SpAtten [37] applies on-fly pruning to matrix
operations in the models and designs hardware to support on-fly pruning. Therefore, its hard-
ware is dependent on its pruning technique. Also, there is an overhead to support on-fly pruning.
ELSA [14] adopts approximate self-attention. Its hardware is also dependent on its technique. In
addition, since its approximation technique only targets self-attention, it cannot be applied to an
NLP model without self-attention (e.g., LSTM).
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Table 2. Previous Works and Their Limitation in Solving the Challenges of NLP Models

Previous Works Challenge 1 Challenge 2 Challenge 3

Acclerator for NLP
Brainwave [11], NPU [26] O X X

A3 [13], SpAtten [37], ELSA [14, 22, 23, 34]) � X X
ATT [12] O � X

3.4 Solutions

We summarize the previous works and their weaknesses in Table 2. As we have already mentioned,
some previous works [13] cannot efficiently handle the diversity in dimensions (challenge 2), nei-
ther do they deal with overhead and heterogeneity of vector operations (challenge 1, challenge 3)
in NLP models. Meanwhile, other works [11, 12, 14, 22, 23, 26, 34, 37, 39] relieve the overhead of vec-
tor operations by pipelining, solving challenge 1. However, they cannot still cope with challenge
2 and challenge 3.

The main reason these works cannot solve the challenge is that they are fixed architectures
that are limited to specific models. Therefore, to solve the challenges, we propose FlexRun,

the end-to-end solution that implements efficient modular architectures. In this modular

architecture approach, the architecture composes of pre-defined basic modules so we can

flexibly reconfigure the architecture adaptively to the target model. To this end, we choose
FPGAs as our HW platform, because they have high reconfigurability.

FlexRun includes three main features. First feature is flexible base architecture template that
consists of pre-defined parameterized modules (i.e., FlexRun:Architecture). The next feature is a
design space and design space exploration algorithm to find the best modules and parameter set
for the target models (i.e., FlexRun:Algorithm). Finally, the last feature is an automatic tool that
automates the two steps, finding the best architecture according to the inputs and implementing
architecture (i.e., FlexRun:Automation). We will explain our FlexRun in detail in Section 4. For
FlexRun to achieve high performance for NLP models, we set the design goals as follows:

Design Goals

• Devise flexible architecture template that can solve the three challenges discussed previously
(FlexRun:Architecture).
• Define design space for handling challenges 1, 3 and devise an algorithm to efficiently search

the design space for the given inputs (FlexRun:Algorithm).
• Automate the whole process, from searching design space to implementing architecture, for

ease of use (FlexRun:Automation).

4 FLEXRUN

4.1 Overview

In this subsection, we will briefly explain how FlexRun works and how it solves the chal-
lenges of accelerating the low-batch NLP inference. FlexRun is an end-to-end solution that im-
plements a fast and flexible modular architecture for NLP models. Figure 8 shows the work-
flow of FlexRun. FlexRun has three main schemes, FlexRun:Architecture, FlexRun:Algorithm,
and FlexRun:Automation. First, FlexRun:Architecture is a base architecture template that con-
sists of parameterized basic modules (FlexRun:Library). Next, FlexRun:Algorithm finds the best
set of modules and their parameters for the given model and FPGA spec ( 1© in Figure 8). Fi-
nally, a FlexRun:Automation reconfigures and implements the architecture template given by
FlexRun:Architecture according to the FlexRun:Algorithm’s results ( 2© & 3© in Figure 8). Also,
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Fig. 8. End-to-end workflow of FlexRun.

the FlexRun:Automation generates the new decoder codes so the model’s code is decoded for the
reconfigured architecture.

FlexRun can solve the three challenges of accelerating NLP models. First, to solve challenge 1
(i.e., overhead of vector operations), FlexRun has a pipelined structure and a reconfigurable vector
unit. The operators in FlexRun (between matrix unit and vector unit, between vector operators)
are pipelined. Therefore, it is suitable for a model with a large overhead of vector operations. In
addition, since the vector unit of FlexRun can be reconfigured according to the model, FlexRun can
further reduce the overhead. Second, FlexRun is suitable for solving challenge 2 (i.e., diversity and
irregularity of dimensions) because it is a structure that can tune the parameters of the matrix unit
to dimensions of the matrix operations. Last, for challenge 3 (i.e., heterogeneous vector operations),
FlexRun has a reconfigurable vector unit.

4.2 FlexRun:Architecture

FlexRun:Architecture is our base architecture template made of parameterized basic modules. We
devise a FlexRun:Architecture, considering the three challenges of NLP models.

In making our base architecture template, we refer to NPU [26]. We adopt the structure of Gemv-
unit from NPU. However, the existing structure cannot handle various dimensions efficiently, so
we change the three parameters of Gemv-unit to be reconfigurable. In addition, we use the di-
rect data paths between Gemv-unit and Vec-unit like NPU. However, since the Vec-unit is fixed
in the existing structure, the overhead of vector operations occurs, and heterogeneity cannot be
handled. To solve this, we make Vec-unit reconfigurable. Figure 9(a) illustrates FlexRun’s base ar-
chitecture template. The base architecture template consists of three parts. First, there are two
compute units: Gemv-unit and Vec-unit. Gemv-unit is a highly parallel compute unit for gemv
operations. Vec-unit is a compute unit for vector operations, which can be made of any combina-
tion of basic vector operators (e.g., add, exp). Gemv-unit and Vec-unit have their own registers to
store the weights and intermediate data. Second, there is a memory controller that prefetches re-
quired weights from off-chip memory to registers. Last, there is a decoder that decodes the model’s
code to micro-operations (uOps) for the memory controller and compute units. The detailed struc-
ture and working mechanism of the base architecture template are explained in the following
subsections.

4.2.1 Structure of FlexRun:Architecture. Figure 9(b) is a detailed figure for the compute units of
FlexRun’s base architecture template.

Gemv-unit: Gemv-unit composes of multiple SIMD arithmetic units for vector-matrix multi-
plications as in Figure 9(b). Gemv-unit is a highly parallel architecture so it fits for NLP workloads
that have many matrix operations. Also, Gemv-unit computes in vector-matrix granularity, which
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Fig. 9. FlexRun’s base architecture template and details of compute units (Gemv-unit and Vec-unit).

is good for NLP workloads that have dependencies between the inputs (decoder structures such
as LSTM and GPT2) in a single batch environment.

In Figure 9(b), Gemv-unit has multiple TILEs that split a matrix into sub-column blocks, and
each TILE has several DPEs (Dot Product Engines) and ACCs (Accumulators). Each DPE exe-
cutes the same number of element-wise multiplications as the size of LANEs. In our architecture
template, the number of TILE, DPE, and size of LANE is reconfigurable. Therefore, through design
space exploration, we can reconfigure these parameters adaptively to the target operations’ sizes,
solving challenge 2 (i.e., wide ranges of dimensions and irregular matrix operations).

Also, Gemv-unit and Vec-unit as well as each vector operator are deeply pipelined. Therefore,
most vector operations’ latency is hidden by gemv and other vector operations. In addition, thanks
to the direct path between Gemv-unit and Vec-unit, there is no unnecessary memory access be-
tween gemv and vector operations (Figure 10(b)), mitigating challenge 1 (i.e., vector operations’
overhead).

Vec-unit: Vec-unit executes vector operations of size VEC_LANE at once. In our template, we
set the size of VEC_LANE equal to the Gemv-unit’s LANE size. Also, there are some additional
operators (i.e., reduction, exp, gelu) compared to Reference [26] to support attention-based NLP
models. Through the direct data path between Gemv-unit and Vec-unit, the Vec-unit can start
independent instruction upon receiving the first sub-block results from the Gemv-unit.

Previous works [26] have fixed types, numbers, and order of vector operators in their vector
compute units. However, as shown in Figure 9(b), we remain Vec-unit as an empty box that can
be made of any combination of basic vector operators in FlexRun:Library. In this way, we can
efficiently deal with challenge 3 (i.e., heterogeneity of vector operations).

Memory and Datapath: Gemv-unit and Vec-unit have separate register files, MRF (Matrix

register file) and VRF (Vector register file), for decoupled execution. Previous works [11, 26]
that utilize the persistent-AI approach keep all weights in on-chip memory (MRFs). However, some
NLP models (e.g., BERT-LARGE) cannot hold their whole weights in on-chip memory due to their
excessive size. Therefore, we add new datapaths that connect memory controller and MRFs to
fetch weights from off-chip memory to MRFs. These datapaths are used when we use the results
of Gemv-unit or Vec-unit as the vector input of Gemv-unit, too. Also, we place a matrix transpose
unit in the MRF/VRF write-back path.

ISA and Decoder: FlexRun generates an instruction-based accelerator. We adopt an instruction-
based accelerator for generality so the user can use FlexRun for their own customized models (e.g.,
changing parameters or vector operations). FlexRun’s ISA extends the NPU’s ISA [26] to support
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Fig. 10. (a) shows a simple workload and FlexRun’s executions of the workload. (b) is the timeline graph of

the workload when it is repeated three times with dependencies.

new operations of attention-based NLP models (i.e., reduction, exp, gelu, transpose). FlexRun’s
ISA is architecture-independent for programmability. Instead, the decoder decodes the model’s
codes into multiple uOps adaptively to the reconfigured architecture. When we reconfigure the
architecture, we remake the decoder to fit the new architecture. We will provide decoder examples
in Section 4.5.

FlexRun:Library: In FlexRun:Library, there are basic modules of our template; TILE of Gemv-
unit and vector operators for Vec-unit. These basic modules are parameterized and modular so we
can configure and merge them adaptively to the target model.

4.2.2 Working Mechanism of FlexRun:Architecture. As an example, we assume a simple work-
load as Figure 10(a). The workload consists of one gemv operation and following vector operations;
gemv()-mul()-add()-exp(). The size of gemv operation is (1 × 128) × (64 × 128)T . For the example
workload, we configure the FlexRun’s architecture as follows: In the case of Gemv-unit, we assume
(#TILE, #DPE, LANE size) as (4, 120, 40). Also, we set the Vec-unit’s structure as [mul-add-exp].

Now, we explain how our architecture handles the example. First, in Figure 10(a), we add
paddings to the input vector ( 1©) and the column of weight matrix so it would be the multiple
of LANE size (128→160). Then, the input vector is distributed to each TILE ( 1©→ 1©’). All TILEs
have the same size of vectors, 40. But, 32 elements of TILE 4’s input vector are zero due to the
padding. Also, we add paddings to the row of weight matrix to be the multiple of #DPE (64→120).
Next, the DPEs and ACCs perform matrix-vector multiplications of LANE size. Since the size of
Gemv-unit’s ouput vector ( 2©) is 120, Gemv-unit produces three (120/40) sub-vectors of LANE size
( 2©→ 2©’). These sub-vectors ( 2©’) are fed into the Vec-unit as soon as they come out from Gemv-
unit. Finally, the result vector ( 3©, 3©’) comes out from the Vec-unit. As shown in the figure, a lot
of fragmentation occurs, as the size of matrix and vector does not match the (#TILE, #DPE, LANE
size).

Figure 10(b) shows the timeline and pipeline graph of the simple workload when it is repeated
three times with dependencies. Gemv-unit and Vec-unit are pipelined so the output sub-vectors
of Gemv-unit directly go to the Vec-unit even though Gemv-unit does not complete its executions.
These pipelined execution helps hide the latency of vector operations with gemv operations. Each
vector operator is also deeply pipelined, hiding each other’s latency. However, due to the depen-
dencies, the next input’s execution cannot start until the previous one is finished. If there is no
dependency, then the next input can start processing as soon as the compute unit becomes free.
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Table 3. Design Space of FlexRun

Unit Design Space Explanation

Gemv-unit
#TILE The number of TILE
#DPE The number of DPE

LANE size The size of LANE

Vec-unit
Type Vector operators to choose
Order Vector operators’ placement order

Number The number of same vector operators to choose

Fig. 11. The effective HW utilization of Gemv-unit for various dimensions of gemv operations. The legend

is the reconfigurable parameters of Gemv-unit: (#TILE, #DPE, LANE size). To be specific, (64 × 256) in the

x-axis indicates the gemv operation that the vector size is (1 × 64) and the matrix size is (64 × 256).

4.3 FlexRun:Algorithm - Design Space

Table 3 shows FlexRun’s design space. FlexRun aims to find the best configuration in the design
space for the given model and FPGA spec. In case of the Gemv-unit, three parameters (#TILE,
#DPE, LANE size) constitute our design space. These parameters cover all the gemv dimensions,
(1 × N) × (N × K).

For the Vec-unit, the types, order, and number of the basic vector operators constitute design
space. Some may think that the flexible vector compute units are unnecessary, as pipelining alle-
viates the overhead of vector operations. However, if the vector compute units are not properly
configured, the overhead of vector operations is exposed even with the pipelining.

In the following contents, we will show how our design parameters choice affects the perfor-
mance of the NLP models and solves the three challenges.

4.3.1 Design Space of Gemv-unit: (#TILE, #DPE, LANE Size). Figure 11 shows the HW utilization
for gemv operations with various dimensions, changing the three Gemv-unit’s parameters. The
x-axis is the dimension of gemv operation, and the y-axis is the effective utilization of Gemv-unit.
Also, the legend is the combination of (#TILE, #DPE, LANE size). All combinations satisfy the
same maximum resource limitation. In the figure, each gemv operation has different utilization
according to the (#TILE, #DPE, LANE size). For example, in the case of (64 × 256), it achieves 100%
effective utilization when the (#TILE, #DPE, LANE size) is (1, 256, 64), while (16, 32, 32) reduces
the utilization by 87.5%. Also, there is no combination of (#TILE, #DPE, LANE size) that works
best for all gemv operations. For example, (1, 256, 64) works best for (64 × 256), but has the worst
utilization for (1,024 × 64). From the experiments, we conclude that fixed-size matrix compute
units cannot handle a wide range of dimensions as well as irregular matrix operations. Therefore,
by configuring (#TILE, #DPE, LANE size) adaptively to the model, we can get the highest possible
utilization, resolving challenge 2.
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Fig. 12. Timeline and pipeline graphs of simple workload’s executions according to Vec-unit’s structures.

Fig. 13. Tradeoff according to the number of vector operators. Arrows indicate the exposed pipeline’s depth.

4.3.2 Design Space of Vec-unit: Types, Order, and Number of Basic Vector Operators. When we
design vector compute units, we need to consider the types, order, and the number of vector op-
erators. We will explain how Vec-unit’s design affects the performance by revisiting the simple
workload, gemv()-mul()-add()-exp(). The simple workload needs three operators: mul, add, and
exp. Figure 12 shows the timeline graphs of simple workload for the three cases: right types &
order (Figure 12(a)), wrong types but right order (Figure 12(b)), and right types but wrong order
(Figure 12(c)).

First, we show how the types and order affect the performance. Figure 12(a) is when the types
and order are perfectly matched to the given model. However, if there are any unnecessary op-
erators, then it occurs underutilization like Figure 12(b). Also, in the case when the order is not
optimal, the data may go through the pipeline multiple times to complete the operations, as in
Figure 12(c).

Next, we show the impact of the number of operators. Depending on the number of vector
operators, which determines the pipeline’s depth, a tradeoff occurs like Figure 13. In the case where
Vec-unit has many vector operators, the input data can be processed in one execution, as shown
in Figure 13(a). However, in Figure 13(a), the pipeline gets deeper and the overhead of the exposed
pipeline’s depth grows. Otherwise, if Vec-unit has fewer vector operators like Figure 13(b), then
the data has to go through the pipeline several times to finish execution. But the pipeline gets
shorter and the overhead of the exposed pipeline’s depth is reduced.

Figure 14 shows the performance of GPT2-MEDIUM on various Vec-unit’s structures. The x-
axis is the Vec-unit’s structure and the y-axis is speedup normalized to the last structure. The
last structure in Figure 14, the one with the random ordering, has the worst performance. The
first and third structures have proper ordering, but they show lower performance than the second
one, as they have too many operators. The second structure, which has optimal order and number
of operators, has the best performance. From the result, we conclude that by reconfiguring the
Vec-unit adaptively to the given model, we can deal with challenge 1 and challenge 3.

Some may think it is more efficient to put all the vector operators needed for the NLP models
in Vec-unit and make all-to-all connections. However, there are two problems. First, interconnect
overheads will be too expensive, as complex models need many different operators. Second, simple
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Fig. 14. The GPT2-MEDIUM’s relative performance improvement according to various Vec-unit’s structures.

The performance improvement is normalized to the last feature. Also, red means reduction operations. We

get the results using our analytical model for FlexRun. Refer to Section 4.4 for details.

ALGORITHM 1: Vec-unit Reconstruction Algorithm.

input :modelcode , (#T I LE, #DP E, LAN E size ).
/* Get vector-operation-sequences in the model. */

1 {vec_seq0, . . . , vec_seqk } = дet_vector _op_sequences (modelcode )

/* Find Shortest Common Sequence (SCS) for given vector sequences, {vec_seq0, vec_seq1, . . . , vec_seqk }. */

2 {SCS0, . . . , SCSm } = F ind_SCS (vec_seq0, vec_seq1, . . . , vec_seqk )

3 min_lat = total_lat (SCS0, modelcode , (#T I LE, #DP E, LAN E size ))

4 optimal_structur e = SCS0

5 for SCS in {SCS1, . . . , SCSm } do

/* Get all possible subsequences of SCS by removing duplicate operators. */

6 {SCS_subseq0, . . . , SCS_subseqn } = F ind_SCS_subsequences (SCS )

/* Find SCS_subsequence that gives the minimum total latency for the inputs. */

7 for arch in {SCS_subseq0, . . . , SCS_subseqn } do

8 temp = total_lat (arch, modelcode , (#T I LE, #DP E, LAN E size ))

9 if temp < min_lat then

10 min_lat = temp

11 optimal_structur e = arch

12 end

13 end

14 return optimal_structur e

models like SRNNs suffer from underutilization, because they do not use most vector operators.
Also, future models may require new types of operators, which further increases the overhead.

4.4 FlexRun:Algorithm - Design Space Exploration

To find the best design for the model, we take a greedy approach. First, we find the most opti-
mal Gemv-unit structure. After that, we find the Vec-unit structure, which shows the highest per-
formance for the optimal Gemv-unit structure found. To this end, we introduce two algorithms:
Gemv-unit Rearrangement for Gemv-unit and Vec-unit Reconstruction for Vec-unit. For design
space exploration, we build our own analytical model for FlexRun like Reference [31]. The model
gets the FlexRun’s parameters and model’s code as inputs and measures the execution latency.

4.4.1 Gemv-unit Rearrangement. Gemv-unit Rearrangement gets the model’s code and FPGA
spec (i.e., BRAM, DSP, LUT, Memory BW) as inputs. Then, it searches all combinations of (#TILE,
#DPE, LANE size) that satisfy the resource limitation. Among the found combinations, the algo-
rithm selects the top-k sets that have the smallest total gemv/gemm latency of the model. In ex-
periments, results of Gemv-unit Rearrangement for FPGAs on the current market are available in
seconds.
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Fig. 15. Visualization for each step of Vec-unit Reconstruction algorithm.

Fig. 16. FlexRun: Generator.

4.4.2 Vec-unit Reconstruction. Vec-unit Reconstruction gets two inputs, the model’s code and
results of Gemv-unit Rearrangement. For target model and configurations, Vec-unit Reconstruc-
tion finds a Vec-unit’s structure with minimum total latency. Vec-unit Reconstruction uses the
Shortest Common Sequence (SCS) algorithm. SCS is the shortest sequence that includes all the
vector-operation-sequences in the model while keeping the original order of each sequence.

Algorithm 1 shows each step of Vec-unit Reconstruction. In Algorithm 1, first, we extract the
list of vector-operation-sequences (vec_seqi ) from the model’s code: line1. Then, we find all SCSs
for given vector-operation-sequences: line2. Next, for every SCS in the list, we repeat lines 6–12.
In line 6, we derive all possible sub-sequences of the SCS (SCS_subseqi ) by removing duplicated
elements. Last, we find the sub-sequence that gives the minimum total execution latency for the
model (optimal_structure), using an analytical model, total_lat (): lines 7–11. For easy understand-
ing, we visualize each step of the algorithm in Figure 15.

4.5 FlexRun:Automation

FlexRun:Automation is an automatic tool of FlexRun to make the reconfiguration process auto-
matic. As in Figure 8, FlexRun:Automation receives the model’s code and FPGA spec. Then, it finds
the optimal configurations (i.e., (#TILE, #DPE, LANE size) and Vec-unit’s structure) for the given
model using the two functions in FlexRun:Algorithm. Finally, FlexRun:Automation reconfigures
the base architecture template according to the configuration.

4.5.1 FlexRun: Generators. FlexRun:Automation contains two additional features, compute
units generators and decoder generators (FlexRun:Generator). When we reconfigure our base ar-
chitecture template, two components marked in Figure 16(a) should be modified. One is the whole
compute processor, including compute units, registers, and interconnects. The other is the decoder,
which decodes model’s codes into multiple uOPs for the new architecture.

Figure 16(b) shows how the decoder decodes the same codes when the architecture changes. For
simplicity, we change the structure of Vec-unit only. In the example, we assume the model performs
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addition, addition, and multiplication on a vector in sequence. Then, we can write the model’s
code as add()-add()-mul() using FlexRun’s ISA. As shown in Figure 16(b), the first architecture has
two adder operators and multiplication operators in order. Therefore, the model’s code is decoded
into following uOps: add()-add()-mul(). However, the second architecture has an exponentiation
operator in the middle. So, to execute the code, the vector goes through Vec-unit twice. In the first
pass, no operation occurs in the second (exp) and third (mul) operators. And in the second pass,
no operation is performed on the second (exp) operator. So the model’s code is decoded into the
following uOps: add()-NOP-NOP for the first pass and add()-NOP-mul() for the second pass.

5 IMPLEMENTATION

5.1 FlexRun

5.1.1 FlexRun. To implement basic modules in FlexRun:Library (TILE of Gemv-unit and vector
operators in Vec-unit), decoder, and memory units, we use C-based Vivado High-Level Synthesis

(HLS). First, in TILE, we make the number of DPEs, LANE size, and accumulators as reconfigurable.
Also, we set the registers’ size adaptively to the input model and configurations. Next, we code each
vector operator separately so we can make any combination of operators. Each vector operator has
a parameter named VEC_LANE (basic unit of processing), which has the same size as the Gemv-
unit’s LANE size.

We use Python to implement two algorithms in FlexRun:Algorithm. First, Gemv-unit Rearrange-
ment gets the model’s code, model descriptions (e.g., parameters, vector operations), and FPGA
spec as inputs. Then it lists out all combinations of (#TILE, #DPE, LANE’s size) satisfying the
resource limitation. The analytical model gets these lists and finds the top-k combinations that
have the smallest matrix operation’s latency for the target model. In the evaluation, we use 3 as
the value of k. Second, Vec-unit Reconstruction receives outputs of Gemv-unit Rearrangement as
well as model’s code and descriptions. Following Algorithm 1, the function finds the best set of
Vec-unit’s structure and (#TILE, #DPE, LANE size). Put all together, FlexRun:Automation gets the
model’s code and FPGA spec. Then, it finds the optimal configurations using FlexRun:Algorithm.
Finally, two generator fucntions make the compute processor and decoder according to the
configuration.

5.1.2 Memory. Since data reuse is limited in a single batch environment, high memory band-
width is required to avoid the memory bottleneck. When the model’s size is small enough to be
stored in on-chip memory, the persistent AI approach used by previous works [11, 26] can address
the memory bottleneck issues. However, this approach cannot be applied to NLP models with large
parameters. In this work, we implement layer-wise double buffering in on-board DDR4 and HBM
to hide the memory overhead. With this technique, the memory controller prefetches the weight
matrices of the next layer while the current layer is computed.

Figure 17 shows the maximum memory bandwidth requirement of our target NLP models when
adopting the layer-wise double-buffering scheme. In the figure, we compare the bandwidth require-
ment of the models with the off-chip memory’s bandwidth of two FPGAs. We target Intel’s Stratix
10 GX with DDR4 and Stratix 10 MX with HBM. In Figure 17(a), BERT with large parameters can
be executed on both GX and MX. However, GPT2 should be executed on an MX with HBM to
avoid memory bottleneck, like Figure 17(b). Therefore, we use GX for BERT and MX for GPT2 in
evaluation.

5.2 Workloads and Experimental Setup

5.2.1 Workloads. Our target workloads and their configurations are in Table 4. We choose the
workloads by the following criteria: First, we evaluate the attention-based NLP models that have
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Fig. 17. Comparison of models’ bandwidth requirement and off-chip memory bandwidth of DDR4 and HBM.

Table 4. NLP Models and Their Configurations Included

in the Workloads

Model Scale dhidden dhead #head df f beamwidth
LSTM - 1,024 - - - -

BERT

TINY 128 64 2 512 -
MEDIUM 512 64 8 2,048 -

BASE 768 64 12 3,072 -
LARGE 1,024 64 16 4,096 -

MG1 1,280 64 16 5,120 -
MG3 3,072 64 24 3,072 -

GPT2
TINY 768 64 12 3,072 5, 10, 40

MEDIUM 1,024 64 16 4,096 5, 10, 40
LARGE 1,280 80 16 5,120 5, 10, 40

complex vector operations so we can show how FlexRun reduces the overhead of vector operations
(challenge 1). Next, we show how FlexRun deals with the heterogeneity of vector operations by
comparing the performance trends of the three models (challenge 3). Last, by covering a wide
variety of parameter scales, we show that FlexRun can cope with a wide range of dimensions and
irregular matrix operations (challenge 2).

5.2.2 Experimental Setup. As the baseline, we use GPU and our base architecture template. For
GPU, we use a Tesla V100, the biggest available AI-targeted GPU using the same process technol-
ogy as S10 GS and MX. For V100, we enable tensor cores [1] and set frquency to 1,350 MHz. We use
official TensorFlow implementations of NLP models from NVIDIA and OpenAI [2]. We use FP16
for GPU. When analyzing the results of GPU, we exploit the Nsight Systems [3], which is an offi-
cial performance analysis tool of NVIDIA. In the case of the second baseline, we refer to NPU [26]
for setting the design space parameters ((#TILE, #DPE, LANE size) and Vec-unit’s structure). The
detailed configurations are specified in Table 5. For the rest of the article, we will simply call the
second baseline the Baseline. For FlexRun’s evaluation, we use two FPGAs, Intel’s Stratix 10 GX
and MX [9]. Also, FlexRun supports an 8-bit integer data type. We refer to Q8BERT [40], which
proposes 8-bit quantization techniques that maintain 99% accuracy compared to the FP32 version
of BERT.

6 EVALUATION

We evaluate our schemes using a cycle-accurate simulator to measure the scalability of FlexRun,
considering the trends of FPGAs with increasing resources. We carefully validate our simulator as
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Table 5. Configurations of Baseline

FPGA (#TILE, #DPE, LANE size) Vec-unit’s structure Frequency

Stratix 10 GX (4, 120, 40) red-add-act-mul 275 MHz
Stratix 10 MX (4, 80, 40) red-add-act-mul 290 MHz

Fig. 18. Speedup of FlexRun for BERT normalized to the Baseline.

Fig. 19. Speedup of FlexRun for GPT2 normalized to the Baseline.

follows: First, we implement SW-based NPU-like architecture and compare its RNN/LSTM perfor-
mance against Intel’s pre-validated Stratix 10 GX and MX FPGA implementation in Reference [26].
The errors between our simulator and FPGA implementation are under 0.1% for various parameter
settings. Then, we add FlexRun’s specific features (e.g., transpose unit) on top of SW architecture
to make our FlexRun base architecture template.

6.1 Performance Improvement of FlexRun Compared to the Baseline

We first measure the speedup of FlexRun compared to the Baseline. Figures 18 and 19 show the
comparison results for BERT and GPT2, respectively. The x-axis is the parameter configuration
and the y-axis is the speedup. The legend is the applied optimization schemes. We apply three
optimizations of FlexRun one-by-one. The first legend is the Baseline. The second legend (Gemv-
unit Rearrange) indicates the case that we only apply Gemv-unit Rearrangement. The third leg-
end (Gemv-unit Rearrange + SCS) is the result of changing the Vec-unit’s structure to SCS. The
last legend (FlexRun) is the case in which we apply both Gemv-unit Rearrangement and Vec-unit
Reconstruction. Note that FlexRun does not use SCS, but uses the optimal structure found while
removing redundant operators from SCS through Vec-unit Reconstruction. Also, for Gemv-unit Re-
arrange + SCS baseline, the one showing the best performance improvement among SCS was used.

Figure 18 is the results for BERT with two input sequence sizes: 128, and 256. First, Gemv-unit Re-
arrangement (second legend) achieves 1.36× speedup, on average. The scheme gives more benefit
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Fig. 20. Comparison of FlexRun and V100 for BERT and GPT2.

to the small models like BERT-TINY (2.05× speedup), as they have a higher chance of underutiliza-
tion. Also, it gets higher speedup, 1.46× for BERT-MG3, which has the largest irregularity in matrix
operations. Next, Vec-unit Reconstruction (last legend) brings 1.17× additional speedup, on aver-
age. Note that for BERT, whether Vec-unit has an SCS structure (third legend) or an optimal struc-
ture (last legend) does not make a difference in performance. The overall average speedup is 1.59×.

Figure 19 shows the FlexRun’s performance improvement for GPT2 with three beamwidths, 5,
10, and 40. In the case of GPT2, Gemv-unit Rearrangement brings 1.19× speedup, on average. Also,
Vec-unit Reconstruction gets 1.1× additional speedup, so the overall average speedup is 1.31×.
Unlike BERT, SCS structure degrades the performance in GPT2. These differences arise from the
presence of dependencies between the inputs. If there are dependencies between the inputs, the
pipeline’s depth affects the performance. Therefore, the SCS structure harms the performance of
GPT2. Also, when we increase the beamwidth of GPT2, the performance degradation of SCS de-
creases as the inputs without dependencies increase.

6.2 Comparison of FlexRun and GPU

In Figure 20, we compare the results of FlexRun with V100 for BERT and GPT2. The x-axis is a
scale of the NLP models, and the y-axis is the speedup normalized to the latency of V100. FlexRun
achieves 2.79× and 2.59× average performance improvements over V100 for BERT and GPT2, re-
spectively. Especially, FlexRun shows higher performance for the small models, as small models
suffer severe underutilization in GPU. Also, FlexRun usually gets higher speedup for BERT, because
pipelining and Vec-unit Reconstruction give more benefits to the encoder structure. As the encoder
structure does not have dependencies between the inputs, the pipeline depths are almost hidden.

6.3 Scalability of FlexRun

We check the scalability of FlexRun by doubling the compute and memory resources of FPGAs. We
assume that the future generation of FPGAs has twice more compute and bandwidth resources than
current FPGAs, GX, and MX. Figure 21 is the speedup of FlexRun on the future generation of FPGAs
(second legend, 2× FPGA) and current FPGAs (first legend, GX/MX). The speedup of FlexRun on
GX/MX is normalized to the same baseline of Figure 18. For FlexRun on 2× FPGA, we assume a
new baseline with twice the #TILE and twice faster memory than the baseline of Figure 18.

The results show that FlexRun achieves scalable performance improvements as FPGA resources
increase. Increasing the FPGA resources shows good performance gains in large models. In the
case of BERT-LARGE, FlexRun attains 1.85× speedup on 2× FPGA while achieving 1.32× speedup
on GX. On average, with twice the resources, FlexRun gets 2.2× and 1.99× speedup for BERT
and GPT2, respectively. This is 1.46× and 1.69× additional speedup for FlexRun on GX and MX,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 1, Article 11. Publication date: February 2023.



A Fast and Flexible FPGA-based Accelerator for NLP Neural Networks 11:21

Fig. 21. Speedup of FlexRun for BERT and GPT2 on GX, MX, and FPGA with twice as many resources.

Fig. 22. Impact of FlexRun.

respectively. The FlexRun secures scalability, thanks to Gemv-unit Rearrangement. When the re-
sources increase, the chances of underutilization in gemv compute unit grows due to fragmenta-
tion. So, for the future FPGAs, it is important to find the proper dimension of the gemv compute
units, which is done by Gemv-unit Rearrangement in FlexRun.

6.4 Impact of FlexRun’s Reconfigurability

Last, we show the impact of FlexRun’s reconfigurability in Figure 22. We run BERT-LARGE and
LSTM-1024 on architectures optimized for each model using FlexRun. In the legend, LSTM-1024
Opt Arch is the architecture optimized for LSTM-1024, and BERT-LARGE Opt Arch is the archi-
tecture for BERT-LARGE. The performance of the models is normalized to the slower one. In
Figure 22, the performance is severely compromised when the model is executed on the architec-
ture optimized for other model. In the BERT-LARGE case, the performance improves 2.83× when
running on BERT-LARGE Opt Arch than on LSTM-1024 Opt Arch. For LSTM-1024, the performace
improves by 1.63× on its optimized architecture.

7 RELATED WORK

There are works that accelerate NLP models, and they exploit different methods.
First, there are studies using the quantization method to accelerate NLP models and reduce mod-

els’ sizes [39–41]. References [39, 41] suggest new quantization methods, expressing parameters
of BERT with 3 bits. Also, Reference [40] presents BERT’s parameters with eight bits, targeting
INT8.

Similar to quantization, many studies apply pruning to NLP models. Reference [15] uses the
weight pruning to reduce the size of LSTM and designs architecture for sparse LSTM. Also, Ref-
erence [38] proposes block-circulant matrices for weight matrices to resolve irregularities in the
neural network in addition to pruning. For attention-based NLP models like BERT, Reference [25]
proposes a structured pruning, while Reference [25] uses structured dropout.

References [18–21] utilize model partitioning for acceleration. Reference [19] defines paral-
lelizable dimensions in DNNs and finds the best parallelization strategies for the target model.
Reference [20] applies holistic model partitioning to all operations across attention-based NLP
models. Reference [18] exploits model partitioning to accelerate large RNN models by enabling
multi-FPGA executions.
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Also, some works design accelerators for the NLP models. Reference [13] targets attention oper-
ations in NLP models and makes attention-specialized units. Reference [12] exploits PIM technolo-
gies to minimize the memory overhead of the NLP models. References [6, 11, 26] exploit FPGAs
as their HW platforms to accelerate NLP models. However, none of those works can address three
challenges of NLP models.

Last, References [36, 42, 43] take modular approach for accelerating DNNs. However, these
works focus on Convolutional Neural Networks, rather than NLP models. Reference [36] suggests
a modular accelerator generator for CNNs. References [42, 43] use FPGAs to build accelerators
through their design space exploration tool in the cloud and edge-computing environments.

8 CONCLUSION

In this article, we propose FlexRun, an FPGA-based modular architecture approach to accelerate
NLP models. When receiving input models, FlexRun reconfigures the architecture adaptively to
the models. In evaluation, we get 2.69× and 1.44× performance improvement compared to V100
and Brainwave-like FPGA baseline, respectively.
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