IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 August 2022, accepted 29 August 2022, date of publication 5 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204664

== RESEARCH ARTICLE

Architecture and Application Co-Design
for Beyond-FPGA Reconfigurable
Acceleration Devices

ANDREW BOUTROS 12, (Student Member, IEEE), ERIKO NURVITADHI 2, (Member, IEEE),
AND VAUGHN BETZ"1, (Fellow, IEEE)

! Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
2Progmmmable Solutions Group, Intel Corporation, Santa Clara, CA 95054, USA

Corresponding author: Andrew Boutros (andrew.boutros @mail.utoronto.ca)

This work was supported in part by the Intel/VMware Crossroads 3D-FPGA Academic Research Center and in part by the
NSERC/Intel Industrial Research Chair in Programmable Silicon.

ABSTRACT In recent years, field-programmable gate arrays (FPGAs) have been increasingly deployed in
datacenters as programmable accelerators that can offer software-like flexibility and custom-hardware-like
efficiency for key datacenter workloads. To improve the efficiency of FPGAs for these new datacenter use
cases and data-intensive applications, a new class of reconfigurable acceleration devices (RADs) is emerging.
In these devices, the FPGA fine-grained reconfigurable fabric is a component of a bigger monolithic or
multi-die system-in-package that can incorporate general-purpose software-programmable cores, domain-
specialized accelerator blocks, and high-performance networks-on-chip (NoCs) for efficient communication
between these system components. The integration of all these components in a RAD results in a huge design
space and requires re-thinking the implementation of applications that need to be migrated from conventional
FPGA s to these novel devices. In this work, we introduce RAD-Sim, an architecture simulator that allows
rapid design space exploration for RADs and facilitates the study of complex interactions between their
various components. We also present a case study that highlights the utility of RAD-Sim in re-designing
applications for these novel RADs by mapping a state-of-the-art deep learning (DL) inference FPGA
overlay to different RAD instances. Our case study illustrates how RAD-Sim can capture a wide variety of
reconfigurable architectures, from conventional FPGAs to devices augmented with hard NoCs, specialized
matrix-vector blocks, and 3D-stacked multi-die devices. In addition, we show that our tool can help architects
evaluate the effect of specific RAD architecture parameters on end-to-end workload performance. Through
RAD-Sim, we also show that novel RADs can potentially achieve 2.6x better performance on average
compared to conventional FPGAs in the key DL application domain.

INDEX TERMS Deep learning, field-programmable gate arrays, hardware acceleration, network-on-chip,
reconfigurable computing.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have been con-
tinuously growing in capacity and heterogeneity over the
past decades. Besides their soft programmable logic and
routing, FPGA fabrics now include a wide variety of

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

embedded hard blocks such as on-chip memories, fracturable
multi-precision multipliers and high-speed transceivers to
enhance their efficiency [1]. However, with the increasing
deployment of FPGAs as datacenter accelerators, we are wit-
nessing a more radical transition from conventional FPGAs
to more complex beyond-FPGA reconfigurable acceleration
devices (RADs). These are heterogeneous devices that inte-
grate a traditional reconfigurable fabric with other forms of

95067

https://orcid.org/0000-0002-8044-1644
https://orcid.org/0000-0002-2347-9590
https://orcid.org/0000-0003-0528-6493
https://orcid.org/0000-0002-8718-111X

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

NoC

FPGA Fabri
Adapters ~x— sone

W
A 27 ﬁﬁ\ .
£ 8 processor

/# é é #/ ﬁsystem

Blocks

Ext. Mem.

Routers

Accelerator
Blocks

Base Die

FIGURE 1. Example 3D-stacked RAD instance integrating an FPGA fabric
and an ASIC base die with different accelerator blocks, more on-chip
memory, external memory controllers, and a general-purpose processor
subsystem.

compute architectures that can range from general-purpose
Turing-complete scalar processors to coarse-grained domain-
specialized massively-parallel accelerator blocks. The back-
bone of these RADs is one or multiple high-performance
packet-switched networks-on-chip (NoCs) which provide
efficient system-level communication between the different
RAD components and a gateway to high-bandwidth device
IOs (e.g. to external memory, Ethernet, PCle). An example
of such RADs is the Xilinx Versal architecture that com-
bines general-purpose ARM cores, vector processors for deep
learning (DL) acceleration and an FPGA fabric, all connected
via a pervasive system-wide NoC [2].

The recent advances in passive and active interposer
technology also enable the realization of multi-die system-
in-package RADs, in which the system-level NoC(s) act
as a continuous communication layer across dice or even
between distinct devices. Fig. 1 depicts an example RAD
instance using 3D chip integration technology, such as Intel
Foveros [3], to stack an FPGA fabric on top of an ASIC
base die. In this example, the base die contains different
NoC-connected accelerator blocks, larger on-chip memories
and other hardened components such as external memory
controllers and processor subsystems. Application modules
that require frequent changes and customization are imple-
mented on the reconfigurable FPGA fabric and can access the
NoC to communicate with other RAD components through
hard fabric NoC adapters that connect to the base die routers
via interposer micro-bumps.

Design of such complex devices is challenging; an archi-
tect not only needs to select many design parameters for each
independent component of a RAD, but must also consider
the complex interactions between these different compo-
nents. This results in a multiplicatively larger design space
to explore for architecting novel and efficient RADs. What

95068

makes the design problem even more complicated is that
FPGA applications can not be effortlessly migrated to novel
RADs or readily make the best use of the specialized accel-
erator blocks and NoC-based communication for improved
performance. Therefore, architects need to re-think the imple-
mentation of applications while designing their novel RADs,
which creates a more challenging architecture and application
co-design problem.

The design of conventional FPGA fabrics has been
extensively studied with well-established research tools for
exploring and evaluating new architecture ideas, such as
the Verilog-to-Routing (VTR) flow [4]. These tools help
answer questions on how to best architect the fine-grained
programmable routing fabric and logic blocks, what type of
hard blocks to integrate in the fabric, and the effect of these
architecture enhancements on FPGA computer-aided design
(CAD) algorithms and compile time. However, these tools are
inadequate for RAD architecture exploration as they lack the
following desired qualities:

1) Application-driven: These tools focus on optimiz-
ing FPGA architectures based on application-agnostic
performance metrics such as the maximum operat-
ing frequency of given benchmark circuits. For com-
plex RADs with coarse-grained accelerator blocks
and latency-insensitive NoCs, architecture exploration
must be driven by end-to-end application-specific per-
formance. In other words, the key metric is how fast
a given application is executed on a candidate RAD
(cycles or runtime) rather than how fast a given circuit
is clocked on an FPGA fabric (clock frequency).

2) Higher level of abstraction: Conventional FPGA
architecture exploration is typically driven by appli-
cations written in a hardware description language
(HDL), which can create a productivity bottleneck
when re-designing applications for RADs.

3) Rapid design space exploration: FPGA application
designers usually rely on register-transfer level (RTL)
simulation for functional verification of their applica-
tions. For RAD architecture and application co-design,
RTL simulation would be very slow for such large com-
plex systems and would require developing a tremen-
dous amount of system components in HDL such as
NoC routers, accelerator blocks, memory controllers,
etc. This labour-intensive approach would significantly
limit the turn-around time for RAD architecture explo-
ration, especially at early stages of the design process.

4) Packet Routing: Mapping application designs to a
conventional FPGA architecture involves placing logic
blocks and routing wires between them on the pro-
grammable fabric. It has no notion of packet-switched
NoC-based communication between modules which is
the backbone of novel RADs.

Our work addresses this gap by introducing RAD-Sim,

a cycle-level architecture simulator for rapid application-
driven architecture exploration of RADs. It allows architects
to perform what-if analysis to study the complex interactions

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

between various design choices in a RAD, and facilitates
the architecture and application co-design process via its
higher-level design abstraction. RAD-Sim takes as inputs
SystemC descriptions of application modules and other RAD
components (e.g. specialized accelerator blocks or scalar
processor cores), detailed NoC specifications, and module
NoC placement constraints. It performs detailed system-level
simulation and produces end-to-end application performance
results and NoC traffic reports for the application’s traf-
fic patterns. It can also be used to verify the application’s
functionality when given appropriate test vectors and their
expected golden outputs. This enables architects to write
RAD applications at a high-level of abstraction and rapidly
tweak them as needed for architecture exploration while
verifying their functionality during this process, and also to
evaluate the effect of specific RAD architecture parameter
choices or application re-design decisions on the overall end-
to-end performance.

In our prior work [5], we introduced RAD-Sim as a tool
for rapid architecture exploration of novel RADs incorpo-
rating FPGA fabrics, coarse-grained accelerator blocks and
high-performance system-level NoCs. To further showcase
the utility of RAD-Sim in the co-design of architecture and
applications for RADs, this paper’s contributions are:

o Presenting a case study of migrating a state-of-the-art
DL application, the neural processing unit (NPU) over-
lay, from conventional FPGAs to different RADs. This
study shows how RAD-Sim highlights performance bot-
tlenecks and provides insights to guide the architecture
and application co-design process for RADs.

o Introducing a new bandwidth-aware design approach
for optimizing the NPU when mapped to RADs with
embedded NoCs.

o Studying a variety of RADs ranging from multi-die
NoC-connected FPGAs to devices augmented with spe-
cialized matrix-vector accelerator blocks, and multi-
active-die 3D-stacked architectures.

o Showcasing novel 3D-stacked RADs that can achieve
2.6x higher performance on average when compared
to current conventional FPGAs with up to 145 TOPS
effective performance on key DL workloads.

We also open-source RAD-Sim along with the NPU exam-

ple design to facilitate future research on novel RAD archi-
tectures.!

Il. BACKGROUND AND RELATED WORK

A. THE EMERGENCE OF BEYOND-FPGA RADs

The recent large-scale deployments of FPGAs in datacenters,
pioneered by the Microsoft Catapult project [6], [7], have
highlighted two key use cases that FPGAs excel at. Firstly,
FPGAs are used as bump-in-the-wire devices to pre/post-
process data streams on-the-fly by performing tasks such as
network security, packet processing and data compression,
freeing up CPU resources for the core compute of datacenter

ICode can be downloaded at: https://github.com/andrewboutros/rad-flow

VOLUME 10, 2022

workloads. For example, the Pigasus project [8] uses a single
FPGA to perform 100 Gbps network intrusion detection and
prevention, reducing the CPU core count requirement to only
5 cores instead of 364 cores in the software-only solution.
Other work shows that FPGA-based smart network inter-
face cards (NICs) can increase the efficiency of distributed
DL training system by up to 2.5x when accelerating the
inter-node all reduce communication and gradient compres-
sion, freeing up CPU resouces for the core compute-intensive
tensor operations [9]. Also, as the number of solid-state
drives (SSDs) per server increases, FPGAs can also perform
near-data processing in SmartSSDs to alleviate the processor-
to-storage bandwidth bottleneck [10].

Secondly, the network-connected datacenter FPGAs can be
flexibly combined into datacenter-scale service accelerators
that offer low-latency processing for key datacenter services
at a fraction of the power budget as in Microsoft’s Brainwave
for DL inference [11] and Bing’s search engine [6]. In both
use cases, processing pipelines are frequently changed or
upgraded, which justifies the use of FPGAs as they offer
faster time-to-solution and less development effort compared
to taping out specialized fixed-function chips. In addition,
FPGAs also offer a variety of high-bandwidth IOs that enable
efficient data steering at the crossroads between different
datacenter server endpoints such as network, storage, CPU
cores and accelerators.

However, the FPGA’s fine-grained programmable rout-
ing fabric is struggling to keep up with the ever-increasing
FPGA transceiver bandwidth and data flow of key datacenter
workloads [12]. To mitigate these challenges, prior academic
research has shown that embedding hard packet-switched
NoCs in FPGA fabrics can offer tremendous on-chip data
steering bandwidth at a minimal area cost and without
affecting the FPGA’s flexibility [13], [14]. As a result,
hard NoCs were recently adopted in commercial FPGAs
from Xilinx [15], Achronix [16], and Intel [17]. Besides
their programmable routing and logic, modern FPGAs incor-
porate a variety of hardened ASIC-style blocks that ide-
ally capture common functionalities across as many appli-
cations as possible without sacrificing the FPGA’s flexi-
bility. Taking DL acceleration as an example, the com-
position of layers, data manipulation between them, vec-
tor operations, and pre/post-processing stages might signif-
icantly differ between different workloads, which can benefit
from the FPGA’s reconfigurability. However, all of them
include many dot-product operations that can benefit from the
increased efficiency of hardening as high-performance tensor
cores [18], [19], [20].

These trends in FPGA architecture along with recent
advances in 2.5D and 3D chip integration technologies [3],
[21] have resulted in the emergence of a new class of
beyond-FPGA reconfigurable devices that combine the flex-
ibility of FPGAs, the efficiency of hard NoCs for data
steering, and the high-performance of specialized accelerator
blocks. Our work focuses on building tools that enable rapid
architecture exploration for these complex devices and also

95069

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

facilitate application re-design when migrating from conven-
tional FPGAs to novel RADs.

B. FPGA ARCHITECTURE EXPLORATION

One unique property of FPGAs is their generality; they
can be reconfigured to implement a variety of applica-
tions, some of which might not even exist at the FPGA’s
design time. Therefore, FPGA architects have to evaluate
their new architectural ideas using a carefully curated set
of benchmark circuits that capture key FPGA application
domains. Major FPGA vendors have their own proprietary
sets of internal benchmarks and customer designs for opti-
mizing their products. However, prior academic work has
compiled suites of representative benchmarks to be used
for architecture exploration of both general-purpose [22]
or domain-optimized [23] FPGAs. These benchmark cir-
cuits are written in an HDL such as Verilog or VHDL,
and are mapped (i.e. synthesized, placed and routed) to a
given FPGA fabric architecture using a retargetable CAD
system.

VTR [4] is an academic open-source FPGA CAD flow
that is widely used for FPGA architecture exploration and
CAD research. It takes as inputs an architecture description
defining the FPGA blocks, routing architecture, and their
area/timing models, along with a set of benchmarks to be
mapped to this architecture. This flow can be used to evaluate
different FPGA architecture candidates based primarily on
application-agnostic quality metrics such as the maximum
operating frequency of benchmark designs or the silicon
footprint of low-level FPGA circuitry.

However, this conventional FPGA architecture exploration
flow is not sufficient for evaluating RAD architectures that
include other complex components besides the traditional
FPGA fabric (e.g. NoCs and hard accelerator blocks). For
example, it cannot evaluate the end-to-end performance of
applications with some components implemented in the
FPGA fabric and others executed on instruction-controlled
accelerator blocks, or produce key system-level metrics such
as NoC congestion and traffic patterns. On the other hand,
although standalone NoC simulators do exist [24], they lack
features to simulate a coupled FPGA fabric and cannot fully
evaluate a RAD architecture.

C. ARCHITECTURE SIMULATORS

Architecture simulators are widely used to guide architec-
tural decisions, especially during early stages of the design
process. Depending on their level of detail, they can provide
fast and accurate performance estimates without the need for
detailed RTL implementation of architecture ideas. To drive
architecture research, many simulators with different features
and areas of focus have been introduced to facilitate design
space exploration of classic von Neumann architectures as
well as specialized accelerators and emerging compute tech-
nologies. gem5 is arguably the most commonly used CPU
simulator in architecture research [25]. It performs high-
fidelity cycle-level modeling of modern CPUs and can run

95070

full applications for different instruction set architectures.
More recently, gem5 added support for modeling GPUs
based on the AMD Graphics Core Next architecture [26].
Over the years, it has been used to evaluate many computer
architecture research ideas such as [27], [28], [29]. Other
CPU architecture simulators have been introduced such as
Sniper [30] and XIOSim [31] with different foci on more
scalable multi-core CPU simulation and more accurate per-
formance and power modeling of mobile cores, respectively.
GPGPU-Sim [32] is another academic simulator for con-
temporary Nvidia GPU architectures that can run CUDA or
OpenCL workloads and supports advanced features such as
TensorCores and CUDA dynamic parallelism. Unlike these
examples, our work does not target classic von Neumann
architecture exploration, but rather focuses on novel RADs
that combine traditional FPGA fabrics with other styles
of compute architectures. To evaluate RAD architectures,
the input to the simulator is not just compiled application
instructions. Instead, it can be a mix of instructions for
any software-programmable RAD components (e.g. coarse-
grained accelerator blocks) and custom user-defined modules
implemented on the FPGA fabric.

Many simulators are also implemented to evaluate custom
application-specific accelerator architectures such as in [33],
[34], and [35]. Aladdin [36] is a more general accelerator
simulator for estimating the performance and power of spe-
cialized dataflow hardware from a high-level C description.
More recently, gem5-Aladdin [37] integrates the gem5 CPU
simulator with Aladdin to model systems-on-chip (SoCs) that
include both CPUs and accelerator functional units with the
main focus on system-level considerations such as memory
interfaces and cache coherency. Similarly, our RAD-Sim can
model specialized accelerator blocks as components of a
RAD architecture. However, it accepts any user-specified
accelerator design written in SystemC and is not limited to
dataflow accelerators controlled by finite-state machines as
in Aladdin. RAD-Sim also combines accelerator blocks with
other application modules implemented on the RAD’s recon-
figurable fabric and with packet-switched NoCs for system-
level communication; evaluating such combined systems is
not possible in gem5-Aladdin.

SIAM [38] is a recent example of an architecture simu-
lator focusing on emerging compute technologies. It models
chiplet-based in-memory compute for deep neural networks,
and integrates architecture, NoC, network-on-package, and
DRAM models to simulate an end-to-end system. Although
our work similarly aims to model complete systems inte-
grating different components including NoCs and special-
ized accelerator blocks, it is not limited to only modeling
in-memory DL compute and focuses mainly on the recon-
figurable computing domain. For modeling RADs, another
key difference is that both the placement of compute mod-
ules and their attachment to NoC routers have to be flex-
ible (i.e. not an architecture choice but programmed at
application design time) due to the reconfigurability of the
FPGA fabric.

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

Focus of this work

'

Arch.
Params

SystemC
Accelerator
Blocks

RTL
Accelerator
Blocks

J

RTL System
Modules

Module
Assignment

RTL
Application
Modules

SystemC
Application

Modules

Y RAD-Gen

(System Implementation)

MORAD-Sim

(System Simulation)

Enhanced 9
FPGA CAD

Accelerator
Block Results

[NoC Traffic] [

v
Application
Performance

FPGA Implementation

Verification Results

J |

Functional]

Silicon Area, Freq., Power

Resource Util., Freq., Power

FIGURE 2. Overview of our RAD architecture exploration and evaluation flow. This paper focuses on the RAD-Sim component (highlighted in grey).

IIl. RAD ARCHITECTURE EXPLORATION FLOW

In this section, we will first introduce an overview of our com-
plete architecture exploration flow for RADs. Then, we will
focus only on the first component of our flow, RAD-Sim,
which is used to perform initial rapid architecture exploration
and evaluation. The other components of the flow will be
covered in future works.

A. FLOW OVERVIEW

Fig. 2 gives an overview of our complete RAD architec-
ture exploration and evaluation flow. The first component of
this flow is RAD-Sim, an architecture simulator for rapidly
exploring the design space of RADs and studying the com-
plex interactions between their different components. The
inputs of RAD-Sim are a set of RAD architecture param-
eters, specifications for one or more system-level NoCs,
and SystemC descriptions of the RAD accelerator blocks.
These accelerator blocks can be any latency-insensitive cir-
cuit with an AXI-compatible interface that the designer
would like to experiment with hardening in a RAD archi-
tecture. This allows designers to experiment with acceler-
ator blocks that have different functionalities, granularity
and programming models (e.g. instruction-controlled, finite
state machine, fixed pipeline) and also to compose differ-
ent styles of accelerator blocks in a RAD. In addition, the
user provides application-related inputs which are SystemC
descriptions of the application design modules implemented
on the FPGA and placement constraints assigning their ports
to specific NoC adapters throughout the FPGA fabric. Then,
RAD-Sim performs system simulation to estimate end-to-end
performance and produce NoC traffic reports. To verify the
functionality of the application design mapped to a given
RAD instance, a user can pass input test vectors and their
expected outputs, which can be extremely useful when RADs
and applications are co-designed during the early stages of
architecture exploration.

After narrowing down the design space to a few candi-
date architectures, more detailed evaluation can be conducted
using the other two components of our flow. Given the RTL
implementations of the specialized accelerator blocks as well
as other system components such as the NoC routers and

VOLUME 10, 2022

any other hardened functionalities, RAD-Gen pushes these
modules through the ASIC implementation flow to provide
architects with silicon area footprint, timing, and power
results for these blocks. Both RAD-Sim and RAD-Gen will
share the same front-end that takes as an input the RAD
architecture parameters and NoC specifications. RAD-Gen
will then modify a parameterizable NoC router implemen-
tation based on the user-specified inputs. It will then push
the RTL implementations of the NoC and other system mod-
ules through existing ASIC implementation tools targeting
either proprietary standard cell libraries or open-source ones
(e.g. FreePDK [39] and OpenRAM [40]). To perform power
analysis of a RAD/application combination, RAD-Gen will
be used to obtain energy per operation results for the imple-
mentation of the RAD’s ASIC components on a given process
technology. These results, coupled with toggle rates/activities
collected by RAD-Sim for a specific simulated application,
can be used to estimate the overall power consumption.
On the other hand, an enhanced FPGA CAD flow is used to
synthesize, place, and route the application design modules to
be implemented on the reconfigurable fabric of a candidate
RAD. An enhanced version of the VIR flow (in devel-
opment) can directly model NoC routers/adapters as hard
blocks embedded in the FPGA fabric. However, we can also
model them in commercial CAD tools by creating reserved
logic locked regions of appropriate size and locations, and
connecting design module interfaces to registers placed in
these regions.

Additionally, the embedding of hard NoCs in FPGA fab-
rics presents a new placement problem as modules must be
placed not only where they have sufficient fabric resources
and minimize traditional programmable routing delay, but
also so that their connection to NoC adapters on nearby
routers does not cause undue NoC congestion. RAD-Sim can
evaluate NoC performance (latency and congestion) given a
specific placement solution and expected application NoC
traffic patterns. The enhanced FPGA CAD tools can then use
these metrics to adjust module placement and assignment to
NoC adapters/routers, and iterate again if latency constraints
are not met. This is similar in concept to invoking static tim-
ing analysis during the placement stage in the conventional

95071

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

FPGA CAD flow to evaluate the expected critical paths of a
design in order to guide optimization. While in this work we
focus mainly on hard NoCs, RAD-Sim can also readily model
application designs that include soft NoCs either as a design
component or a pre-placed and routed interconnect overlay
such as [41], [42].

This paper focuses mainly on the first component of this
flow, RAD-Sim, and its use for both rapid architecture explo-
ration and architecture-application co-design for RADs.

B. RAD-SIM IMPLEMENTATION DETAILS

RAD-Sim is developed in SystemC, which allows design-
ers to model their hard accelerator blocks and application
modules at various levels of abstraction, trading off model
faithfulness for designer productivity. For example, a specific
module can be described using SystemC in a high-level
behavioral way for fast development time, or a more detailed
(closer to RTL) way that can be input to high-level synthesis
tools to generate hardware. RAD-Sim uses BookSim [24]
to perform cycle-accurate NoC simulation. BookSim is an
open-source NoC simulator that has been leveraged by many
other system simulators, such as GPGPU-Sim. It is heavily
parameterized to allow modeling a wide variety of intercon-
nect networks with different topologies, routing functions,
arbitration mechanisms, and router micro-architectures. It is
also easily extendable to support other features that are not
provided out-of-the-box depending on specific use cases.

RAD-Sim builds on top of BookSim in three aspects:

1) It adds a SystemC wrapper around BookSim to allow
combining the NoC with different accelerator blocks
and application modules modeled in SystemC.

2) It complements BookSim by tracking packet contents
to enable functional verification of actual applications
on RADs. This is necessary because BookSim pri-
marily focuses on performance estimation and hence
models the arrival times of packets, not their contents.
As we show later in Section IV, migrating an applica-
tion design from a conventional FPGA to a new RAD
instance can require significant re-architecting of the
application to use the RAD NoC(s) for inter-module
communication. Therefore, it is necessary to ensure
that functionality is preserved during this process.

3) It implements SystemC NoC adapters that allow RAD
architects to experiment with different user-facing NoC
abstractions, independently of the underlying NoC pro-
tocol and physical implementation details.

The NoC adapters implemented in RAD-Sim also per-
form clock domain crossing and width adaptation between
the application modules or hard accelerator blocks and the
NoC. For example, we provide users with AXI streaming
(AXI-S) and AXI memory-mapped (AXI-MM) adapters, but
RAD-Sim is structured to be modular such that architects
can implement their custom or standardized NoC adapter
protocol of choice and easily integrate it in the simulator.
Fig. 3 shows the AXI-S master and slave NoC adapters
implemented in RAD-Sim as an example. They consist of

95072

Input
Buffer
From

Input |
Arbiter 1
Interfaces L :

Injection
FIFO

: To
7 NoC

NoC clock

vC
Mapping
i Logic

i Adapte} clock

| | De-Packetization Output From
Logic Arbiter ﬂ NoC

AXI-S

To Axl-ﬂ‘i
—IUITE

DeMUX

Interfaces

] Ejection
FIFOs

Output
Buffers

—
Module Interfacing Encoding/Decoding NoC Interfacing

FIGURE 3. AXI streaming slave (top) & master (bottom) NoC adapters
implemented in RAD-Sim.

three main stages: module interfacing, encoding/decoding,
and NoC interfacing. For the slave adapter, an input arbiter
selects one of the (possibly multiple) AXI-S interfaces con-
nected to the same NoC router. Once an AXI-S transaction
is buffered, it is packetized into a number of NoC flits and
mapped to a specific NoC virtual channel (VC). Then, these
flits are pushed into an asynchronous FIFO to be injected
into the NoC depending on the router channel arbitration and
switch allocation mechanisms. The master adapter works in
a similar way but in reverse: flits are ejected from the NoC
and once a tail flit is received, they are depacketized into
an AXI-S transaction which is then steered to its intended
module interface. The adapters implemented in RAD-Sim
are parameterized to allow experimentation with different
arbitration mechanisms, VC mapping tables, and FIFO/buffer
sizes. They also support up to three distinct clock domains
where the connected module, adapter, and NoC can be all
operating at different clock frequencies. This enables exper-
imentation with scenarios where stages of the NoC adapters
are either hardened or implemented in the FPGA’s soft logic.

Table 1 lists some of the user input parameters of
RAD-Sim. Besides these parameters, RAD-Sim takes as an
input a NoC placement file that specifies the assignment
of all hard accelerator block and fabric module ports to
specific NoC routers/adapters. This is currently passed as
a user-specified manual assignment; in our future work we
also plan to enable automatic creation of this file such that
NoC latency constraints specified by the user are met and/or
overall application performance is optimized. As described
in Sec. III-A, this router assignment file could be automat-
ically created by an enhanced FPGA placement algorithm
that repeatedly adjusts the routers to which modules connect
(essentially placing the router interfaces) as placement pro-
ceeds and invokes RAD-Sim to quantify the effect of these
adjustments on the system performance.

In addition, RAD-Sim provides users with various teleme-
try utilities to record specific simulation events and traces
along with different scripts to visualize the collected data.
This can be very useful in reasoning about the complex
interactions between the different components of a RAD
and understanding the effect of changing various architecture
parameters on the overall application performance. Fig. 4

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

TABLE 1. RAD-Sim user input parameters.

User Input Description

Specify whether monolithic or 3D device
No. of system-wide NoCs
Bit width of NoC links for flit payload

rad_instance
num_nocs
noc_payload_width

noc_freqg NoC operating frequencies
noc_topology NoC typologies (e.g. mesh, torus)
noc_dim NoC dimensions (for certain topologies)
noc_routing_func NoC routing algorithm (e.g. dim. order)
noc_vces No. of NoC virtual channels

Depth of virtual channel buffers (words)
Depth of router output buffers (words)
No. of different packet types

Router micro-arch (e.g. input queue)
Router VC allocation mechanism
Router switch allocation mechanism
Delay for sending back NoC credit
Delay for calculating packet route
Delay for router VC allocation

Delay for router switch allocation
Depth of adapter ejection/injection FIFOs
Depth of adapter output buffer (words)
Adapter input arbitration mechanism
Adapter output arbitration mechanism
Mapping of flit types to virtual channels
Adapter operating frequencies
Accelerator or app. module frequencies
Frequency of the simulation driver
Level of simulation logging verbosity
No. of event traces recorded

Identifiers of recorded event traces

noc_vc_buffer_size
noc_out_buffer_size
noc_packet_types
noc_router_uarch
noc_vc_allocator
noc_sw_allocator
noc_credit_delay
noc_routing_delay
noc_vc_alloc_delay
noc_sw_alloc_delay
adapter_fifo_size
adapter_obuff_size
adapter_in_arbiter
adapter_out_arbiter
adapter_vc_mapping
adapter_freq
module_freq
sim_driver_freq
log_verbosity
num_traces
trace_names

Router Hops —Latency (ns)‘

Router Hops
- o
[\~ w
@ N
o
Latency (ns)

S}
I
]

=)
o

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Transaction ID

(2)

— Ejection Adapter —NoC — Injection Adapter]

. Latency (ns) ¢,
n
@

0 4 8 12 16 20 24 28 32 36 40

Transaction ID

(b)

FIGURE 4. Example visualizations from RAD-Sim for an unloaded
4 x 4 mesh NoC showing: (a) Overall communication latency, number of
hops, and (b) Latency breakdown.

44 48 52 56 60

shows example visualizations produced by RAD-Sim when
trying to characterize the unloaded communication latency
for a RAD with a 4 x 4 mesh NoC and two modules con-
nected to each router. In this example experiment, a single
module sends two AXI-MM transactions to the first module
connected to each router (15 routers x 2 transactions) one at
a time, with no other traffic on the NoC. This then repeats
for the second module connected to each router. The module,
adapter and NoC operating frequencies are set to 200 MHz,
800 MHz, and 1 GHz, respectively. The RAD-Sim telemetry

VOLUME 10, 2022

utilities are used to record various timestamps in the transac-
tion lifetime such as transaction initiation at the source mod-
ule, packetization, injection/ejection, depacketization, and
receipt at the destination module. Fig. 4(a) shows the latency
in nanoseconds and number of NoC router hops for each of
the 62 issued transactions. The graph shows how the number
of hops and communication latency increase as the distance
between the source and destination modules increases then
drops when moving to the next row in the 4 x 4 mesh of
routers. Fig. 4(b) shows another visualization produced by
RAD-Sim that breaks down the latency for each transaction
into time spent in the injection adapter, the NoC, and the
ejection adapter. This can highlight the overhead introduced
when experimenting with different adapter implementations.

IV. CASE STUDY: RE-DESIGNING THE NPU FOR RADs

In this section, we present a case study to showcase the capa-
bilities of RAD-Sim by migrating a state-of-the-art DL FPGA
benchmark, the NPU, from conventional FPGAs to novel
RADs. This study highlights how RAD-Sim can pin-point
performance bottlenecks and allows rapid experimentation
with potential solutions both by re-designing the application
to better suit RAD architectures and by changing the param-
eters of the RAD architecture itself.

A. THE NEURAL PROCESSING UNIT (NPU) OVERLAY

In this section, we present a brief overview of the NPU
overlay that we use as a vehicle for our case study. The
NPU is a state-of-the-art FPGA soft processor (i.e. software-
programmable processor implemented on an FPGA’s pro-
grammable fabric) with an instruction set and compute
pipeline specialized for the acceleration of memory-intensive
DL models such as multi-layer perceptrons (MLPs), recur-
rent neural networks (RNNs), gated recurrent units (GRUs),
and long short-term memory models (LSTMs). The NPU
architecture is similar to that of the Microsoft Brainwave
architecture [11] and achieves an order of magnitude higher
performance on Intel’s DL-targeted FPGA, the Stratix 10 NX,
when compared to same-generation GPUs [43].

Fig. 5 depicts the NPU overlay architecture which consists
of several coarse-grained compute blocks chained together
such that the output of one block is forwarded to the next.
The key block in the NPU architecture is a massively parallel
matrix-vector multiplication unit (MVU). It consists of T
tiles, each of which has D sets of C dot-product engines
(DPEs) of length L multiplication lanes. Each DPE is tightly
coupled with a register file (RF) that stores all the model
weights persistently on-chip and makes use of the tremen-
dous on-chip bandwidth of the FPGA’s BRAMs. An MVU
tile computes a row block of a matrix-vector multiplication
operation, and then their partial results are reduced and accu-
mulated over multiple time steps (if needed) to output the
final MVU result. This is followed by an external vector
register file (eVRF) to skip the MVU for instructions that
do not include a matrix-vector multiplication, and then two
identical vector elementwise multi-function units (MFUs) for

95073

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

MVU &Y
Y
\ Y [rF
R RF A tHd—
£ o > '
[l Q
3 o _ E E > 9'»»
Q P > c -
< < =]

=

¥ ;

Instruction Decode & Dispatch |

FIGURE 5. Overview of the NPU overlay architecture consisting of five chained coarse-grain compute blocks: a matrix-vector multiplication unit (MVU),
an external vector register file (eVRF), two identical vector elementwise multi-function units (MFUs), and a loader (LD) block. The connections

highlighted in red are latency sensitive channels.

operations such as activation functions, addition/subtraction,
and multiplication. Finally, there is a loader block (LD) which
writes back the pipeline results to any of the NPU’s architec-
ture states and communicates with other external modules or
interfaces. The NPU processor datapath is massively parallel
to target the highly parallel and regular DL computations in
contrast to general-purpose processor pipelines. For instance,
an NPU with 2 cores, 7 tiles, 40 DPEs, and 40 lanes can
execute up to 45,000 operations in a single cycle.

All these blocks are controlled by very long instruction
words (VLIW). Each field of the VLIW is decoded into a
sequence of micro-operations and dispatched to its corre-
sponding compute block by a central control unit as shown in
Fig. 5. The NPU overlay is heavily optimized and compiled
once to generate a single bitstream that is deployed on an
FPGA and then programmed purely through software to run
different applications. An NPU compiler has also been devel-
oped to compile a Keras TensorFlow model description into
NPU VLIW instructions that execute on the FPGA. We refer
interested readers to [44] and [43] for more details about the
NPU architecture and front-end.

B. BASELINE SystemC NPU MODEL

We implement SystemC simulation models for the different
NPU blocks to use them in RAD-Sim as either hard accel-
erator blocks or fabric application modules. To evaluate the
faithfulness of our SystemC NPU model, we compare it to
cycle-accurate RTL simulation of the NPU SystemVerilog
implementation. We use Synopsys VCS v2016.06 for the
RTL simulations, and run both the SystemC and RTL simula-
tions on the same 24-core Intel Xeon Gold 6146 CPU. We use
an NPU configuration similar to that in [43] with 2 cores,
7 tiles, 40 DPEs and 40 lanes, which we also use for the rest
of our experiments in this paper.

We run simulations for a variety of NPU workloads includ-
ing simple matrix-vector multiplications (GEMV), RNNs,
GRUs, LSTMs, and MLPs of different sizes, and report the
results in Fig. 6 in tera operations per second (TOPS). The
results show that our SystemC simulation model can estimate
NPU performance to a high degree of accuracy with average

95074

35
30 ORTL @ SystemC
6
25
g20
©
£1s
S 10
g
&5

0

D D O P D 2

L P D ‘b

@334,@4,\\’ g (\Qp’(’ 00 S‘) G’q’ & f\%q;oa\% & %‘g@\% &
o@é}“&“@?ﬁ\ §Q§ & @ T FESFES @“

Workload

FIGURE 6. NPU performance results from RTL and SystemC simulations.
Our SystemC NPU model estimates performance with less than 10.8%
error (5.1% on average) and is 26 x faster than RTL simulation.

error of only 5.1% and maximum error of 10.8% compared
to cycle-accurate RTL simulation. These small differences
result from minor discrepancies between our SystemC and
RTL implementations of the NPU architecture that can be
tuned to further reduce this gap. However, the SystemC sim-
ulations are 26 x faster than the RTL simulations on average,
with speedups ranging from 6.5x to 100x depending on the
workload size. The speed of SystemC models contributes
to the larger architecture space we can explore in RAD-
Sim, and the close agreement in performance results between
the SystemC and RTL simulation means we can trust the
RAD-Sim results to have high fidelity for this case study.

C. FULLY LATENCY-INSENSITIVE AXI-STREAMING NPU

To map the NPU to a RAD instance incorporating a NoC,
all communication channels between NPU blocks have to
be latency-insensitive (LI). All the feedforward communica-
tion between the five chained NPU blocks already contains
elastic FIFO interfaces. However, there are two main latency
sensitive channels that need to be modified (highlighted in
red in Fig. 5). The first is the connection from the LD
block to all the different RFs which is used for writing back
the pipeline results and issuing instruction tag updates for
data hazard resolution. The second is the inter-tile reduction
connections between all T tiles and the accumulator within
the MVU. Since the MVU alone constitutes 52%, 77% and

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs I E E E ACC@SS

OBaseline OLI-WB ALI-Tiles MAXI-S (Full BW) BAXI-S (DW=1024) BAXI-S (DW=512) BBWA AXI-S (DW=512) BBWA AXI-S (DW=640)

—
]
]

o
©

o
)

Relative Performance
o
KN

o
[S)

o4 L L LI L L L L LI Ll
o\ o5 52 26 02 2 S 3 o8 3 3
el et et @‘3\3@"“&"‘E’ix@"*@—‘““ﬁca“’s‘éa\s
‘Workload
FIGURE 7. Relative performance of NPU design iterations for migration from a latency sensitive FPGA design to a latency-insensitive, NoC-ready design.
All results are on a conventional FPGA. The figure compares: (1) baseline NPU, (2) adding LI write-back, (3) adding finer granularity LI for MVU tiles and
accumulator, (4) adding AXI-S wrappers without bandwidth limitations, (5) limiting the AXI-S interfaces data width to 1024 and 512 bits, and (6) using a
bandwidth-driven design approach (BWA) with 512-bit and 640-bit AXI-S interfaces. The results show that direct migration can significantly degrade
performance (AXI-S with DW = 512) and therefore requires careful re-architecting of the application design (BWA AXI-S).

5% 0® 0® 4% % ob oW e
—\°"GY\\:—\‘E’zsmﬁiém—“ﬂ w2 (et P o™

78% of the NPU’s logic, BRAM and tensor block (TB) or between time steps in RNNs, GRUs, LSTMs), increasing
resources respectively, it is desirable to have finer granularity latency results in pipeline bubbles, reducing performance.

latency-insensitivity such that the different tiles and the accu- Finally, adding the AXI-S wrappers causes less than 3%
mulator can be treated as distinct modules when mapped to performance degradation when they are set to the full widths
RAD:s. of the NPU block interfaces.

We first add an elastic FIFO for the write-back output of Now that the NPU is fully LI, we can map it to RAD archi-

the LD block and change the latency-sensitive instruction tectures where communication and computation are decou-
tag update broadcast signal to sequential point-to-point LI pled by a NoC. As a start, we map the LI AXI-S-wrapped
messages from the LD block to each of the other blocks indi- NPU modules to a simple RAD with only an FPGA fabric and
vidually. Then, we also break the inter-tile latency sensitive an ideal (unrealistic) NoC. This ideal NoC implements point-

reduction chain by adding an elastic output FIFO as well as to-point connections between the NPU modules without any
a separate instruction FIFO and issue logic for each of the T additional arbitration or latency due to traversing multiple
tiles and the accumulator. After this change, all tiles send their NoC links and has no bandwidth contention between different
outputs to the accumulator block which then performs both traffic streams traversing the NoC at the same time. We exper-
the reduction and accumulation operations. Finally, we imple- iment with NoC routers with 1024-bit and 512-bit inter-

ment AXI-S wrappers around each of the NPU modules so we faces. Although this limits the inter-module communication
can connect them to the AXI-S NoC adapters in RAD-Sim. bandwidth between the NPU modules compared to the base-
These wrappers implement the AXI-S protocol on top of the line design, these router interface widths are not unrealistic;
FIFO interfaces and are parameterized to allow for changing 512-bit interfaces are a common design choice for NoC
the data width of the AXI-S interfaces. These parameterized adapters in prior academic research [13] and in the Xilinx
AXI-S wrappers decouple the compute of these modules from Versal NoC architecture [45]. Even in the case of an idealized
the communication bandwidth between them, allowing us to NoC, however, this significantly throttles the NPU perfor-
study the effect of bandwidth restrictions on the overall NPU mance to only 23% and 13% of the original performance

performance. for interface widths of 1024 and 512 bits, respectively. This

Fig. 7 shows the simulation results for the effect of these experiment highlights that migrating application designs as-is
changes on the NPU performance when running our bench- from FPGAs to novel RADs with embedded NoCs can lead
marks. On average, the performance is degraded by 9% when to very poor performance; instead migration requires careful

changing the write-back and hazard resolution channel to be consideration of inter-module communication bandwidth.
LI. This is mainly due to the sequential tag update messages

from the LD block to each of the other NPU blocks. Then, D. BANDWIDTH-DRIVEN DESIGN APPROACH

an additional 9% performance hit results when we add finer Fig. 8(a) shows a graph representation of the LI NPU archi-
granularity LI to the MVU tiles and accumulator, for two tecture where nodes represent different NPU modules and

reasons. Firstly, the number of sequential tag update mes- edges are communication channels between them. Each edge
sages that have to be sent by the LD block for data hazard is annotated with the channel bit width as a relation to NPU
resolution increases from four (MVU, eVRE, 2 MFUs) to architecture parameters (C and D are number of cores and

ten (7 tiles, eVRF, 2 MFUs). Secondly, the latency for the DPEs introduced in Sec. IV-A) and the numbers in brack-
accumulator to reduce the tile outputs increases and it also ets represent the bit width for the NPU configuration we
does not start execution until the outputs of all 7 tiles are use with C = 2 and D = 40. It is clear that the NPU
ready to be consumed. Since most of the NPU workloads have was originally designed to exploit the tremendous amount
strict sequential dependencies (e.g. between layers in MLPs of on-chip programmable interconnect bandwidth with very

VOLUME 10, 2022 95075

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

Vector EW Slice 1

: CxDx8b
MVU Slice1 _—<_ <

3xCxDx32b
1 (7680)

CxD/Sx32b’
1 (512) 5

<.
MVU Slice S Vector EW Slice S

(a) (b)

FIGURE 8. Graph representation of inter-module communication in (a) LI
NPU and (b) re-structured LI NPU using bandwidth-driven design.

wide busses of 7680 and 2560 bits between different modules.
However, these extremely wide interfaces are not friendly
for communication over a NoC with limited router interface
widths. Therefore, the boundaries between NPU modules
need to be re-structured in a way that limits the widths of
edges in Fig. 8(a). We refer to this as a bandwidth-driven
design approach; it follows three principles:

1) Where possible, convert high-bandwidth inter-module
channels into local intra-module ones to use the more
abundant wires in an ASIC implementation (of acceler-
ator blocks) or on the FPGA fabric, rather than crossing
module boundaries over the NoC.

2) Split modules that consist of independent parallel com-
pute lanes into finer-granularity modules to limit the
input/output bandwidth of each module.

3) Divide broadcast channels communicating with differ-
ent modules that use different data widths into sepa-
rate channels to avoid unnecessary data padding and
transfer.

The graph representation in Fig. 8(b) shows how
we re-structure the NPU architecture following these
bandwidth-driven design principles. Firstly, since each tile
consists of D independent DPEs that send their results to the
accumulator block to be reduced with the corresponding D
DPEs from other tiles, we split each tile into S groups of
% DPEs each. Then, we combine the corresponding groups
from different tiles with a smaller accumulator in a new
module that we refer to as an MVU slice. With 5 MVU slices
(S = 5), the output interface of each slice is limited to only
512 bits at the cost of replicating the instruction FIFO and
a few of the tile RFs for each slice. This adds negligible
logic and increases NPU memory utilization by less than 9%.
Secondly, since all other NPU blocks (eVRF, MFUs, LD)
are operating as independent single-instruction multiple-data
(SIMD) lanes, we also split them into vector elementwise
(EW) slices of % SIMD lanes to match the MV U slice output
bandwidth.

Thirdly, we split the unified broadcast LD write back
channel into multiple channels with data widths matching that
of the destination modules. The LD block internally combines
the results from different vector EW slices only when writing
back to the MVU slices; otherwise each LD slice writes back
to its corresponding vector EW slice modules independently
as shown in Fig. 8(b). The data width of the MVU write

95076

[[* uOP Issue_* uOP Retire_® Tag Update]
MU[T T "2 T 2NN %

MVU
Slice 1

eVRF| “af B sl s BN s BW s
MFUO| * W s VERW s MR o MR o
MFU1| = el NIV o VIRV oNEWYE o
0 1000 2000 3000 4000

Vector EW Slices 1

MVU
eVRF
MFUO
MFU1

0 1000 2000 3000 4000
MVU[**tmi™ T TN T
eVRF| =
MFUO| *=
MFU1| *=

0 1000 2000 3000 4000
Simulation Cycles (b)

(@)

FIGURE 9. (a) RAD-Sim traces for an NPU slice with 1 thread (top),

2 threads (middle), and 4 threads (bottom), and (b) Graph representation
of the multi-threaded NPU. The expensive MVU slices are multi-threaded
and the cheaper vector elementwise slices are replicated to consume the
MVU outputs of different thread executions in parallel.

Vector EW Slices S

MVU
Slice S

back channel is set to match the int 8 numerical precision
of the MVU since it is now an independent channel and does
not talk to the other blocks (¢eVRF and MFUs) using int 32
precision. This limits the width of this channel to 640 bits at
no additional cost. Finally, to parallelize MVU write backs or
tag updates for the NPU’s data hazard resolution, we also add
message-passing channels from one MVU slice to the next.
By doing this, the LD can send only one write back or tag
update message to the first MVU slice; this message is then
passed between slices and the LD can start sending messages
to other NPU blocks in parallel.

The results in Fig. 7 show that, with the same amount
of compute resources and an AXI-S interface data width
restricted to 512 bits, the bandwidth-driven re-structuring
of the NPU can gain back most of the performance lost
to bandwidth limitations. It even exceeds the performance
of the original NPU (that used very wide, latency-sensitive
communication) due to the added parallelism in tag updates
through the MVU slice-to-slice message passing channels.
The total cost of the NPU re-design to be fully LI and have
bandwidth-friendly 512-bit AXI-S interfaces is an average
23% degradation in performance compared to the original
latency-sensitive NPU in [43]. With a slight increase in AXI-S
interface width to 640 bits, performance increases by 10% on
average due to matching the full width of the LD write-back
and M VU slice-to-slice communication channels. This brings
the fully LI NPU to within 87% of the original NPU perfor-
mance on average, as shown in Fig. 8(b).

E. NPU MULTI-THREADING

After restructuring the NPU to be more modular, LI, and
bandwidth-friendly as described above, we experiment with
mapping it to a realistic NoC. We again assume a RAD
instance with a conventional FPGA fabric (similar to a
Stratix 10 NX) and no accelerator block, but this time we
use a realistic 9 x 9 mesh NoC. For this experiment, we use
512-bit AXT interfaces for all the NPU modules. We assume
the restructured NPU modules run at 300 MHz similar to

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

01 Thread M2 Threads M4 Threads

Relative Performance
—
o [ee] [» [\S) S

o

@\q’ S x°°q’ vo'bq’ '@

D 0 R R (R R D D D g o
<o\q’ o‘l’b’ \%q, & (\‘3% @\q’ o") \qu’ @\q’ o‘b o °q)§ o

S S S SR

‘Workload

FIGURE 10. Relative performance of multi-threaded NPU with 1, 2 and
4 threads mapped to an FPGA with an embedded NoC in RAD-Sim.

the original NPU, with the NoC adapters and routers run-
ning at 1.2 GHz and 1.5 GHz, respectively. The NoC has
166-bit wide links (for flit payload and meta data), 3 VCs,
input queuing router architecture, and uses dimension order
packet routing. We also use the same settings for our experi-
ments with different RAD examples detailed in Section V.

We perform a manual module assignment of an NPU with
five slices (§ = 5) to NoC routers and pass it as an input to
RAD-Sim. Each MVU slice receives its instructions/inputs
and sends its outputs through a separate router, while each
vector EW slice receives its instructions and inputs from its
corresponding MVU slice through another dedicated router.
In addition, both the combined LD interface and the central
instruction dispatch unit are connected to their dedicated
routers to communicate with the rest of the NPU. This module
assignment utilizes 12 out of the 81 NoC routers.

We simulate the NPU workloads in RAD-Sim to
evaluate the effect of the additional inter-module commu-
nication latency through the NoC. On average, the over-
all performance decreased by 9% compared to the LI
bandwidth-friendly NPU using the ideal NoC from Sec. IV-
D, which translates to 0.68 x the performance of the original
latency-sensitive NPU on Stratix 10 NX. The top simulation
trace in Fig. 9(a) produced using RAD-Sim’s telemetry utili-
ties shows the first 4000 cycles of a single NPU slice running
the GRU-512 workload as an example. The green, red and
blue circles represent micro-operation (uOP) issue, retire and
tag update events in each of the NPU blocks. There are long
idle gaps in the MV U slice simulation trace due to sequential
dependencies on both previous GRU time step results and
vector operations in the current time step; NoC latency has
exacerbated these gaps.

This data highlights an opportunity: interleaving the execu-
tion of multiple instruction streams (i.e. threads) in the MVU
slice could fill these idle gaps. Fig. 9(b) illustrates the graph
representation of an NPU architecture with support for three
interleaved thread executions. The MVU slices switch from
one thread execution to another while waiting for sequential
dependencies to be resolved, and direct the output of each
thread to a different set of vector EW slices (labeled T'1, T2,
T3 in the figure). The middle and bottom traces in Fig. 9(a)
show the reduction in idle gaps when the NPU supports two

VOLUME 10, 2022

TABLE 2. Specifications of example RADs used in our study.

FPGA ASIC Integration NPU

Sectors Sectors Tech. Config.
RAD1 85 (x2) - 2.5D passive 1 X 4-thread
RAD2 8x5 2x5 Monolithic 1 X 4-thread
RAD3 8x5 8x5 3D active 4 x 1-thread

and four interleaved thread executions, respectively. Fig. 10
shows that interleaving two and four threads can increase the
overall performance by 38% and 57% on average (and up to
77% and 135%) respectively, vs. a single thread implemen-
tation. However, adding support for each additional thread
utilizes 17%, 23% and 20% more ALMs, BRAMs and TBs,
respectively. Therefore, it is not feasible to implement more
than one thread on the (already full) Stratix 10 NX 2100 used
by the baseline NPU. Nevertheless, it is feasible to implement
more threads when exploring RADs with bigger/multiple
FPGA fabrics or hard accelerator blocks that free up more
fabric resources, as we discuss in the next section.

V. NPU ON RADs

In the previous section, we have shown that RAD-Sim can
highlight performance bottlenecks and help architects experi-
ment with application re-design ideas (e.g. bandwidth-driven
restructuring and multi-threading for our NPU example) to
alleviate these bottlenecks. In this section, we will illustrate
how RAD-Sim can capture a variety of RAD architectures
by mapping the NPU to three example RAD instances rang-
ing from a multi-die FPGA using passive interposers to a
monolithic FPGA with side accelerator complex and a device
using 3D active die stacking. Additionally, we will show
how RAD-Sim can be used to fine-tune specific architecture
parameters and quantify the effect on end-to-end perfor-
mance. The intention of the experiments presented in this
section is by no means to perform a detailed architecture
study to find the best RAD architecture for a specific applica-
tion, which is an ongoing work combining the use of both the
RAD-Sim and RAD-Gen components of our flow. Instead,
we aim to illustrate that RAD-Sim can capture a wide variety
of RAD styles and also guide the fine-tuning of low level
architecture parameters of these devices.

Use of LI bandwidth-driven design (as illustrated for the
NPU in the previous section) and a system-level NoC com-
pletely decouples the application compute from its inter-
module communication. This raises the interconnect abstrac-
tion level and enables the exploration of complex RADs that
span multiple dice and incorporate hard accelerator blocks.
In this case, the conventional FPGA CAD tools do not need
to optimize the timing and routability of signals crossing
the boundaries between dice through interposers or trying to
reach the programmable routing interfaces of a hard accelera-
tor block. If each application module meets timing separately
and can be connected to a NoC adapter, the evaluation of end-
to-end application performance on a given RAD instance is
raised to the cycle-level simulation of soft/hard modules and
NoC latency; this is exactly what is captured by RAD-Sim.

95077

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

’7/”’//”’//”’//” ’//’ll//”’//’l’//l’
Yy aae ras e il GrP A Y fo

VTP TTTI777077 PO7770 7770777977

(a)

FPGA Fabric

VI I I A

VI T

)K

Routers

(b) Blocks

Base Die

FPGA Blocks
”””””’I””

A7 Ay Ay Ay 77
I//III//I_I-I-//I_I_I_//IIl ;
ST H 778774 77
o om o wav 2ol

l//lll//iil'//iil?/lll
LT T T T 77 7 F
I//III//III//III//II,
l//lll//lll//lll//l’l
(Y77 TTH 77 77
I//IIII/III//III//III

’Il””’l”l”l’

LY 7 LT 77 LT 77 L

(©)

FIGURE 11. RADs used in our study: (a) 2.5D integration of 2 FPGA fabrics
with the NoC links crossing through a passive interposer, (b) monolithic
FPGA fabric and coarse-grained hard accelerators, and (c) 3D integration
of an FPGA fabric on top on an ASIC die of accelerator blocks.

A. EXPERIMENTAL SETUP & METHODOLOGY

We map the re-designed LI AXI-S multi-threaded NPU to
three example RADs and evaluate their performance using
RAD-Sim. The first device (RAD1), illustrated in Fig. 11(a),
consists of two identical FPGA fabrics using 2.5D chip
integration [46] where the NoC links are the only wires
crossing from one fabric to another through a passive inter-
poser. The second one (RAD2) in Fig. 11(b) is a mono-
lithic device with an FPGA fabric and a separate com-
plex of hard accelerator blocks. In this case, the accelerator
blocks can only be accessed from the fabric using the NoC.
Finally, the third device (RAD3) is an FPGA fabric 3D-
stacked on top of a base die of accelerator blocks as shown
in Fig. 11(c). 3D-stacked RADs offer distributed access
to more NoC routers, thereby avoiding the congestion of
specific links when several modules on the reconfigurable
fabric are trying to access a side accelerator complex, for
example. We define the term FPGA sector as a region of
FPGA resources with a NoC router/adapter at its center. For
example, an FPGA with 8 x 5 sectors has a total of 40 NoC
routers/adapters throughout its fabric regardless of the NoC
topology used (i.e. it does not have to be a regular 8 x 5 mesh
topology). Equivalently, we define an ASIC sector as an area
of silicon that has the same footprint of an FPGA sector
and includes a hard accelerator block (possibly with other
hardened components) and a NoC router. Table 2 summarizes
the specifications of the three example RADs we use in our
study.

For all three example RADs, we begin with an FPGA
fabric with the same resources as an Intel Stratix 10 NX
2100 device (702k ALMs, 6,847 M20K BRAMs, 3, 960
TBs). For RAD3, we assume that the FPGA fabric and the
base die are implemented in the same process technology for
simplicity. We remove resources to make room for any NoC

95078

TABLE 3. Resource utilization for the NPU portions implemented on the
RAD FPGAs. (TBs: tensor blocks, M20K: 20Kb BRAM:s.)

ALMs M20Ks TBs
RAD1 - FPGA1 83,585 (12%) 5,260 (77%) 2,800 (71%)
RAD1 - FPGA2 494,216 (70%) 5,644 (82%) 3,200 (81%)
RAD2 550,0930 (78%) 2,632 (90%) 3,200 (81%)
RAD3 550,0930 (78%) 2,632 (90%) 3,200 (81%)

routers added. We implement matrix-vector multiplication
units that resemble the MVU slices of the NPU described in
Sec. IV-D as the hard accelerator blocks in RAD2 and RAD3.
These blocks are realistic candidates for hardening since
they implement common functionality across almost all DL
workloads, while the rest of the NPU blocks could be special-
ized for different workloads to increase efficiency [47] and
thus benefit from the FPGA’s reconfigurability. For RADI,
we use one FPGA for implementing the NPU’s MVU slices
(FPGA1) and the other FPGA to instantiate vector EW slices
to support 4 interleaved thread executions (FPGA?2). For
RAD2 and RAD3, we first stamp out enough single thread
NPU copies to utilize all the available hard accelerator blocks,
and then use any remaining FPGA resources to add support
for as many interleaved thread executions as possible. Table 2
lists the NPU configurations used.

We estimate performance by using RAD-Sim to map the
NPU to the three example RADs. We set an FPGA fabric
operating frequency of 300 MHz (matching the NPU operat-
ing frequency in [43]) and conservatively assume that the hard
accelerator blocks run at 600 MHz. We scale the operating
frequency of the 28nm NoC routers from [48] to 1.5 GHz
in 14nm process technology, and we assume that the NoC
adapters operate at 4x the fabric speed, similarly to [48].
The RTL implementation of the NoC router used in [48]
is heavily parameterizable and compatible with Booksim
parameters (developed by the same developers of Booksim).
More details about this RTL implementation and its source
code can be found in [49]. In all experiments, we use a mesh
NoC topology (dimensions specified in Table 2 for each case)
with 166-bit links, 3 VCs, input queuing router architecture,
and dimension order packet routing. The depths of the NoC
adapters’ injection/ejection FIFOs and ouptut buffers (see
Fig. 3) are set to 16 and 2, respectively. We also manually
assign NPU module AXI-S ports to specific routers in a
reasonable (but possibly sub-optimal) placement.

B. FPGA AND ASIC AREA RESULTS

To determine FPGA resource utilization, we synthesize, place
and route the parts of the NPU to be implemented on the
FPGA fabrics using Intel Quartus Prime Pro 21.2 on a
Stratix 10 NX 2100 device. We use reserved logic lock
regions at the appropriate locations for NoC routers/adapters,
mark them as empty design partitions, and connect the NPU
modules to them based on our manual module assignment
to different routers. We conservatively size each logic lock
region as a grid of 10 x 10 logic array blocks (LABs)

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

3.6
57| O Baseline (S10-NX) @RAD 1 BRAD 2 MRAD 3] 150
03
£2.8} @120
E 2.4} e
Q< af o 90
o :
PRl £ 60
zla| g
<0.8 5 30
Q
%04 .
0 0
B 422 0% 1% XY 202002000
oM oY \‘brb 3% 19 Q‘L\b‘ \"{)‘7’ q,\rb Q‘L\b‘ 20> A 0\3‘ S 29° qp”‘ LB \‘5'5
NP R Yt \ 2> X e <e 'b 0¥ w© gx @: =8
(b) (©)

FIGURE 12. (a) Quartus chip planner view of the FPGA fabric of RAD3. Different colors show the 4 instantiations of NPU vector elementwise modules
working with hard MVUs on the base die. The small boxes are reserved logic lock regions for the fabric NoC adapters, (b) Relative performance
comparison of the baseline NPU on Stratix 10 NX and the re-designed NPU on the 3 RADs we study, and (c) Performance of bigger workloads that can fit

persistently in the larger on-chip memory resources of RAD2 and RAD3.

compared to the 3 x 3 LAB region used in [50], as we are
using 128-bit wide links vs. the 32-bit wide links of [50].
Table 3 shows the FPGA resource utilization of the NPU
portions implemented on the FPGA fabrics of each of the
three RADs and Fig. 12(a) shows the Quartus chip planner
view of the FPGA portion implementation of the RAD3
instance.

We also verify that the matrix-vector multiplication units
we chose to implement as hard accelerator blocks fit in
the available ASIC sector area footprint. Since the silicon
area footprint of Stratix 10 FPGA resources are proprietary
information, we estimate the relative area as follows. First,
we implement the matrix-vector multiplication unit on the
Stratix 10 NX programmable fabric and convert its resource
utilization results into equivalent ALMs [51] to get an area
footprint breakdown of different components of the circuit.
The matrix-vector multiplication unit utilizes the equivalent
of 2.8 FPGA sectors with 68%, 21% and 11% of its area
dedicated to BRAMs, ALMs and TBs, respectively. Prior
studies show that ALMs, BRAMs, and DSPs/TBs have 26,
3x, and 1.35x smaller area footprint when implemented
in an ASIC without any reconfigurability or interfaces to
the programmable routing [52], [53]. Therefore, we use a
weighted average of these FPGA-to-ASIC area scaling ratios
based on our circuit composition to get an approximate ASIC
area footprint. The hard matrix-vector unit consumes less
than 55% and 40% of the available ASIC sector area for the
4-thread (RAD2) and 1-thread (RAD3) variations respec-
tively, leaving more than enough area for the NoC routers,
adapters, links, and any additional hardened functionality.
In the future, the RAD-Gen component of our flow, described
in Sec. III-A, will automate any manual steps needed to obtain
the FPGA results and will push the RTL implementation of
the hard accelerator blocks through the ASIC design flow to
obtain exact area and timing results.

C. PERFORMANCE RESULTS
Fig. 12(b) shows the relative performance comparison
between the baseline latency-sensitive NPU on Stratix 10 NX

VOLUME 10, 2022

from [43] and the re-designed NPU mapped to the three
RAD instances we use in our study. Although RADI uses
two FPGA fabrics, it does not benefit from any increase in
the MVU compute resources compared to the baseline NPU.
It only uses the resources of the second FPGA to add support
for 4 interleaved thread executions. With the overhead of
LI re-design and higher-latency NoC communication, RAD1
can achieve only 12% better performance on average com-
pared to the baseline NPU. In comparison, the single-die
RAD?2 achieves 1.2x (1.32x) the performance of RADI (the
baseline NPU) by exploiting the hardened MVU slices in
the side coarse-grained accelerator blocks and interleaving
four thread executions. Finally, the base die of RAD3 can
implement the MVU slices of 4 NPU instances and frees
the FPGA resources to implement the rest of their vector
EW, LD and instruction dispatch units. This results in a
significant 2.6 x increase in average performance compared
to the baseline NPU on a same form-factor FPGA without
3D stacking. In addition, since the hard matrix-vector mul-
tiplication units in RAD2 and RAD3 are designed to have
bigger RFs, they can both run a new set of bigger workloads,
shown in Fig. 12(c), that can not fit in the on-chip memory of
the baseline NPU. These results show that RAD3 can achieve
performance up to 145 TOPS on the LSTM-1536 workload.

Besides its ability to model a variety RAD architectures,
RAD-Sim also enables us to study the effect of different
architecture parameters on the performance of application
designs. As an example, Fig. 13 shows the impact of changing
the VC buffer size in the NoC routers of RAD2 for some
of the NPU workloads (other workloads show the exact
same trend but were omitted for brevity). Increasing the
VC buffer size increases the silicon area footprint of the
NoC routers, but acts as a bigger distributed storage for
the packets traversing the NoC which can help avoid frequent
NoC back pressures and decrease the overall communication
latency. The results show that for the NPU traffic patterns
over the NoC, VC buffer depths less than 8 flits can throttle
performance, while increasing them beyond 8 flits yields little
or no additional performance benefit.

95079

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

RNN-1792-8 MLP3-DLRM 35

/ 30 15

25
4 6 81012 4 6
VC Buffer Size

LSTM-1024-8 20 MLP3-1024

erf. (TOP
©
&
[

10
81012 4 6 81012
VC Buffer Size VC Buffer Size

4 6 81012
VC Buffer Size

FIGURE 13. Effect of changing NoC VC buffer size on the end-to-end
performance of some NPU workloads. Performance plateaus with no
additional benefit for VC buffers that are more than 8 flits deep for all
workloads.

Runtime (sec)

©
035 «@q) & e") x"q) 055 @q’ & S‘) "q’ o}q) Q“) @‘3’ & §

‘§§§§§§ C’%o“‘ & ‘&\&@3 &

Workload

&
o

4
&‘@“

FIGURE 14. RAD-Sim runtime for simulating different NPU workloads on
different RAD instances.

D. RUNTIME RESULTS

Fig. 14 shows a heatmap of RAD-Sim’s runtime for sim-
ulating different workloads on the three example RADs
we experiment with. It shows that runtime varies mainly
depending on the number of simulation cycles for the dif-
ferent workloads. For example, runtime increases as work-
load size increases (e.g. RNN-512 vs. RNN-1792) and as
workload complexity increases (e.g. RNN-1024 vs. LSTM-
1024). Runtime also varies depending on the size of the
simulated design (i.e. number of user design modules and
accelerator blocks) and its NoC traffic patterns. Fig. 14 shows
that RAD2 simulation runtime is generally higher than that
of RADI since the RAD2 design is more distributed with
modules connected to 54 NoC routers compared to 33 routers
in RADI.

On the other hand, RAD3 has a lower runtime since base
die accelerator blocks are communicating with user modules
connected to the same routers on the top FPGA die, and thus
has simpler NoC traffic patterns than RAD2. In addition,
although RAD3 has enough resources to implement 4 NPUs
on the same device, it is enough to simulate only one instance
since all four instances are completely independent with
access to different sub-grids on the NoC (using different
routers and links with XY dimension order routing). Across
all our simulation runs, RAD-Sim’s runtime ranges from
12 seconds to 34 minutes depending on the workload and
RAD instance simulated. Evaluating a given RAD instance
by simulating all NPU workloads takes between 1 hour and
3.5 hours, which can be further reduced by running different
workloads in parallel (between 8 and 34 minutes if fully
parallelized).

95080

VI. CONCLUSION

Recent large-scale deployments of FPGAs in datacenters
were mainly motivated by their faster time-to-solution com-
pared to custom ASICs and their diverse high-bandwidth
I/O interfaces that allow them to accelerate key datacen-
ter functionalities on-the-fly at the data crossroads between
different server end points. Building on these strengths,
we have started to witness the emergence of novel RADs
that combine the hardware flexibility of FPGAs, the high
performance of domain-specialized accelerators, and the effi-
ciency of packet-switched NoCs for system-level commu-
nication. In addition, advances in 3D chip fabrication and
integration technologies are unlocking a whole new design
space of multi-die RADs. However, RAD architects lack
the tools to rapidly explore this huge design space and
evaluate the effect of their design choices on end-to-end
application performance. To this end, we develop RAD-Sim,
an application-driven architecture simulator for modeling
and evaluating candidate RAD architectures. It also allows
early co-optimization of key application designs migrated
from conventional FPGAs and the architecture parameters
of a proposed RAD. We showcase RAD-Sim through a
case study that maps the state-of-the-art NPU DL inference
overlay on different example RAD instances. RAD-Sim’s
telemetry and visualization features pinpoint bottlenecks in
the NPU on RADs with embedded NoCs, which we address
with a new bandwidth-driven design approach and by adding
multi-threading to increase tolerance of NoC latency. Our
study also demonstrates that 3D-stacked RADs can increase
average performance by a 2.6 x compared to current FPGAs
and achieve up to 145 TOPS on key DL workloads. We open
source both RAD-Sim and the NPU example design for the
broader research community to leverage in driving further
innovations in RAD architecture.

REFERENCES

[1] A.Boutros and V. Betz, “FPGA architecture: Principles and progression,”
IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 4-29, May 2021.

[2] B. Gaide, D. Gaitonde, C. Ravishankar, and B. T. Xilinx, “Adaptive
compute acceleration platform: Versal architecture,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays (FPGA), 2019, pp. 84-93.

[3] D.Ingerly, S. Amin, and L. Aryasomayajula, “Foveros: 3D integration and
the use of face-to-face chip stacking for logic devices,” in [EDM Tech. Dig.,
2019, pp. 14.

[4] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy,
J.-P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: high-performance CAD
and customizable FPGA architecture modelling,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 13, no. 2, pp. 1-55, Jun. 2020.

[5] A. Boutros, E. Nurvitadhi, and V. Betz, “RAD-Sim: Rapid architecture
exploration for novel reconfigurable acceleration devices,” in Proc. Int.
Conf. Field Program. Log. Appl. (FPL), 2022, pp. 438—444.

[6] A. Putnam et al., “A reconfigurable fabric for accelerating large-scale

datacenter services,” ACM SIGARCH Comput. Archit. News, vol. 42, no. 3,

pp. 13-24, Oct. 2014.

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Hasel-

man, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill,

K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D.

Burger, “A cloud-scale acceleration architecture,” in Proc. 49th Annu.

IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016, pp. 1-13.

[8] Z.Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry, “‘Achieving
100 Gbps intrusion prevention on a single server,” in Proc. USENIX Symp.
Operating Syst. Design Implement. (OSDI), 2020, pp. 1083-1100.

[7

VOLUME 10, 2022

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

IEEE Access

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R.Ma, E. Georganas, A. Heinecke, A. Boutros, and E. Nurvitadhi, “FPGA-
based Al smart NICs for scalable distributed Al training systems,” 2022,
arXiv:2204.10943.

N. S. Kim and P. Mehra, “Practical near-data processing to evolve memory
and storage devices into mainstream heterogeneous computing systems,”
in Proc. 56th Annu. Design Autom. Conf., Jun. 2019, pp. 1-4.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A.
Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burger, “A configurable cloud-scale DNN processor
for real-time AL” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018, pp. 1-14.

S. Yazdanshenas and V. Betz, ‘““Interconnect solutions for virtualized field-
programmable gate arrays,” IEEE Access, vol. 6, pp. 10497-10507, 2018.
M. S. Abdelfattah, A. Bitar, and V. Betz, “Design and applications for
embedded networks-on-chip on FPGAs,” IEEE Trans. Comput., vol. 66,
no. 6, pp. 1008-1021, Jun. 2017.

M. S. Abdelfattah and V. Betz, “The case for embedded networks on chip
on field-programmable gate arrays,” IEEE Micro, vol. 34, no. 1, pp. 80-89,
Jan./Feb. 2014.

1. Swarbrick, D. Gaitonde, S. Ahmad, B. Gaide, and Y. Arbel, “Network-
on-chip programmable platform in versal Tm ACAP architecture,” in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2019,
pp. 212-221.

Speedster7t Network on Chip User Guide (UG089), Achronix, Santa Clara,
CA, USA, 2019.

S. Velagapudi and M. Honman, ‘“‘Addressing memory-bandwidth and
compute-intensive challenges with Intel Agilex M-series FPGAs,” Intel
Corp., Tech. Rep. WP-01313-1.0, 2022.

M. Langhammer, E. Nurvitadhi, B. Pasca, and S. Gribok, ““Stratix 10 NX
architecture and applications,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, Feb. 2021, pp. 57-67.

Speedster7t Machine Learning Processing User Guide (UGO0SS),
Achronix, Santa Clara, CA, USA, 2019.

A. Arora, S. Mehta, V. Betz, and L. K. John, “Tensor slices to the rescue:
Supercharging ML acceleration on FPGAs,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2021, pp. 23-33. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3529650

R. Mahajan, R. Sankman, N. Patel, D.-W. Kim, K. Aygun, Z. Qian,
Y. Mekonnen, I. Salama, S. Sharan, D. Iyengar, and D. Mallik, ‘“Embedded
multi-die interconnect bridge (EMIB)—A high density, high bandwidth
packaging interconnect,” in Proc. IEEE 66th Electron. Compon. Technol.
Conf. (ECTC), May 2016, pp. 557-565.

K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling large
and complex benchmarks in academic CAD,” in Proc. 23rd Int. Conf. Field
Program. Log. Appl., Sep. 2013, pp. 1-8.

A. Arora, A. Boutros, D. Rauch, A. Rajen, A. Borda, S. A. Damghani,
S. Mehta, S. Kate, P. Patel, K. B. Kent, V. Betz, and L. K. John,
“Koios: A deep learning benchmark suite for FPGA architecture and
CAD research,” in Proc. 31st Int. Conf. Field-Program. Log. Appl. (FPL),
Aug. 2021, pp. 355-362.

N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogian-
nakis, and J. Kim, “A detailed and flexible cycle-accurate network-on-chip
simulator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS),
Apr. 2013, pp. 86-96.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen, “The gem5
simulator,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1-7,
2011.

A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M.
D. Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost
in abstraction: Pitfalls of analyzing GPUs at the intermediate language
level,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2018, pp. 608-619.

G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked DRAM caches,” in Proc. 44th Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), Dec. 2011, pp. 454-464.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski,
T. F. Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity
into a core,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2012, pp. 317-328.

VOLUME 10, 2022

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

[45]

(46]

(47]

(48]

[49]

V. Seshadri, D. Lee, T. Mullins, and H. Hassan, “Ambit: In-memory accel-
erator for bulk bitwise operations using commodity DRAM technology,”
in Proc. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2017,
pp. 273-287.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal. (SC), 2011,
pp. 1-12.

S. Kanev, G.-Y. Wei, and D. Brooks, “XIOSim: Power-performance mod-
eling of mobile X86 cores,” in Proc. ACM/IEEE Int. Symp. Low Power
Electron. Design ISLPED, Jul. 2012, pp. 267-272.

M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated GPU modeling,” in
Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA), May 2020,
pp. 473-486.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Comput. Archit. News, vol. 44, no. 3,
pp. 1-13, 2016.

S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-based in-
memory accelerator,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 5, pp. 1123-1136, May 2020.

M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “HyGCN: A GCN accelerator with hybrid architecture,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2020,
pp- 15-29.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-RTL,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in Proc. ACM/IEEE 41st Int.
Symp. Comput. Archit. (ISCA), Jun. 2014, pp. 97-108.

Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Co-
designing accelerators and SoC interfaces using gem5-aladdin,” in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2016,
pp. 1-12.

G. Krishnan, S. K. Mandal, M. Pannala, C. Chakrabarti, J.-S. Seo,
U. Y. Ogras, and Y. Cao, “SIAM: Chiplet-based scalable in-memory accel-
eration with mesh for deep neural networks,” ACM Trans. Embedded
Comput. Syst., vol. 20, no. 5, pp. 1-24, 2021.

M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and
J. Michelsen, “Open cell library in 15 nm FreePDK technology,” in Proc.
Symp. Int. Symp. Phys. Design, Mar. 2015, pp. 171-178.

M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” in Proc. 35th Int. Conf.
Comput.-Aided Design, Nov. 2016, pp. 1-6.

M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining conven-
tional wisdom for designing NoCs in the context of FPGAs,” in Proc. Int.
Symp. Field Program. Gate Arrays (FPGA), 2012, pp. 37-46.

M. Langhammer, G. Baeckler, and S. Gribok, ““Spiderweb—High perfor-
mance FPGA NoC,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), May 2020, pp. 115-118.

A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz,
and M. Langhammer, “Beyond peak performance: Comparing the real
performance of Al-optimized FPGAs and GPUs,” in Proc. Int. Conf. Field-
Program. Technol. (ICFPT), Dec. 2020, pp. 10-19.

E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson,
H. Sumbul, G. Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok,
B. Pasca, M. Langhammer, D. Marr, and A. Dasu, “Why compete when
you can work together: FPGA-ASIC integration for persistent RNNs,” in
Proc. IEEE 27th Annu. Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), Apr. 2019, pp. 199-207.

1. Swarbrick, D. Gaitonde, S. Ahmad, B. Jayadev, J. Cuppett, A. Morshed,
B. Gaide, and Y. Arbel, “Versal network-on-chip (NoC),” in Proc. IEEE
Symp. High-Perform. Interconnects (HOTI), Aug. 2019, pp. 13-17.

E. Nasiri, J. Shaikh, A. Hahn Pereira, and V. Betz, ““Multiple dice work-
ing as one: CAD flows and routing architectures for silicon interposer
FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5,
pp. 1821-1834, May 2016.

A. Boutros, E. Nurvitadhi, and V. Betz, “Specializing for efficiency:
Customizing Al inference processors on FPGAs,” in Proc. Int. Conf.
Microelectron. (ICM), Dec. 2021, pp. 62-65.

M. S. Abdelfattah, A. Bitar, and V. Betz, “Take the highway: Design
for embedded NoCs on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, Feb. 2015, pp. 98-107.

D. U. Becker, “Efficient microarchitecture for network-on-chip routers,”
Ph.D. Thesis, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2012.

95081

IEEE Access

A. Boutros et al.: Architecture and Application Co-Design for Beyond-FPGA RADs

[50] M. S. Abdelfattah and V. Betz, “Design tradeofts for hard and soft FPGA-
based networks-on-chip,” in Proc. Int. Conf. Field-Programmable Tech-
nol., Dec. 2012, pp. 95-103.

[51] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom CMOS and
the impact on processor microarchitecture,” in Proc. 19th ACM/SIGDA Int.
Symp. Field Program. Gate Arrays (FPGA), 2011, pp. 5-14.

[52] A. Boutros, S. Yazdanshenas, and V. Betz, ““You cannot improve what you
do not measure: FPGA vs. ASIC efficiency gaps for convolutional neural
network inference,” ACM Trans. Reconfigurable Technol. Syst., vol. 11,
no. 3, pp. 1-23, Sep. 2018.

[53] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity:
Enhanced DSP blocks for low-precision deep learning on FPGAs,” in
Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,
pp. 35-357.

ANDREW BOUTROS (Student Member, IEEE)
received the B.Sc. degree in electronics engineer-
ing from German University in Cairo, in 2016,
and the M.A.Sc. degree in electrical and com-
puter engineering from the University of Toronto,
in 2018, where he is currently pursuing the Ph.D.
degree. He was a Research Scientist at the Intel’s
Accelerator Architecture Laboratory, before he
returned to the University of Toronto. His research
interests include FPGA architecture and CAD,
deep learning acceleration, and domain-specific architectures. He is an
affiliate of the Intel/VMware Crossroads 3D-FPGA Academic Research
Center, Vector Institute for Artificial Intelligence, and Center for Spatial
Computational Learning. He received three best paper awards at Reconfig
2016, FPL 2018, and ICM 2021.

\

95082

ERIKO NURVITADHI (Member, IEEE) received
the M.S. and M.B.A. degrees from Oregon State
University, in 2004, and the Ph.D. degree in elec-
trical and computer engineering from Carnegie
Mellon University, in 2010. He is currently a
Principal Engineer at Intel. His research interests
include computer architecture, hardware acceler-
ators (FPGAs and ASICs), and their ecosystems
(systems and software flows) for emerging work-
loads, such as Al, graphs, and analytics. He has
over 60 peer-reviewed publications, 30 patents granted, and 50 patents
pending. In 2020, he was recognized as one of Intel’s top 30 inventors by Intel
Patent Group and a Mahboob Khan Outstanding Liaison Award by Semi-
conductor Research Corporation. He has served on Program Committees for
IEEE/ACM Conferences, such as DAC, FCCM, and FPGA.

VAUGHN BETZ (Fellow, IEEE) received the B.Sc.
degree in electrical engineering from the Univer-
sity of Manitoba, in 1991, the M.S. degree in elec-
trical and computer engineering from the Univer-
sity of Illinois at Urbana—Champaign, in 1993, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Toronto, in 1998.
He is the Original Developer of the widely used
VPR FPGA placement, routing and architecture
evaluation CAD flow, and a Lead Developer in
the VTR project that has built upon VPR. He has co-founded Right Track
CAD to commercialize VPR, and joined Altera upon its acquisition of Right
Track CAD. He spent 11 years at Altera, ultimately as the Senior Director
of Software Engineering, and is one of the architects of the Quartus CAD
system and the first five generations of the Stratix and Cyclone FPGA
families. He is currently a Professor at the University of Toronto. He holds
102 U.S. patents and has published over 100 technical articles in the FPGA
area, 14 of which have won best or most significant paper awards. He is a
fellow of the NAI and the EIC, and a Faculty Affiliate of the Vector Institute
for Artificial Intelligence.

VOLUME 10, 2022

