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Abstract—Artificial intelligence (AI) has become an essen-
tial component in modern datacenter applications. The high
computational complexity of AI algorithms and the stringent
latency constraints for datacenter workloads necessitate the use of
efficient specialized Al accelerators. However, the rapid changes
in state-of-the-art Al algorithms as well as their varying compute
and memory demands challenge accelerator deployments in
datacenters as a result of the much slower hardware development
cycle. To this end, field-programmable gate arrays (FPGAs)
offer the necessary adaptability along with the desired custom
hardware efficiency. However, FPGA design is non-trivial; it
requires deep hardware expertise and suffers from long compile
and debug times, making FPGAs difficult to use for software-
oriented AI application developers. Al inference soft processor
overlays address this by allowing application developers to write
their AI algorithms in a high-level programming language, which
are then compiled into instructions to be executed on an Al-
targeted soft processor implemented on the FPGA. While the
generality of such overlays can eliminate the long bitstream
compile times and make FPGAs more accessible for application
developers, some classes of the target workloads do not fully
utilize the overlay resources resulting in sub-optimal efficiency.
In this paper, we investigate the trade-off between hardware
efficiency and designer productivity by quantifying the gains and
costs of specializing overlays for different classes of AI workloads.
We show that per-workload specialized variants of the neural
processing unit (NPU), a state-of-the-art Al inference overlay, can
achieve up to 41% better performance and 44% area savings.

Index Terms—FPGA, Al, overlay, soft processor

I. INTRODUCTION

In recent years, Al has become a key ingredient in many end-
user applications, such as smart assistants and recommendation
systems [1]. The AI algorithms powering these applications are
very compute and memory intensive, and therefore are typically
executed on remote servers in large-scale datacenters. These work-
loads usually have tight latency constraints to ensure a pleasant
user experience even when multiple algorithms are cascaded, further
motivating the need for efficient Al compute. As a result, service
providers resort to deploying specialized accelerators to satisfy the
increasing demand for faster and more accurate Al processing [2],
[3]. However, the rapid evolution of the AI domain is a major
challenge for datacenters as the change in Al algorithms and their
compute/memory needs is much faster than the typical multi-year
datacenter hardware refresh cycle. More frequent hardware changes
would not only be very costly, but also challenging for acceler-
ators that use custom-manufactured application-specific integrated
circuits (ASICs) due to their slow design and deployment cycle.

The fine-grained reconfigurability of FPGAs offers an appealing
solution that combines flexibility and hardware efficiency [4]. An
FPGA can be reconfigured on the hardware level to implement
different Al algorithms of varying characteristics, enabling a much
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faster time-to-solution compared to custom ASICs. However, build-
ing efficient FPGA systems requires extensive hardware design
expertise and suffers from very long compile times (hours to days for
large designs) as designs need to be synthesized, placed and routed
using complex computer-aided design tools [5]. These two factors
create a significant challenge for the typical software-oriented Al
application developer when using FPGAs.

Alternatively, FPGA overlays follow a similar approach to CPUs
or GPUs, in which an instruction set architecture (ISA) layer decou-
ples the hardware and software stacks. This abstracts the hardware
complexity away from application developers who describe their
algorithms in a high-level programming language. A compiler then
translates these programs into sequences of instructions that can run
on any processor that supports the same ISA. For the same processor
architecture, its implementation as a hard ASIC will always be more
efficient than as an overlay on the FPGA’s reconfigurable logic (i.e.
soft processor). However, the soft processor implementation can
increase efficiency by exploiting the FPGA flexibility to implement
a specialized datapath and memory hierarchy. This creates a large
design space for FPGA overlays in terms of their degree of special-
ization. Increasing the overlay generality can enhance productivity
by being able to accelerate a wider variety of workloads just by
running different (software) instructions on the same soft processor.
However, this typically requires over-provisioning the implemented
hardware to support all target workloads, resulting in sub-optimal
efficiency. On the other hand, a very specialized overlay improves
hardware efficiency for a specific workload at the cost of reduced
flexibility and longer bitstream compile and FPGA reconfiguration
times for other workloads.

In this paper, we study the hardware efficiency vs. designer
productivity trade-off of having specialized Al inference overlays
for different classes of workloads in contrast to a single overlay that
can execute all target workloads. For our study, we use the neural
processing unit (NPU), a state-of-the-art FPGA overlay for low-
latency Al inference [6]. Our contributions include:

o Implementing a SystemC NPU simulator for fast and accurate
performance estimation to enable rapid exploration of the large
overlay design space.

e Modifying the NPU architecture to create multiple workload-
specialized variants for different classes of workloads.

e Quantifying the area and performance benefits as well as the
productivity cost of implementing workload-specialized NPU
variants compared to a generic NPU executing all workloads.

II. BACKGROUND

A. The Neural Processing Unit (NPU)

The NPU is a state-of-the-art very-long-instruction-word (VLIW)
processor architecture that resembles the Microsoft Brainwave ar-
chitecture designed specifically for low-latency Al inference work-
loads [3], [7]. It keeps all model weights persistent in the on-
chip memories of one or multiple network-connected FPGAs and
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Fig. 1: Overview of the architecture of a single NPU core.

has complex functional units that are well-suited to Al processing.
The NPU exploits the abundant data parallelism and deterministic
dataflow of Al models by launching thousands of parallel operations
with a single instruction, greatly amortizing the energy and area
cost of software programmability. Fig. 1 shows the architecture of
a single core of our NPU overlay [6]. It consists of five coarse-
grained units chained in a pipeline and operates on a batch of 3
independent input streams simultaneously to allow more efficient
memory accesses for weights. The core pipeline starts with a matrix-
vector multiplication unit (MVU). The MVU consists of 7' compute
tiles, each of which has D dot-product engines (DPEs) of size L
multiplication lanes. Vector operands are broadcast from a vector
register file (VRF) to all DPEs in a single tile, while persistent model
weights come from the matrix register files (MRFs) shared between
different NPU cores. The MVU is followed by an external VRF
(eVRF) that is used to skip the MVU in case an instruction does
not start with a matrix-vector operation. This is followed by two
identical multi-function unit (MFU) blocks that implement vector
elementwise operations commonly used in Al models, such as ac-
tivation functions (e.g. sigmoid, tanh, ReLU), addition/subtraction,
and multiplication. The final stage is the loader which can write back
results to any of the processor architecture states (i.e. VRFs) for
further processing, and also can communicate with external com-
ponents (e.g. other FPGA modules or a network interface) through
input/output FIFOs. Al application developers describe their models
using a subset of the widely known Tensorflow Keras API [8] which
is then compiled into a sequence of NPU VLIW instructions to be
executed on the FPGA overlay. This approach abstracts the detailed
FPGA hardware away from developers, improving productivity.
B. AI-Optimized Stratix 10 NX FPGA

Al computation is dominated by multiply-accumulate (MAC)
operations, so one key to Al performance is maximizing the number
of MACs a device can perform. Accordingly, we implement the
NPU on Intel’s Al-optimized Stratix 10 NX FPGA [9]. Instead of
the usual digital signal processing (DSP) blocks that perform a few
high-precision MACs (e.g. 2x 18-bit MACs on Stratix 10 GX/MX),
these FPGAs have tensor blocks that perform a much larger number
of low-precision MACs (30x 8-bit) as Al models generally lose
little or no accuracy when using lower precisions [10]. Stratix 10 NX
not only seeks a large number of MACs per tensor block but also a
small enough tensor block that many can be included in a chip; the
device we use contains 3960 tensor blocks. One factor in keeping
a tensor block small is to use lower precision multiplication, as the
area of a multiplier is proportional to the square of its precision.
Another concern is the programmable routing (muxing) needed to
steer inputs and outputs to and from the tensor block. Stratix 10 NX
keeps the cost of this interconnect low by bringing in only ten 8-
bit inputs (vs. the 60 required) and using data re-use registers and
broadcast lines to feed data to all 30 MACs.

Using the tensor blocks can be challenging for users with limited
hardware design expertise. A user can only instantiate this block
in a register transfer level (RTL) description like Verilog, and then

TABLE I: Baseline NPU (2C-7T-40D-40L) resource utilization and
operating frequency on the Intel Stratix 10 NX device.

Logic (ALMs) BRAMs Freq.(MHz)
259,614 (37%) 6,389 (93%) 300

Tensor Blocks
3,600 (91%)

TABLE II: Summary of the specifications of the three Al-optimized
devices under study: V100 GPU, T4 GPU, and Stratix 10 NX.

Nvidia V100 Nvidia T4 Intel S10 NX
On-chip Memory 16 MB 10 MB 16 MB
Process Tech. TSMC 12nm TSMC 12nm Intel 14nm
Die Size (mm?) 815 545 < 500
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Fig. 2: Performance comparison between NPU on Stratix 10 NX, the
V100 GPU, and the T4 GPU on a variety of workloads.
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must design control logic that orchestrates the operation of the tensor
block and achieves high compute utilization. Our NPU overlay
on Stratix 10 NX hides such low-level design details and allows
developers to utilize the tensor blocks purely from software.

III. BASELINE NPU PERFORMANCE

We implement the baseline NPU architecture with 2 cores, 7 tiles,
40 DPEs, and 40 lanes (2C-7T-40D-40L) on the Al-optimized
Stratix 10 NX FPGA and evaluate its performance against same-
generation Al-optimized GPUs. Table I presents the resource uti-
lization and operating frequency of the baseline NPU. It utilizes
most of the tensor blocks and on-chip block RAMs (BRAMs) while
running at 300 MHz, which translates to a peak performance of 40.3
tera operations per second (TOPS). For performance comparison,
we use two Nvidia GPUs, the V100 and T4, that use similar process
technology, are enhanced with Al-targeted tensor cores, and have
similar on-chip memory capacity as shown in Table II. The T4 GPU
is more comparable to the Stratix 10 NX FPGA in terms of die
size, while the V100 is a much bigger and more powerful GPU.
We experiment with a variety of workloads including simple matrix-
vector multiplication (GEMV), multi-layer perceptrons (MLPs),
and recurrent neural networks (RNNs, GRUs, LSTMs) from the
DeepBench suite [11] and Nvidia’s persistent RNNs [12]. For every
workload, we exhaustively run all possible GPU configurations in
terms of numerical format used (32-bit/16-bit floating-point or 8-
bit integer), keeping model weights in on-chip memory whenever
possible, and tensor core settings. Then, we pick the best measured
GPU performance to compare to the NPU on Stratix 10 NX.
For a fair comparison, all the GPU results are measured using
the cudaEventRecord () API which records time stamps on
the GPU at the specified points. Therefore, we only account for
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Fig. 3: The usage of the baselme NPU FUs for different classes of
workloads. Used FUs are highlighted in green.

the core computation excluding any system-level overheads, which
corresponds to the NPU execution cycles on the FPGA.

Fig. 2 shows the performance of the three solutions normalized
to that of the T4 GPU for our benchmark suite when processing
input batches of size 6 (i.e. running inference on 6 input streams
simultaneously). We choose a low batch size since we focus mainly
on latency-sensitive applications, in which grouping many inputs
before running inference on them might be infeasible. The results
show that the NPU performance is significantly higher than both
GPUs; it delivers 11x and 23x better performance on average
compared to the V100 and T4 GPUs, respectively. In addition, all
the workloads we experiment with can be written for the NPU in
less than 25 lines of Python code, compiled into an NPU instruction
stream (a few KBs) in seconds, and then sent to the NPU over PCle
in milliseconds. This highlights that the use of FPGA overlays as
a design approach can not only achieve best-in-class Al inference
performance, but also make FPGAs more accessible for application
developers without long FPGA bitstream compile times or the need
for hardware design expertise.

IV. THE GAINS & COSTS OF NPU SPECIALIZATION

The baseline NPU overlay architecture (shown in Fig. 1) has all
the function units (FUs) needed to execute the full set of workloads.
However, not all of these FUs are utilized when running some
workloads. If a certain FU is unused in all NPU VLIW instructions
implementing a specific workload, the NPU can still implement
this workload even if this FU and its corresponding instruction
fields are completely removed from the overlay architecture. Fig.
3 illustrates the used FUs (highlighted in green) for the five main
classes of workloads we consider (GEMV, MLP, RNN, GRU,
LSTM). In addition, the smaller size variants of these workloads
do not need the full capacity of the NPU’s register files to store
the persistent model weights on-chip. This raises the question of
whether higher performance or lower FPGA resource use can be
achieved by specializing the NPU for a specific class of workloads
by removing unused functional units (grey boxes in Fig. 3). On
the other hand, implementing multiple specialized NPU variants
requires more design space exploration and more time-consuming
hardware compiles. In this section, we investigate the performance
and resource gains as well as the productivity cost of implementing
specialized NPU variants for these five classes of workloads.

A. SystemC NPU Simulator

To evaluate different NPU variations efficiently, we develop a per-
formance simulator for our NPU overlay architecture in SystemC.
Using SystemC allows accurate cycle-level modeling of the NPU
architecture details, while still preserving the fast C++ simulation
runtime compared to cycle-accurate RTL simulation. This SystemC
NPU simulator enables rapid exploration of the NPU design space;
we can specify different NPU architecture parameters (e.g. number
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Fig. 4: SystemC NPU simulator performance results compared to

cycle-accurate RTL simulation of the NPU Verilog implementation.
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Fig. 6: GRU/LSTM variant of the NPU architecture.

of cores, tiles, DPEs, lanes), different module latencies based on
their low-level FPGA implementation, or different compositions of
FUs to evaluate their effect on end-to-end workload performance.

Our simulator implementation uses SystemC v2.3.3 and we com-
pare its results and runtime to cycle-accurate RTL simulation of the
NPU Verilog using Synopsys VCS v2016.06, with both simulations
(SystemC and RTL) running on an Intel Xeon Gold 6146 24-core
CPU @ 3.2 GHz with 768 GB of RAMs. All the reported results for
the runtime and accuracy comparison are for the 2C-7T-40D-40L
baseline NPU architecture. Fig. 4 shows the performance results
in TOPS for different workloads reported by our SystemC NPU
simulator compared to those from cycle-accurate RTL simulation.
Our SystemC simulator accurately estimates NPU performance; its
performance predictions are within 5.1% of the cycle-accurate RTL
simulation on average, with a maximum error of 10.8%. This small
error results from minor discrepancies between our SystemC and
RTL implementations of the NPU architecture that can be tuned to
further reduce this gap. The SystemC NPU simulator is 26 x faster
than RTL simulation on average, with speedups ranging from 6.5 x
to 100x for the bigger and smaller workload sizes, respectively.
Consequently, our NPU SystemC simulator can be used for rapid
yet reliable exploration of the NPU design space.

B. NPU Specialization

The NPU can be specialized to a workload by:

(1) Eliminating unused FUs (grayed out in Fig. 3).

(2) Shuffling the order of FUs in the MFU block to better suit this
class of workloads. For example, changing the baseline order
{Activation—Add—Mult} to {Add— Activation—Mult}.

(3) Adjusting register file capacities to match the needs of different
workload sizes within each class.

Combining (1) and (2) results in four different variants of the NPU

core pipeline architecture for GEMV, MLP, RNN, and GRU/LSTM

(i.e. both GRUs and LSTMs use the same variant). The MLP and

GRU/LSTM variants of the NPU are shown as examples in Fig. 5

and Fig. 6, respectively. Then for each of these variants, we also

implement a version with reduced MRF capacity (1 BRAM instead
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TABLE III: Average performance gains and area savings of special-
ization relative to the baseline NPU for different workload classes.

GEMV MLP RNN LSTM GRU
Performance +19% +35% +13% +9% +10%
Area -44% -38% -36% -23% -25%

of 2 for each MRF) which is sufficient for the smaller cases in each
of the workload classes.

We use the NPU SystemC simulator to verify the functionality
and obtain performance results for each of the NPU variants. Then,
we modify the RTL implementation of the NPU to obtain the
resource utilization, operating frequency, and bitstream compilation
times. All variants are synthesized, placed and routed using Intel
Quartus Prime Pro 20.4 on the Stratix 10 NX device. When reporting
area results, we use equivalent adaptive logic modules (eALMs) as
a representative metric for utilized resources. This metric normal-
izes different FPGA resource types based on their relative silicon
area footprint, where each logic block, BRAM and tensor block is
counted as 1, 40 and 33 eALMS, respectively [13].

All four NPU variants close timing at slightly higher than 300
MHz with no significant frequency improvements from special-
ization. Therefore, when calculating performance, we assume an
operating frequency of 300 MHz, matching that of the baseline
NPU. This means that any performance gains are a result of the
architecture customizations reducing execution cycle counts. Fig.
7 presents the performance and area results of per-workload spe-
cialized NPUs normalized to the baseline NPU (dashed line); NPU
specialization yields up to 41% performance improvement and 44 %
area savings compared to the baseline architecture. The performance
for each workload type improves with a specialized NPU, with
higher gains for the smaller workloads whose performance was not
limited by the MVU block (e.g. smaller RNNs, GRUs, LSTMs)
or workloads with sequential dependencies between layers (e.g.
MLPs). Specializing the NPU architecture removes all unused FUs
and therefore results in area savings for all workloads. The smaller
workloads from each class achieve additional area savings as the
model weights can fit in smaller register files. Table III provides
a summary of the average performance gains and area savings of
NPU specialization for each of the five workload classes compared
to the baseline NPU architecture. The achieved area savings can be
regarded as a first-order estimates for power savings as well. Another
option is to reuse the saved area to fit more MVU compute tiles
to further improve performance for MVU-bottlenecked workloads.
Our experiments show that we can add two more MVU tiles using
the saved resources, which increases the performance of GEMV and
RNN workloads by an additional 6% and 9%, respectively.

These performance gains and area savings come at the cost
of increased designer effort. Targeting a new workload with the
generic NPU only requires writing new software and a fast (seconds)
software compile, while specializing an NPU for a new workload

requires a slow hardware compile to generate a new FPGA bit-
stream. The bitstream compilation time of a specialized NPU variant
ranged from 230 to 340 minutes. If the bitstreams of the workloads
to be accelerated are precompiled (e.g. in a bitstream library for
workloads of interest), however, changing the workload running
on the FPGA would only require reconfiguring the FPGA with a
different bitstream.

V. CONCLUSION

The NPU overlay makes FPGAs more accessible for Al appli-
cation developers by insulating them from both detailed hardware
design and long FPGA bitstream compilation times. Once an NPU
overlay and its software stack are developed and deployed by a
group of experts, application developers can program the FPGA
to accelerate different Al workloads purely from software, with
seconds-long software recompiles. We showed that by exploiting
Intel’s Al-optimized Stratix 10 NX device the NPU overlay achieves
an order of magnitude better performance than equivalent GPUs,
while still being software-programmable. To facilitate design space
exploration of alternative NPU architectures, we implemented a
SystemC NPU simulator for rapid (26 x faster than RTL simulation)
and reliable (within 5% of RTL simulation results on average)
performance evaluation of NPU architectures on various workloads.
Using this simulator, one can rapidly explore the performance gains
and area savings of specializing the NPU architecture for different
classes of workloads. A per-workload specialized NPU architecture
can achieve 9-35% better performance using 23-44% less resources
on average. While creating such specialized NPUs requires hours-
long FPGA bitstream compilations, if the resulting bitstreams are
cached, they can be reconfigured into an FPGA in seconds.
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