
Koios: A Deep Learning Benchmark Suite for
FPGA Architecture and CAD Research

Aman Arora1, Andrew Boutros2, Daniel Rauch1, Aishwarya Rajen1, Aatman Borda1, Seyed Alireza Damghani3,

Samidh Mehta1, Sangram Kate1, Pragnesh Patel1, Kenneth B. Kent3, Vaughn Betz2, Lizy K. John1
1The University of Texas at Austin 2University of Toronto & Vector Institute for AI 3University of New Brunswick

E-mail: aman.kbm@utexas.edu

Abstract—With the prevalence of deep learning (DL) in many
applications, researchers are investigating different ways of
optimizing FPGA architecture and CAD to achieve better quality-
of-results (QoR) on DL-based workloads. In this optimization
process, benchmark circuits are an essential component; the
QoR achieved on a set of benchmarks is the main driver
for architecture and CAD design choices. However, current
academic benchmark suites are inadequate, as they do not
capture any designs from the DL domain. This work presents
a new suite of DL acceleration benchmark circuits for FPGA
architecture and CAD research, called Koios. This suite of 19
circuits covers a wide variety of accelerated neural networks,
design sizes, implementation styles, abstraction levels, and nu-
merical precisions. These designs are larger, more data parallel,
more heterogeneous, more deeply pipelined, and utilize more
FPGA architectural features compared to existing open-source
benchmarks. This enables researchers to pin-point architectural
inefficiencies for this class of workloads and optimize CAD tools
on more realistic benchmarks that stress the CAD algorithms
in different ways. In this paper, we describe the designs in our
benchmark suite, present results of running them through the
Verilog-to-Routing (VTR) flow using a recent FPGA architecture
model, and identify key insights from the resulting metrics. On
average, our benchmarks have 3.7× more netlist primitives, 1.8×
and 4.7× higher DSP and BRAM densities, and 1.7× higher
frequency with 1.9× more near-critical paths compared to the
widely-used VTR suite. Finally, we present two example case
studies showing how architectural exploration for DL-optimized
FPGAs can be performed using our new benchmark suite.

I. INTRODUCTION

With compute and data intensive deep learning (DL) be-

coming a major component of many applications, specialized

hardware acceleration of such workloads has become a com-

monplace. More recently, field-programmable gate arrays (FP-

GAs) have been shown to deliver state-of-the-art performance

when accelerating different DL workloads because of their

massive parallelism, flexibility and energy efficiency [1], [2].

With new DL use cases emerging faster than ever, FPGAs are

also starting to adapt. This includes the emergence of DL-

optimized FPGA fabrics [3], the integration of FPGAs with

specialized DL accelerators [4], [5], and also tuning FPGA

CAD tools to the properties of these workloads [6].
In general, the development of novel FPGA architectures

and CAD algorithms depends mainly on a versatile frame-

work that consists of three main components: (1) a set of

benchmarks written in a hardware description language or

synthesized using high-level synthesis, (2) an architecture

model that captures the organization of FPGA blocks and

routing architecture as well as area/timing/power models from

circuit-level implementations, and (3) a CAD flow that syn-

thesizes the given benchmarks then implements them on a

given FPGA architecture [7]. Although most research efforts

in the FPGA community are focused on architecture and

CAD, benchmarks actually play a crucial role in this flow.

The quality-of-results (QoR) achieved on a specific set of

benchmarks is the main driver for architecture and CAD design

choices. As a result, it is essential that these benchmarks

capture the markets and application domains targeted by the

candidate FPGA architecture. Using an unrepresentative set of

benchmarks means optimizing for the wrong targets.

Among the existing open-source benchmark suites, which

we will discuss in a later section, none of them focus on (or

even capture any) benchmarks from the increasingly important

DL domain. Therefore, it becomes very tedious to evaluate

architecture and CAD optimizations for DL-targeted FPGAs,

since researchers have to first implement their own bench-

marks. This limits any research efforts in this direction to only

individual isolated ones, and makes it virtually impossible to

have meaningful comparisons between different ideas across

the FPGA research community. Our work addresses this by

presenting Koios1, an open-source benchmark suite of DL

acceleration benchmark circuits for FPGA architecture and

CAD research. This suite consists of 19 benchmarks that

capture a wide variety of accelerated neural networks, design

sizes, numerical precisions, and circuit characteristics. To

maximize the utility of these benchmarks, we made them

compatible with the Verilog-to-Routing (VTR) flow [8], which

is arguably the most widely-used FPGA architecture and CAD

research framework. Researchers can use these benchmarks

seamlessly with VTR and with minor modifications, can even

use them with other toolchains.

Koios benchmarks are representative of modern DL work-

loads; many of them are re-created from prior works and some

are replicas of industrial architectures. In addition to being

more pipelined and DSP/BRAM intensive, these benchmarks

have higher usage of structures like wide busses, large reduc-

tion trees, hard block cascades and large fanouts. This makes

Koios benchmarks much better suited for DL-targeted FPGA

architecture exploration than any non-DL benchmark suite.

1Koios (also written as Coeus) is the Titan of intelligence in Greek
mythology. Unlike the Titan benchmarks, our suite focuses on deep learning.
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All the benchmarks along with the FPGA architecture we

used for our experiments in this paper are open-sourced

as a part of VTR2. In this paper, we make the following

contributions:

• Introduce the Koios benchmarks and describe the different

characteristics of the constituent designs.

• Present the results of running our benchmarks through VTR

using an FPGA architecture description file that we develop

to capture complex DSP features typical of recent FPGAs.

• Compare circuit statistics to those of the VTR benchmarks

to highlight the added value of our new suite.

• Describe two example case studies that use these bench-

marks to explore architectural optimizations for DL.

II. RELATED WORK

A. FPGA Benchmark Suites

There are several benchmark suites that were used by FPGA

architecture and CAD researchers throughout the past three

decades. The classic MCNC20 benchmarks [9] are extremely

small and simple designs that do not use any FPGA hard

blocks. Therefore, they do not represent modern FPGA use-

cases and are rarely used for architecture or CAD studies

nowadays. The twenty largest circuits from this suite (often

referred to as the Toronto20 [10]) are provided in the input

format consumed by the Versatile Place and Route (VPR) tool

suite. The UMass RCG HDL Benchmark Collection [11] has

larger designs mostly representing DSP applications. However,

this suite does not target an open-source FPGA framework.

The Groundhog benchmarks [12] are shown to work with

academic toolflows and are targeted towards evaluation of

power consumption of FPGAs for mobile computing appli-

cations. ERCBench [13] is another suite consisting of hybrid

hardware/software applications. The designs in this suite rep-

resent designs from multimedia, wireless communications and

cryptography. They do not contain DL benchmarks, and do not

work with academic FPGA tools.

VTR [8] has a suite of benchmarks as well. These

VTR benchmarks vary from small (321 netlist primitives)

to medium-sized designs (165, 809 primitives) and they cap-

ture a multitude of applications like image processing, soft

processors and arithmetic. The Titan benchmark suite [14]

contains modern heterogeneous large designs (90K to 1.8M
netlist primitives). However, they target a hybrid CAD flow

that is architecture-specific as logic synthesis is performed

using the Intel Quartus flow only for the Stratix IV archi-

tecture. In contrast to all existing suites, Koios is the only

one that provides large, heterogeneous, architecture-agnostic

benchmarks that work with a completely open-source flow

such as VTR, and focuses on the increasingly important DL

domain.

B. DL-Optimized FPGAs

Recently, FPGA vendors have released products with many

DL-targeted features to cater to the ever-growing demands of

2https://tinyurl.com/vtrkoios

DL workloads. For example, the Xilinx Versal ACAP [15]

added specialized vector processors for DL acceleration, and

Intel’s Stratix 10 NX devices integrated in-fabric AI tensor

blocks [3]. In addition, the announced Achronix Speedster7t

FPGAs [16] will have embedded machine learning processor

(MLP) blocks that tightly couple memory and compute for DL,

and the FlexLogix nnMAX [17] inference IP also contains

tiles with hardened convolution logic. For their architecture

exploration, FPGA vendors typically use proprietary customer

designs or internal benchmarks that are not accessible to the

research community.

There have also been a number of academic research pro-

posals for optimizing FPGA architectures for DL. Eldafrawy

et al. [18] proposed several enhancements to the logic block

architecture to pack more arithmetic bits or add a shadow

multiplier in them for improved DL performance. They used

simple multiplier/MAC and 4×4 matrix multiplication mi-

crobenchmarks to evaluate their proposed ideas. In [19], [20],

the authors explored enhancing DSP blocks by efficiently

supporting low precision multiplications. For these studies, the

authors design their own benchmarks to evaluate their ideas.

Arora et al. [21] also proposed adding Tensor slices in FPGAs.

Again, they use their own designs, a TPU-like overlay and

several microbenchmarks, for their evaluation. We believe that

an open-source benchmark suite is needed to create a common

ground for evaluating and comparing such FPGA architectural

enhancements for DL.

III. THE KOIOS BENCHMARK SUITE

Our collection of benchmark designs in the Koios suite

come from a multitude of applications within the DL domain.

They cover a wide variety of different design sizes, implemen-

tation styles, target neural networks, acceleration paradigms,

numerical precisions, and circuit properties as summarized by

the overview in Table I, and detailed in this section.

• Design Size: The smallest design has 11, 519 netlist prim-

itives while the largest has 1, 085, 877. Any latch, gate or

hard block resulting from logic synthesis counts as a netlist

primitive. Some benchmarks, such as clstm_like,
dla_like, tpu_like, have multiple size variants (i.e.

small, medium, large). In these cases, the size indicates the

parallelism factor used in the design. Bigger designs create

a more challenging optimization problem for the CAD tools,

while smaller ones have faster compilation time suitable for

early-stage architecture and CAD experiments.

• Implementation Style: Although all the designs in the

benchmark suite are provided to users in the form of Verilog

HDL implementations, some were originally implemented

in RTL while others were automatically generated from

higher level language descriptions using high-level synthesis

(HLS) tools. HLS-generated designs typically have specific

design characteristics that are not generally seen in hand-

coded RTL designs, such as widely distributed control

signals and complex state machines.

• Target Neural Network: Our benchmarks cover all major

classes of neural networks. These include: multi-layer per-
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TABLE I: The Koios Benchmarks (in decreasing order of number of netlist primitives)
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Other Properties

clstm_like (S/M/L) CLSTM-like accelerator RTL RNN int18 Overlay � �3 � [22] Circular compression

dla_like (S/M) Intel-DLA-like accelerator RTL CNN2 int8/16 Overlay � �3 �4 � [23] [24] Daisy chain
lstm LSTM engine RTL RNN int16 Layer � � � Streaming dataflow

tpu_like (S/M) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay � � � � [25] APB interface

bnn 4-layer binary neural network HLS MLP1 binary Custom � [26] [27] int16 act/norm

tiny_darknet_like Accelerator for Tiny Darknet HLS CNN12 fp16 Custom �3 � [28] Fused layer pairs
gemm_layer Matrix multiplication engine RTL MLP bfloat16 Layer � � � AXI interface

attention_layer Transformer self-attention layer RTL RNN int16 Layer � �3 � [29] GEMV based
conv_layer GEMM based convolution RTL CNN int16 Layer � � � � 3x3 filters
spmv Sparse matrix vector multiplication RTL MLP int8 Layer � � � [30] [31] COO sparsity enc.
robot_rl Robot+maze application RTL RL int8/16/32 Custom � � � [32] [33] Q-learning algo
reduction_layer Add/max/min reduction tree RTL Any int16 Layer � � � Reduces 128 inputs
softmax Softmax classification layer RTL Any fp16 Layer � � [34] LUT based exp/log
conv_layer_hls Sliding window convolution HLS CNN fp16 Layer � � 1x1 filters
eltwise_layer Matrix elementwise add/sub/mult RTL Any bfloat16 Layer � � � Broadcast heavy

1 Has Normalization layer 2 Has pooling layer 3 Uses double buffering 4 Has DSP cascade chains

ceptrons (MLPs), convolutional neural networks (CNNs),

recurrent neural networks (RNNs), and reinforcement learn-

ing (RL). These different classes have different compute and

memory requirements, which reflects on the resource break-

down and routing patterns of their corresponding benchmark

circuits. Some designs are also generic and can be used to

accelerate any type of network.

• Acceleration Paradigm: FPGAs are used for acceleration

of DL workloads in different ways. One way is to design

a flexible software-programmable overlay architecture that

can execute different DL models without the need to re-

program the FPGA with a new bitstream similar to the

Microsoft Brainwave [35] architecture. These designs tend

to have instruction decoders and more complicated control

logic to enable this level of flexibility. In other cases, a

custom network-specific architecture is mapped to an FPGA

to maximize efficiency similar to the approach used in [1].

The control logic of these circuits is usually hard-coded and

implemented as relatively simple state machines. Another

approach is to implement layer-specific accelerators that are

invoked by software running on the host CPU. These circuits

are mostly streaming-style datapaths with simple or even no

control paths. Our benchmark suite contains designs from

all three acceleration paradigms.

• Numerical Precisions: One of the main advantages of using

FPGAs to accelerate DL workloads is the ability to design

hardware for custom numerical precisions, which is a com-

monly used technique in accelerating DL workloads [36].

The designs in our suite use various precisions, including:

binary (bin), different fixed point types int8/16/32,
brain floating point (bfloat16) [37], and IEEE half-

precision floating point (fp16). The diversity in the bench-

marks’ numerical precisions is useful for exploring new

reconfigurable DSP block architectures and different hard

arithmetic circuitry.

• Circuit Properties: Our benchmarks have varying circuit

styles that can potentially exercise different components

of the CAD tools in different ways. For example, regular

structures like systolic arrays can be used for optimizing

placement algorithms, large reduction trees can form local

routing congestions that stress the routing algorithms, long

cascades of hard blocks impose harder placement con-

straints, etc. The benchmarks are also highly heterogeneous

(i.e. use different types of FPGA resources) with varying

degrees as will be discussed in Section V.

These benchmarks are implemented and compiled together

in this suite with the intention to be used for FPGA archi-

tecture exploration and CAD tool optimization. They aim to

accurately capture all these different circuit structures and

compositions, but should not be expected to be deployed as

standalone functional systems. We are confident that these

circuits are structurally correct and tried to verify their high-

level functionality to the best of our ability. However, full

functional verification on many different test cases is out of

the scope of this work.

IV. METHODOLOGY

A. Ensuring VTR Compatibility

The designs in the benchmark suite are implemented and

tested first using commercial FPGA tools from Xilinx and

Intel for ease of development and debugging. Then, we

performed several modifications to these designs to ensure

their compatibility with the VTR flow. VTR uses Odin II,

an academic open source synthesis tool, as its conventional

front-end. To work around the Verilog support limitations of

Odin II and at the same time maintain the conventional fully

open-source VTR flow, we implemented several scripts to

help automate the process of replacing unsupported Verilog

constructs (e.g. signed, integer variables, generate
for loops, unpacked arrays, etc.) with alternative/unrolled

Verilog constructs that are supported by Odin II. In addition,

vendor-specific and architecture-specific IP cores (e.g. floating
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point adders and multipliers, RAM macros) were replaced

with ones that are compatible with VTR and the FPGA

architecture file used for our experiments. This process was

especially challenging for the designs generated from HLS

tools which tend to be non-human-readable in many cases.

Several improvements to the language coverage and reported

error messages of Odin II are continuously being implemented

to mitigate such challenges for future research efforts.

B. Experimental Setup

We use the most-recent VTR 8.0 version [8] for all our

experiments in this paper. While running VTR, we provide

an SDC (Synopsys Design Constraints) file in which the

target clock frequency is set to 0 (i.e. VTR will optimize the

design for maximum clock frequency). We also disable timing

analysis for paths to/from the FPGA IOs. For all experiments,

we run VTR with auto layout enabled (meaning the grid size

expands based on the resources required by the design), the

default timing-driven routing option with a maximum of 150

routing iterations, and a fixed channel width of 300 wires.

All reported results are the average of runs using 3 different

seeds. For experiments in which we report VTR flow runtime

and peak memory usage, we use an Intel Xeon CPU E5-2430

running at 2.5 GHz with 64 GB of memory.

One of the main motivations of this work is to compare

various properties of our Koios benchmarks with other existing

non-DL-targeted benchmarks that are commonly used to drive

FPGA architecture and CAD research. The most relevant suite

for comparison is the VTR benchmark suite, because these

are compatible with the same fully open source VTR flow.

Other existing suites are either too small and do not represent

realistic modern use cases of FPGAs or depend partially on

commercial CAD tools. For these comparative experiments,

we only use the VTR benchmarks with more than 10, 000
netlist primitives, which is a common practice in CAD-related

studies [38]. Designs smaller than that are not representative

of realistic benchmarks and they cannot be used to derive any

reliable conclusions.

C. FPGA Architecture Description

We develop a new FPGA architecture description file to

capture some relevant features of modern FPGAs. This ar-

chitecture description file will be open sourced along with the

benchmark suite. The delays and areas of all the FPGA blocks,

including the DSP tiles, are obtained from COFFE [39] using

a 22nm technology node from PTM [40]. The circuits in this

architecture are optimized for area-delay product which leads

to relatively higher delays compared to performance-optimized

commercial FPGAs such as the Arria 10 family. The rest of

this subsection describes the details of the FPGA architecture

that we develop and use for all our experiments.

1) Floorplan: The FPGA contains columns of logic blocks,

DSPs and block RAMs (BRAMs). Both DSP and BRAM

columns repeat every 16 columns and are interleaved such

that every 8th column is a DSP or a BRAM. The DSP and

BRAM tiles are 4 and 2 rows high, respectively. IO pads are

arranged along the perimeter of the FPGA.

2) Routing Architecture: The architecture uses unidirec-

tional routing with wire segments of length 4 (260 out of 300

wires) and length 16 (40 out of 300 wires). The length 16 wires

do not directly connect to block pins and are only accessible

from the length 4 wires. Switches appear after every 4 blocks

on the length 16 wires. The switch blocks use a custom

switching pattern based on the Stratix-IV-like architecture used

in the Titan flow [14]. The input and output flexibility of

connection blocks are set to 0.15 and 0.1, respectively.

3) Logic Blocks: Each logic block (LB) contains 10 basic

logic elements (BLEs) similar to that in the Intel Stratix-10-

like architecture from [18]. Each block has 60 input pins, 40

output pins, and a 50% sparsely populated local input crossbar.

Each BLE has a 6-input LUT which can be fractured into

two 5-input LUTs. The BLE also has 2 flip-flops and 2 bits

of arithmetic with dedicated carry chains between LBs. Each

BLE has 8 inputs and 4 optionally registered outputs.

4) DSP Slices: This architecture has a complex DSP block

that supports most of the operating modes in the state-of-

the-art Intel Agilex DSP block [41]. Multiple fixed point

(9x9, 18x19, 27x27) and floating point (IEEE 32-bit (fp32),
IEEE 16-bit (fp16) and Brain floating point (bfloat16))
precisions are supported. In addition, the DSP block has

dedicated output chains for cascading several DSP blocks in

the same column for efficient dot product structures.

5) BRAMs: BRAM blocks have a capacity of 20 Kilobits

and have registered inputs and outputs. True and simple

dual port modes are supported. In the simple dual port

mode, a BRAM can be configured as: 512×40, 1024×20 and

2048×10, while in true dual port mode it can be configured

only as: 1024×20 and 2048×10. The delays and areas of a

BRAM block are obtained by interpolation between the values

obtained from COFFE for a 16 Kilobit BRAM and a 32 Kilobit

BRAM.

Some benchmarks in Koios use advanced DSP features that

are available in this FPGA architecture by instantiating DSP

macros to implement native fp16 multiplications or use the

hard dedicated chains. These modes are architecture-specific;

however, users can simply replace the macro instantiations

in our benchmarks with their equivalents for different archi-

tectures. In addition, we also include alternative versions of

the benchmarks (using `ifdef..`endif) implementing the

same functionality with behavioral Verilog that is automati-

cally mapped to the FPGA soft logic when an architecture

without the required macro definitions is used.

Koios benchmarks can be used to explore FPGA archi-

tectural modifications involving adding new hard blocks to

FPGAs, similar to some recent DL-optimized FPGAs [3] [21].

This can be done by: (1) modifying the synthesis engine to

extract specific patterns from the Verilog design and map

them to the new blocks, or (2) modifying the benchmarks to

instantiate these new blocks (defined in the VTR architecture

file).
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TABLE II: VTR results of the Koios benchmarks.

Benchmark Netlist
Primitives

Logic
Depth

Used
IOs

Used
LBs

Used
DSPs

Used
BRAMs

Max.
Freq.

Routed
Wirelength

Elapsed
Time

Peak
Memory

clstm_like (L) 1,085,877 3 1,159 25,995 962 1,161 110.2 5,534,505 1,171.4 12,658.4
clstm_like (M) 745,829 3 871 17,641 662 784 115.4 3,612,133 560.6 8,691.1
dla_like (M) 609,180 5 411 11,359 400 1,008 125.9 3,349,783 260.7 6,009.7
clstm_like (S) 405,776 3 583 9,309 362 407 127.6 1,744,947 152.8 4,679.1
dla_like (S) 269,040 5 207 5,545 128 828 147.7 1,475,558 86.1 4,304.7
lstm 249,841 7 36 6,626 610 305 121.6 1,828,974 308.2 5,892.8
tpu_like (M) 244,884 5 1,188 4,255 1,064 26 98.62 2,412,297 156.1 9,163.1
bnn 204,601 3 382 5,695 63 0 126.8 1,233,543 20.9 2,153.1
tiny_darknet_like 154,096 6 46 7,417 106 3,978 63.9 3,033,846 571.1 16,253.5
tpu_like (S) 67,086 5 644 1,134 276 14 124.8 579,437 31.9 2,507.5
gemm_layer 64,792 4 1,779 1,989 200 0 308.1 717,412 25.4 1,982.2
attention_layer 45,342 7 1,074 1,248 105 161 132.2 370,030 16.7 1,152.3
conv_layer 45,039 4 156 1,185 84 56 166.1 293,011 9.4 876.3
spmv 28,505 6 19 885 32 257 167.9 275,500 14.5 1,492.8
robot_rl 28,080 15 387 1,324 18 96 83.6 228,378 9.1 549.5
reduction_layer 18,323 6 54 805 0 52 141.7 183,739 2.2 363.2
softmax 13,189 10 552 518 53 0 112.2 127,704 2.5 513.3
conv_layer_hls 12,093 3 3,299 1,715 12 21 164.7 112,362 19.2 8,929.1
eltwise_layer 11,519 4 249 348 48 72 174.9 170,857 2.1 480.9

Frequency is in MHz, Routed Wirelength is in units of length 1 segments, Elapsed Time is in minutes, and Peak Memory is in MBs.

V. BENCHMARK RESULTS

A. Properties of Koios benchmarks

Table II shows the main VTR results for the Koios bench-

marks when running them with the FPGA architecture de-

scribed in Section IV-C.

The results show that these designs, with sizes ranging from

11K to 1M netlist primitives, are deeply-pipelined with 12

out of the 19 benchmarks having critical paths with 5 or less

logic levels on them. The benchmarks are also highly diverse

in heterogeneity, with varying circuit compositions between

soft logic, DSPs, and BRAMs. For example, some designs

do not utilize any BRAMs since they either implement only

the workload datapath (e.g. gemm_layer and softmax)
or use distributed registers for storage (e.g. bnn). On the

other hand, there are other BRAM-intensive designs such

as tiny_darknet_like with close to 4, 000 BRAMs

utilized. Similarly with DSPs, there are some designs that use

very few or no DSPs (e.g. bnn and reduction_layer) as
they mostly implement other non-multiplication operations in

DL workloads such as pop-count or max/min/add reduction.

Other designs are DSP-intensive (e.g. large clstm_like and

medium tpu_like) with around 1, 000 DSP blocks. Table

II also shows that different types of resources are the grid-

size limiting factor for different benchmarks in our suite. The

majority of the designs are bound by hard blocks, as indicated

by the bold entries in the table, which emphasizes that these

benchmarks can be useful for exploring new DSP and BRAM

architectures.

Most of the designs in the Koios suite can achieve reason-

ably high operating frequencies up to 308 MHz and an average

of 137 MHz. The FPGA architecture used for our experiments

is not very fast. The delays in the architecture are based on

area-delay-optimized PTM models (with raw delays similar to

40 nm Stratix-IV). Changing the delays of FPGA resources to

those typical of a high-speed (≤14 nm) device would increase

Fig. 1: VTR runtime for the Koios benchmarks.

the frequency by >2×. The tiny_darknet_like design is

a clear outlier with a frequency of 63.9 MHz since the grid size

required to implement this circuit was significantly expanded

due to the large number of BRAMs needed. This resulted in

some very long paths between BRAMs and soft logic flip-

flops (FFs). The total routed wirelength of the benchmarks

are largely correlated with the circuit size and ranges from

171K up to 5.5M units of length 1 wire segments. Fig. 1 plots

the VTR flow runtime for each of the Koios benchmarks as

listed in Table II. It shows that the runtime grows quadratically

with the number of netlist primitives in the circuits.

B. Comparison to the VTR Benchmarks

Fig. 2a shows a scatter plot of the DSP and BRAM to LB

ratios for both Koios (red) and VTR (blue) benchmarks as

metrics for their DSP and memory density. The individual

ratios for each of the benchmarks are shown by (×) symbols

while the average across the whole benchmark suite is marked

by the stars. The figure shows that, on average, the Koios

benchmarks are more DSP and memory rich than the VTR

benchmarks. The Koios suite has a 1.8× and 4.7× higher DSP

to LB and BRAM to LB ratios, respectively. The individual

benchmarks of the Koios suite are also more scattered and

varying across the spectrum of DSP and BRAM compositions.

More importantly, it shows that most of the VTR benchmarks

have very low DSP and BRAM densities (except for the only

stereovision2 outlier circuit), making them inadequate

for evaluating any DSP or BRAM architecture modifications.
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(a) (b)

Fig. 2: Comparing circuit compositions of Koios & VTR bench-
marks: (a) DSP/BRAM to LB ratios, (b) FF/adder to LUT ratios.

(a) (b) (c) (d) (e) (f)
Fig. 3: Averages and ranges of key metrics of Koios & VTR suites.

Fig. 2b has a similar plot for FF and single-bit adder to LUT

ratios. It shows that the Koios suite has 1.17× higher ratio

between FFs and LUTs which reflects their deeply-pipelined

nature, and 30% lower adder to LUT ratio compared to the

VTR suite. However, the average adder to LUT ratio of the

VTR suite is significantly skewed by a single benchmark

(stereovision2) which has 60, 753 1-bit adders and only

29, 541 LUTs. If we exclude this outlier, the Koios suite has

a 1.2× higher average adder to LUT ratio.

Fig. 3 illustrates averages and ranges of key metrics for

both Koios and VTR benchmark suites. Fig. 3a-d show that

the Koios benchmarks have 3.7× more netlist primitives,

6.5× larger non-global fanouts, 1.9× more near (top 10%)

critical connections, and 1.7× higher frequencies on average

compared to the VTR benchmarks. The Koios benchmarks are

also scattered across a much wider range of values for each

of those metrics. Fig. 3e shows that the Koios designs have an

average of 5 logic levels on the critical path, compared to 30

levels for the VTR benchmarks. This also reflects the deeply-

pipelined nature of our benchmarks which is a key property of

modern FPGA designs. Fig. 3f shows that the two benchmark

suites have similar average routed wirelength per tile, with

the most wiring dense circuit in Koios having 12% higher

wirelength per tile compared to the most-wiring dense circuit

in the VTR suite.

Baseline B L L L L L L L D L L L L L L L B L …

Denser B L L L D L L L B L L L D L L L B L …

Densest B L D L B L D L B L D L B L D L B L …

Baseline B L D L B L D L B L D L B L D L B L …

DSP-heavy B L D L D L B L D L D L B L D L D L …

BRAM-heavy B L B L D L B L B L D L B L B L D L …

(a)

(b)

Fig. 4: FPGA layouts the architectures used in our case studies.

Fig. 5: Effect of varying the density of DSPs and BRAMs on Koios
and VTR benchmark suites.

VI. ARCHITECTURE EXPLORATION CASE STUDIES

Our Koios benchmark suite is architecture-agnostic and does

not depend on any commercial tools for any portion of the

FPGA CAD flow. Thus, it enables the use of these benchmarks

to perform flexible FPGA architecture exploration using the

fully-open-source VTR flow. In this section, we perform two

example case studies to demonstrate that.

A. Case Study 1: Hard Blocks to Soft Logic Ratio

As shown in Table II, our DL-focused circuits are highly

heterogeneous (i.e. DSP and BRAM intensive). Thus, in our

first case study, we vary the density of these hard blocks

with respect to soft logic. We experiment with 3 different

density levels, as shown in Fig. 4a, with 1:7, 1:3, and 1:1 ratio

between hard block and soft logic columns for the baseline,

denser, and densest architecture variations, respectively. We

evaluate all three architecture variations using both the Koios

and VTR benchmarks. Fig. 5 shows the geomean frequency

and total routed wirelength for both suites. For the DL-oriented

Koios benchmarks, the frequency increases and wirelength

decreases as the density of hard blocks increases. Since

these benchmarks heavily utilize these blocks, increasing their

density in the FPGA grid brings them closer to each other,

which in turn reduces the critical paths and total length of

used wires. The densest architecture variation results in 8%

increase in frequency and 17% reduction in total wirelength

on average across all benchmarks in the Koios suite. For the

VTR benchmarks, both frequency and wirelength are slightly

improved for the denser variation (1% higher frequency and

3% lower wirelength), before getting worse for the densest

architecture. These results show that a higher density of DSPs

and BRAMs is favorable for building DL-optimized FPGAs,

at the cost of a slight or no degradation in QoR for the general

VTR benchmarks (in the densest and denser architecture

variations respectively).
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TABLE III: Effect of varying the FPGA’s DSP to BRAM ratio.

Metric Arch. Geo-
mean

DSP-heavy
tpu_like(M)

BRAM-heavy
tiny_darknet_like

Freq.
Baseline 141.2 141.1 94.1

DSP-heavy 141.9 153.3 86.8
BRAM-heavy 140.8 120.4 101.1

WL
Baseline 622,189 1,460,366 2,076,993

DSP-heavy 623,777 1,325,930 2,313,599
BRAM-heavy 641,263 1,661,778 1,944,531

Grid
Baseline 84×84 134×134 180×180

DSP-heavy 85×85 116×116 220×220
BRAM-heavy 88×88 164×164 156×156

Frequency is in MHz, Wirelength (WL) is in units of length 1 wires.

B. Case Study 2: DSP to BRAM Ratio

In our first case study, we varied the ratio of hard blocks

to soft logic while keeping a fixed 1:1 DSP to BRAM ratio.

For the second case study, we carry over the best architecture

variation for DL benchmarks from the first case study (i.e.

densest). However, we vary the DSP to BRAM ratio between

2:1 and 1:2 to create DSP-heavy and BRAM-heavy variations

respectively (in addition to the baseline with 1:1 ratio), as

shown in Fig. 4b. Table III presents the results of this experi-

ment. It shows the geomean frequency, routed wirelength, and

FPGA grid size for the whole Koios suite, as well as the results

for a DSP-intensive benchmark (medium tpu_like ) and a

BRAM-intensive benchmark (tiny_darknet_like). The
geomean results do not show a strong trend that clearly favors

a specific architecture. However, we observe that the DSP-

heavy tpu_like design has 8.6% higher frequency, 9.3%

lower wirelength, and requires a 25% smaller chip when

implemented on the DSP-heavy architecture compared to the

baseline. It also performs considerably worse on all metrics

when implemented on a BRAM-heavy architecture. Similarly

the BRAM-heavy tiny_darknet_like benchmark has

7.5% higher frequency, 6.4% lower wirelength, and requires

a 25% smaller chip when implemented on the BRAM-heavy

architecture compared to the baseline. These experiments high-

light that Koios strikes a good balance between different circuit

compositions and can be reliably used for DL-optimized

FPGA architecture exploration.

VII. CONCLUSION

In this paper, we presented Koios, a DL-focused benchmark

suite for FPGA architecture and CAD research. This suite is a

diverse collection of 19 curated benchmarks covering various

facets of the DL acceleration landscape. We first introduce the

different benchmarks in the suite and highlight their diversity.

We then present results of running these benchmarks through

the VTR flow and compare them to the existing non-DL VTR

benchmarks. Finally, we present two example case studies

for DL-optimized FPGA architecture exploration using these

benchmarks. The Koios suite is open-sourced as a part of VTR

and we highly encourage the FPGA community to contribute

to this benchmark suite to help build a better and bigger set

of DL benchmarks that can guide the design of future FPGA

architectures and CAD algorithms.
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