
End-to-End FPGA-based Object Detection Using
Pipelined CNN and Non-Maximum Suppression

Anupreetham Anupreetham1, Mohamed Ibrahim2,4, Mathew Hall2, Andrew Boutros2,3,4, Ajay Kuzhively1,

Abinash Mohanty1, Eriko Nurvitadhi4, Vaughn Betz2,3, Yu Cao1, Jae-sun Seo1
1Arizona State University 2University of Toronto 3Vector Institute for AI 4Intel Corporation
E-mails: {anolas11, yu.cao, jseo28}@asu.edu, mohamed1.ibrahim@intel.com, vaughn@eecg.utoronto.ca

Abstract—Object detection is an important computer vision
task, with many applications in autonomous driving, smart
surveillance, robotics, and other domains. Single-shot detectors
(SSD) coupled with a convolutional neural network (CNN) for
feature extraction can efficiently detect, classify and localize
various objects in an input image with very high accuracy. In
such systems, the convolution layers extract features and predict
the bounding box locations for the detected objects as well as their
confidence scores. Then, a non-maximum suppression (NMS)
algorithm eliminates partially overlapping boxes and selects the
bounding box with the highest score per class. However, these
two components are strictly sequential; a conventional NMS
algorithm needs to wait for all box predictions to be produced
before processing them. This prohibits any overlap between the
execution of the convolutional layers and NMS, resulting in
significant latency overhead and throughput degradation. In this
paper, we present a novel NMS algorithm that alleviates this bot-
tleneck and enables a fully-pipelined hardware implementation.
We also implement an end-to-end system for low-latency SSD-
MobileNet-V1 object detection, which combines a state-of-the-
art deeply-pipelined CNN accelerator with a custom hardware
implementation of our novel NMS algorithm. As a result of our
new algorithm, the NMS module adds a minimal latency over-
head of only 0.13μs to the SSD-MobileNet-V1 convolution layers.
Our end-to-end object detection system implemented on an Intel
Stratix 10 FPGA runs at a maximum operating frequency of 350
MHz, with a throughput of 609 frames-per-second and an end-to-
end batch-1 latency of 2.4 ms. Our system achieves 1.5× higher
throughput and 4.4× lower latency compared to the current state-
of-the-art SSD-based object detection systems on FPGAs.

I. INTRODUCTION

Recent advances in deep learning (DL) are continuously im-

proving the quality of results achieved in many applications. This

includes many computer vision tasks [1], natural language process-

ing [2], etc. Object detection is a key computer vision task, with

a myriad of use cases in various domains such as autonomous

vehicles, traffic monitoring, manufacturing, robotics, image search,

and smart surveillance [3]. Most of these use cases require not only

high detection accuracy, but also low-latency real-time performance.

For example, low latency is of crucial importance when detecting a

pedestrian and applying the brakes in an autonomous vehicle.

Object detection systems typically consist of feature extraction

followed by detection and localization of objects. Deep neural net-

works, and more specifically convolutional neural networks (CNNs),

are recently being used as universal feature extractors that result

in improved detection accuracy compared to hand-crafted feature

extraction approaches [4]. However, CNNs are very compute in-

tensive and therefore a light-weight model is favorable to reduce

the overall computational complexity and meet the stringent real-

time requirements. For example, single-shot detector (SSD) [5]

coupled with MobileNet-V1 [6] as its feature extractor is a popular

object detection pipeline which is aggressively optimized for real-

time applications. This workload, SSD-MobileNet-V1, is one of the

MLPerf inference workloads [7] for benchmarking and comparing

DL hardware acceleration solutions.

The SSD component of the object detection pipeline consists of

feed-forward convolution layers followed by a sequence of prepro-

cessing operations and non-maximum suppression (NMS). The SSD

convolution layers consume the features extracted by the CNN and

use them to generate predictions of bounding boxes and scores for

detected objects at different scales. These predictions go through

a series of preprocessing operations and then an NMS module

sorts all bounding boxes, eliminates partially overlapping boxes

and selects the bounding box with the highest confidence score

per class. This dataflow, which is used in all prior works, imposes

a strictly sequential dependency between the convolutional layers

and the NMS algorithm. The NMS component must wait for all

bounding boxes to be produced before processing them, resulting

in a substantial latency overhead for the whole system.

In this work, we devise a novel NMS algorithm that eliminates

this strict sequential dependency and enables overlapping the ex-

ecution of the convolutional layers with the NMS preprocessing

and NMS components. This allows the implementation of a fully-

pipelined streaming NMS hardware module, which significantly

reduces latency. Then, we modify and integrate HPIPE, a state-

of-the-art deeply pipelined CNN accelerator, with our new NMS

module to implement an end-to-end object detection system on

an Intel Stratix 10 FPGA. Our deployed system outperforms all

existing FPGA-based object detection solutions, with a throughput

of 609 frames-per-second (FPS) and an end-to-end latency of only

2.4 ms based on actual hardware measurements. In summary, our

contributions are as follows:

• We present a novel NMS algorithm that eliminates the sequential

dependency on the preceding convolutional layers.

• We implement a fully-pipelined streaming NMS module that

exploits our novel NMS algorithm.

• We implement an end-to-end FPGA-based object detection sys-

tem that achieves 1.5× higher throughput and 4.4× lower latency

than the current state-of-the-art.

II. BACKGROUND AND RELATED WORK

Object detection systems are typically composed of two main

stages. Relevant features are first extracted from an input image, and

then an object detector is used to classify and localize different types

of objects. In this section, we will give a brief overview on these two

components and prior works on FPGA-based object detection.

76

2021 31st International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/21/$31.00 ©2021 IEEE
DOI 10.1109/FPL53798.2021.00021

Fig. 1: SSD-MobileNet-V1 structure overview.

A. CNN-based Feature Extraction

Classically, domain experts had to devise hand-crafted feature ex-

tractors such as the histogram of oriented gradients [8] or the scale-

invariant feature transform [9]. These feature extractors take an input

image and produce a feature vector (i.e. an intermediate represen-

tation) that is then fed into a pre-trained classifier/detector. These

features used to be very specific to a certain domain or application

and required tedious tuning to adopt for another domain or dataset.

In recent years, CNNs have been widely replacing hand-crafted

techniques as universal feature extractors to achieve better quality

of results at the cost of higher computational complexity. More

recently, new classes of light-weight networks were introduced to

reduce the computational complexity of CNNs and enable their use

in real-time mobile applications. One class of these networks is Mo-

bileNets [6], which we focus on in this work. MobileNets reduce the

computational complexity by replacing standard convolutions with

depthwise separable convolutions, a combination of a depthwise

convolution followed by a pointwise convolution [10]. This network

structure significantly reduces the number of model parameters and

operations. The specific model that we use in this work, MobileNet-

V1 [6], has 4.2 million weight parameters and can fit in the on-chip

memory of most modern FPGAs [11].

B. Single-Shot Detector and Non-Maximum Suppression

Object detectors can either be two-stage or one-stage detec-

tors [12]. A two-stage detector first generates candidate object

bounding boxes, then these boxes are classified in the second stage.

In general, two-stage detectors can achieve high accuracy but they

are computationally intensive. On the other hand, one-stage detec-

tors eliminate the proposal generation stage and are generally faster

than their two-stage counterparts. Examples of one-stage detectors

are SSD [5] and YOLOv3 [13]. In this work, we focus on one-stage

detectors, more specifically SSD, since it is the one used in the SSD-

MobileNet-V1 model from the MLPerf workloads.

As shown in Fig. 1, the SSD component in SSD-MobileNet-V1

includes 6 box predictor and 6 class predictor convolution layers.

These 12 layers get their inputs from different intermediate convo-

lution layers in the feature extraction network. The 6 box predictor

layers generate 1, 917 bounding box predictions specified as the

relative coordinates of the box with respect to the anchor boxes.

Anchor boxes are defined during model training and represent the

ideal locations, shapes and sizes of bounding boxes for objects the

model is aiming to detect. Convolution layers of SSD-MobileNet-

V1 produce outputs with spatial dimensions of shape (19×19×12),

(10×10×24), (5×5×24), (3×3×24), (2×2×24) and (1×1×24). For

the first layer, each location of the 19×19 channels has 3 predefined

boxes against which a box will be matched. Hence, this layer has

19 × 19 × 3 = 1083 box predictions. Similarly the other 5 box

prediction layers will have 6 predefined boxes per location, which

results in 600 (10 × 10 × 6), 150 (5 × 5 × 6), 54 (3 × 3 × 6), 24

(2× 2× 6), 6 (1× 1× 6) box predictions per layer. In total, all SSD

layers combined will generate 1, 917 prediction boxes per image.

On the other hand, the 6 class predictor layers generate class

prediction scores (out of 91 classes) for each of the 1, 917 generated

boxes (each of which is described as {x,y,w,h}). These box

and class predictions are produced from the convolution layers as

3D tensors in a format that is decided by the accelerator compute

pattern. Then, these tensors go through a series of data formatting

operations (e.g. permutations, reshapes and concatenations) to gen-

erate a list of 1, 917 boxes and scores for downstream processing.

The list of generated boxes are then passed to a decoding module

where they are matched against the predefined anchor boxes to

generate the list of predicted boxes. Also, a sigmoid function is

applied to the list of scores to generate the predicted scores for each

of the 91 classes. The resulting lists are passed through a threshold

function, such that only boxes with scores higher than a predefined

threshold are processed by NMS.

The baseline NMS algorithm implemented in all prior SSD-based

object detection systems is shown in Algorithm 1. For each of the 91

classes, the indexes of the boxes are sorted based on the descending

order of the score of this class using the argSort function. As

long as the list of sorted indexes is not empty, the box corresponding

to the first score (i.e. current best candidate) is added as a selected

box for this class. Then, the intersection over union (IOU) values

between this box and all other boxes are calculated and compared

to a predefined IOU threshold. Boxes with IOU values above this

threshold are discarded by erasing them from the list of indexes. This

process continues until all boxes are either selected or discarded for

this class. Then, the selected boxes for this class are added to the list

of all selected boxes before moving onto the next class.

The sorting operation at the beginning of the baseline NMS

algorithm requires all boxes to be produced before starting the NMS

computations. This requires a large amount of intermediate storage

and imposes a strictly sequential dependency between the execu-

tion of the convolution layers and NMS computations, resulting in

increased latency overhead and reduced throughput for the whole

system. In addition, this algorithm and its preprocessing steps have a

complex control flow that does not readily lend itself to an efficient

hardware implementation (e.g. data format manipulations, erasing

elements from a list) and are typically offloaded to the host CPU

in most of prior works [14]. In this work, we present a novel NMS

algorithm that eliminates this sequential dependency constraint and

simplifies the control flow, enabling a fully-pipelined end-to-end

hardware implementation on the FPGA with significantly reduced

latency overhead.

C. FPGA-based Object Detection Systems

While many prior works have implemented object detection sys-

tems on FPGAs, a number of these works did not implement the

NMS pre-processing and NMS modules on the FPGA, but rather

offloaded them to the host CPU [14]–[16]. In contrast, our work

77

Algorithm 1: Baseline NMS algorithm

Data: scores, boxes, IOUthr

Result: detected_objects
1 detected_objects = {};

2 for each class do
3 detected_class_objects = {};

4 indexes = argSort(scores, class);

5 while indexes not empty do
6 index = indexes[0];

7 best = {boxes[index], scores[index]};

8 detected_class_objects.append(best);
9 scores.erase(index); boxes.erase(index);

10 IOUval = calculate_IOU(best, boxes);

11 indexes = filter(IOUval, IOUthr);

12 detected_objects.append(class_selected_boxes)

implements the end-to-end object detection system on the FPGA

to achieve lower latency and higher throughput. The authors of [17]

presented a YOLOv3 object detector with the DarkNet-53 model for

feature extraction. They implemented a custom hardware module

for NMS with bubble sorting that achieved a latency of 21 μs for

3, 000 bounding boxes. An FPGA-based architecture for SSDLite-

MobileNet-V2 was also presented in [18]. The authors proposed a

fused bottleneck residual block that significantly reduces the number

of model parameters and overall latency. They achieved a throughput

of 65 FPS with 20.3 mean average precision (mAP) on the COCO

dataset for their design implemented on a Xilinx ZC706 FPGA. In

[19], the authors implemented an MnasNet-based feature extractor

along with a hardware NMS module on a Xilinx Virtex-7. They

achieve a throughput of 23 FPS and 22.8 mAP on the COCO dataset.

In contrast, our work focuses on the standard MLPerf object detec-

tion workload, SSD-MobileNet-V1. To the best of our knowledge,

this work is the first to present a modified NMS algorithm that

eliminates sequential dependencies between the convolutional layers

and their post-processing stages.

III. NOVEL NMS ALGORITHM & SSD HARDWARE

IMPLEMENTATION

A. Novel NMS Algorithm

Our novel NMS algorithm is shown in Algorithm 2. Unlike the

baseline NMS in Algorithm 1, our algorithm does not differentiate

between input prediction boxes from different classes and does not

start by sorting them based on their prediction scores. Thus, this

algorithm does not need to wait for all boxes to be ready before it

starts processing. This allows a streaming hardware implementation

that processes an input prediction box as soon as it is ready. Our

algorithm keeps track of a list of selected boxes that starts empty for

every image. For each input box prediction, it is first declared as a

candidate to be inserted (line 3) and then we loop over the elements

in the list of selected boxes to compare the input box prediction

with all previously selected boxes. If the current entry in the selected

boxes list is empty, the input box is inserted to the list (line 8) and

the flag is set to true to indicate that it was already inserted (line 9).

If the current selected boxes entry is not empty, it is compared and

replaced by the input box if it is a better candidate (line 12, 17-23).

Algorithm 2: Novel NMS Implementation

Data: scores, boxes, IOUthr

Result: detected_objects
1 Instantiate selected_boxes; //List of 65 empty boxes

2 for each box in boxes do
3 box_inserted = False;

4 for each sbox in selected_boxes do
5 if !box_inserted then
6 //If sbox is empty, insert new box to list

7 if sbox is empty then
8 sbox = box;

9 box_inserted = True;

10 //Else, replace it with new box if better

11 else
12 box_inserted = replaceIf(box, sbox, IOUthr);

13 //If new box is inserted, delete redundant sboxes

14 else
15 deleteIf(box, sbox, IOUthr)

16 detected_objects = selected_boxes;

17 replaceIf (box, sbox, threshold) is
18 IOU = calculate_IOU(box, sbox);

19 if same_class(box, sbox) & IOU > threshold then
20 if box.score > sbox.score then
21 sbox.replaceWith(box);

22 return True;

23 return False;

24 deleteIf (box, sbox, threshold) is
25 IOU = calculate_IOU(box, sbox);

26 if same_class(box, sbox) & IOU > threshold &
box.score > sbox.score then

27 delete sbox;

After an input box is selected, it still needs to be compared to the

rest of the selected boxes list to delete any previously selected box

from the same class with a lower prediction score and higher-than-

threshold IOU (lines 15, 24-27).

Although our algorithm does not sort the scores, it achieves

the same functionality of the baseline algorithm. The sorting is

performed implicitly as we compare and replace/remove selected

boxes based on both their score and calculated IOU. In the baseline

algorithm, since the boxes were initially sorted based on their scores,

this selection only involves the calculated IOU.

B. NMS Preprocessing Hardware Implementation

The proposed architecture of the NMS preprocessing and NMS

modules is presented in Fig. 2. The convolution layers of SSD

predicts 1, 917 box coordinates as described in Section II, each with

score predictions for the 91 classes. These outputs are processed in

parallel by the NMS preprocessing module to consolidate the boxes

for the final detection.

78

Fig. 2: Architecture of NMS preprocessing and NMS modules.

Fig. 3: Original vs. modified memory data arrangement to store
anchor boxes and intermediate convolution results.

1) Data formatting: As will be detailed in Section IV, the

state-of-the-art CNN accelerator that we use in this work, HPIPE,

produces tensor outputs of the convolution layers in HCW format.

This means that width dimension (W) is produced first, then channel

dimension (C) followed by height dimension (H). We eliminate the

need for any permute operations by storing the SSD convolution

outputs on-the-fly in blocks of 4×4 circulant matrices which are

circularly rotated at every row as shown in the lower half of Fig.

3, similar to [20]. To achieve this, we concatenate n columns

of dummy values to the outputs of convolution layers such that

n = �column/4�. These dummy values are zeroes for the box

prediction and the least possible negative number in the fixed point

representation for the class prediction. The four columns of the 4×4

blocks are stored in different block RAMs (BRAMs), so that all

of them can be read in parallel as shown in Fig. 3. In total, we

need 104 M20K BRAMs to store both box predictions and class

predictions from all the SSD convolution layers. Similarly, the pre-

defined 1, 917 anchor boxes are first split into six groups for the

six SSD box prediction convolution layers and pre-processed offline

to match the same address locations as their corresponding box

predictions.

2) Thresholding: Typically, thresholding is done at the end

of the NMS pre-processing (Fig. 1). However, in our hardware

implementation, we push the thresholding stage to directly sample

and threshold the convolution output score predictions. This helps

minimize the storage of intermediate data for NMS pre-procesing

and reduces the total amount of computation. Only the correspond-

ing boxes that exceed the threshold are further processed to generate

the final coordinates of anchor boxes. To achieve that, we map the

(a)
(b)

Fig. 4: The NMS preprocessing implementations for (a) the
conventional scheme and (b) our optimized scheme.

Fig. 5: NMS hardware implementation.

original threshold value using an inverse sigmoid function to obtain

the correct threshold for our approach. For example, a threshold

value of 0.3 at the output of the sigmoid function corresponds to

a threshold value of −0.84 at the convolution output.

3) Decoding: The {x,y,w,h} values of the box predictions

which pass the score threshold are coupled with their correspond-

ing anchor values. These are then used to calculate the final

{x_min,y_min,x_max,y_max} coordinates of the boxes that

are given as input to the NMS module. These calculations involve

a series of multiplication, constant division, and exponentiation

operations. In our implementation, we convert the constant divisions

to multiplications to reduce complexity and use vendor-specific

IPs for multiplications, additions, and exponentiation. We have 6

different instances of the decoding module that work on the output

of the 6 SSD box prediction convolution layers in parallel.

Fig. 4 compares the conventional NMS preprocessing architecture

(Fig. 4a) to our optimized implementation (Fig. 4b). We avoid the

need for multiple read/write operations by eliminating the explicit

permute and reshape operations, and we do not process all the box

predictions by pushing the threshold operation before the decode

stage.

C. NMS Hardware Implementation

Fig. 5 illustrates the hardware implementation of our novel NMS

approach. It consists of a chain of processing elements (PEs), each

of which stores the coordinates and score of a single bounding box

(i.e. an entry of the selected_boxes list in Algorithm 2). Each

PE in the chain receives a new input box, uses it to perform a set of

operations and comparisons in 18 clock cycles, before passing it to

the next PE in a pipelined daisy-chain fashion. Each PE has its own

control logic that decides to replace the locally stored box with the

new input box, ignore the new input box, or just delete the stored

box. Each box passing through the chain of PEs is accompanied by

an insertion tag, which determines whether it was previously stored

in one of the PEs or not. The NMS module does not need to wait

for all the input boxes to be produced by the SSD convolution layers

and NMS pre-processing. Instead, it uses a FIFO to buffer the inputs,

as shown in Fig. 2, which will be processed in a streaming fashion

when the NMS logic is free.

After completely processing all the boxes of an image, the top-

level module starts draining the PE chain to extract the locally

stored boxes. However, not all the PEs in the chain are guaranteed

79

Fig. 6: Throughput balancing between layers in HPIPE.

to have valid stored boxes (i.e. some boxes can be deleted in the

middle of the PE chain). Therefore, a simple output read logic is

implemented to extract only the valid boxes and convert them from

the {x_min,y_min,x_max,y_max} format to the final object

detection outputs in the {x,y,w,h} format.

IV. END-TO-END OBJECT DETECTION SYSTEM

We implement an end-to-end object detection system which

consists of two major components: (1) the CNN accelerator for

the feature extraction and SSD convolution layers, and (2) the

SSD implementation we described in Section III. For the CNN

accelerator, we use an extended version of HPIPE [21], a state-of-

the-art deeply-pipelined inference accelerator for FPGAs.

A. HPIPE: Deeply-Pipelined CNN Accelerator
1) Architecture Details: HPIPE is a sparsity-aware deeply

pipelined architecture that statically splits device resources across

different CNN layers and builds customized hardware for every

layer. Customized per-layer hardware enables high efficiency, while

deep, interconnect-aware pipelining leads to a high operating fre-

quency. HPIPE supports various layer types including standard,

depthwise and pointwise convolution, sparse convolution that skips

zero weights, max-pooling, rectified linear units (ReLU) and sig-

moid activations. The layers are connected to each other through a

latency-insensitive FIFO interface, and coarse back-pressure signals

between the layers ensure functionality correctness. While HPIPE

achieves high performance, processing all layers in a pipeline in-

creases the bandwidth needed for weights, so it best suits networks

where all weights can fit in the on-chip memory of FPGAs. The

SSD-MobileNet-V1 network that we study in this paper has 4.2

million parameters. With all weights using 16-bit fixed-point pre-

cision, the whole model can easily fit in our target FPGA (Intel

Stratix 10 GX2800) that has 244 Mb of on-chip memory storage

(BRAMs). We choose HPIPE as the CNN accelerator for our feature

extraction and SSD convolution layers as it achieves significantly

higher performance than other FPGA-based accelerators [21].

2) Software Flow: The HPIPE tool flow takes a TensorFlow

graph describing a CNN, along with a parameter file that specifies

resource limits on the target FPGA as inputs. The compiler first

performs some optimizations on the given TensorFlow graph in

which some nodes are merged together and mapped to layers that

HPIPE has a hardware implementation for. The compiler then starts

the resource allocation and throughput balancing process, in which

different layers of the CNNs will be allocated resources, mainly DSP

blocks, based on their expected cycle latency. Fig. 6 shows an exam-

ple of the throughput balancing process for the SSD-MobileNet-V1

convolution layers. The minimum parallelism settings are initially

Fig. 7: Example execution trace of the end-to-end system.

used for all the layers in the model, resulting in large variation in

the latencies of different layers as indicated by the grey bars in Fig.

6. Since the throughput of the pipeline is determined by its slowest

stage, the compiler aims to balance layer latencies by increasing the

parallelism factor and assigning more resources to the layer with the

lowest throughput (i.e. highest number of cycles) until it is no longer

the pipeline bottleneck. The process then repeats with other layers

until the target resource utilization is met. The red bars in Fig. 6

show the final balanced latencies of the SSD-MobileNet-V1 layers

at a target utilization of 4, 400 DSPs.

B. System Integration
Several modifications to the baseline HPIPE implementation

were necessary to integrate it with our pipelined SSD hardware

implementation from Section III. First, we added support for the

additional SSD convolution layers including the six class-predictor

and six box-predictor layers. Second, we modified the HPIPE in-

terface such that the output of all the 12 SSD convolution layers

are supplied to the NMS module as shown in Fig. 1. The output

box and class predictions are then stored in RAMs (as shown in

Fig. 2) to be later consumed by the NMS pre-processing module.

Conventional SSD post-processing would require all the outputs of

all SSD convolutions to be ready before starting execution, creating

long pipeline stalls that significantly degrade HPIPE’s throughput.

This motivates our novel NMS algorithm and its streaming pipelined

implementation which relaxes these constraints and eliminates the

majority of pipeline stalls. Our implementation only needs the first

four outputs of the SSD convolutions ({x,y,w,h}), after which

the generation of convolution and SSD outputs are pipelined.

Fig. 7 shows an example execution trace from our system that

shows the execution duration of SSD convolution layers (blue),

NMS pre-processing (green), and NMS (pink). It highlights the

pipelined execution of the SSD convolution layers in HPIPE and

how they overlap with the execution of our streaming hardware

implementation of the NMS pre-processing and NMS stages. The

red vertical strips highlight the small portion of time in which an

SSD-related overhead is not hidden by HPIPE computations (i.e.

HPIPE is completely stalled waiting for the NMS pre-processing to

finish execution). This portion is very small; about only 3% of the

overhead added by the SSD component of object detection.

TABLE I: Breakdown of FPGA resource utilization (NMS-PP:
NMS pre-processing module).

ALMs DSPs M20K BRAMs
Full System 575,394 (62%) 5,129 (89%) 7,659 (65%)

HPIPE 468,203 (50%) 4,434 (77%) 7,179 (61%)
NMS-PP 40,866 (4%) 265 (5%) 425 (4%)

NMS 45,838 (5%) 430 (7%) 0 (0%)

80

TABLE II: Comparison of our work to prior FPGA-based object detection systems on the COCO dataset.

Fan et al. [18] Zhao et al. [19] Mobilint [7] Cai et al. [14] This Work
Feature Extraction MobileNet-V2 [22] MnasNet [23] MobileNet-V1 [6] MobileNet-V1 [6] MobileNet-V1 [6]

Object Detector SSDLite custom SSD SSD SSD SSD
Parameters 2.79M 3.9M 4.2M 4.2M 4.2M
FPGA Device Zynq ZC706 Virtex-7 Alveo U250 Arria 10 Stratix 10 GX2800

Process Technology 28nm 28nm 16nm 20nm 14nm
Power (W) 9.9 - - - 55

Energy Eff. (J/image) 0.15 0.73 - - 0.09
Frequency (MHz) 100 - 250 - 350
Throughput (FPS) 65 23 410 108 609

Latency (ms) 15.43 - 10.64 - 2.4
mAP 20.3 22.8 23.028 16.8 22.5

V. RESULTS

A. Experimental Setup
We implement and deploy our system on a Terasic DE10-Pro

board [24] with the largest monolithic Intel Stratix 10 GX2800

FPGA, attached as a PCIe accelerator card to an Intel Xeon E5-2650

server with 12 double-threaded cores and 94 GB of RAM. In this

setup, the host CPU sends input images to the FPGA accelerator

and receives back output predictions over the PCIe link. We use

Intel Quartus Prime Pro 19.4 to perform synthesis, place and route,

Synopsys VCS for RTL-level simulations, and the Quartus power

analyzer tool to obtain a vectorless power estimation for the system

core. We verify our system’s functionality on 4, 800 validation

images from the COCO dataset. All the performance results reported

in this section are based on real hardware measurements of our

deployed system. We time the entire CPU host code starting from

sending the first input image until receiving back the output predic-

tions of the last image. Then, we use that to calculate the system

performance results which includes all PCIe transfer times.

B. Implementation Results
Table I shows the resource utilization breakdown of different

components of our end-to-end system. The results show that our

system is DSP-bound with close to 90% utilization of the available

DSP blocks. This highlights that scaling to a multi-FPGA solution

with more DSPs available would allow HPIPE to assign more paral-

lelism to different layers, further reducing the latency of the feature

extraction and SSD convolution layers. However, we leave this out

for future work. The results also show that both the NMS pre-

processing and NMS modules are very lightweight; they consume

less than 5% and 7% of the available FPGA resources, respectively.

C. Performance Results
We run our system at the maximum operating frequency reported

by the Quartus timing analyzer, which is reported to be 350 MHz.

This results in a throughput of 609 FPS with an end-to-end latency

of 2.4 ms. We measure a score of 22.5 mAP on the COCO validation

dataset, which is higher than the MLPerf threshold (22 mAP). Power

consumption is estimated to be 55 W, which translates to an energy

efficiency of 0.09 J/image. In our hardware experiments, we found

that we can over-clock the system up to a frequency of 460 MHz,

while maintaining correct functionality. This highlights the large

timing safety margin added by the Quartus timing analyzer and

matches with the observations from [25]. With over-clocking, our

system can achieve a throughput of 812 FPS and an end-to-end

latency of 1.7 ms, with the same mAP score. However, we do not

use the over-clocking results when comparing to other prior works

in the next subsection for the sake of having a fair comparison.

D. Comparison to Prior Works
Table II compares our work against other SSD-based object

detection accelerators on FPGAs. The comparison shows that our

accelerator achieves lower latency and higher throughput than all

prior works, while achieving almost the same accuracy on the COCO

dataset. Some of the prior works in the table are implemented on

FPGAs from older processes; however, we still include them for

completeness rather than for direct performance comparison. The

most relevant comparison is against Mobilint [7], which is imple-

mented on a same generation Xilinx FPGA, and is the only FPGA-

based object detection submission for the MLPerf edge closed

divison [26]. There is no publicly disclosed information about their

implementation details, but comparing to their MLPerf submission

results, our system achieves 4.4× lower latency and 1.5× higher

throughput, while being only 0.5 of a point less mAP.

Fan et al. [18] implemented the SSDLite-MobileNet-V2 model

which has lower computational complexity and fewer parameters

compared to the SSD-MobileNet-V1 we implement. Despite that,

our solution still achieves better throughput and latency at a higher

detection accuracy. Their achieved throughput is the reciprocal of

their end-to-end latency, which implies that there is no parallelism

exploited between processing different images. In contrast, a key

property of our system is the use of deeply pipelined CNN accelera-

tor and SSD hardware implementation to achieve higher throughput.

VI. CONCLUSION

In this work, we implemented an end-to-end streaming accel-

erator for the standard MLPerf object detection workload, SSD-

MobileNet-V1. We first devise a novel NMS algorithm that elimi-

nates strict sequential dependency between convolution layers and

NMS execution, then we present an optimized streaming hardware

implementation for it. We also use and extend HPIPE, a state-of-

the-art deeply-pipelined CNN accelerator, for processing the fea-

ture extraction and SSD convolutions. The combination of these 3

components results in a fully-pipelined end-to-end object detection

system that achieves a throughput of 609 FPS and an end-to-end

latency of 2.4 ms. This represents 1.5× higher throughput and 4.4×
lower latency compared to the state-of-the-art SSD-based object

detection system on FPGAs.

ACKNOWLEDGEMENT

This work is partially supported by NSF grant 1652866, the

Intel ISRA program on FPGA, JUMP C-BRIC (a SRC program

sponsored by DARPA), the Intel/NSERC Industrial Research Chair

in Programmable Silicon, and the Vector Institute for Artificial In-

telligence. Any opinions, findings, conclusions or recommendations

are those of the authors and not of the funding institutions.

81

REFERENCES

[1] A. Voulodimos et al., “Deep Learning for Computer Vision: A Brief
Review,” Computational Intelligence and Neuroscience, 2018.

[2] D. W. Otter et al., “A Survey of the Usages of Deep learning for Natural
Language Processing,” Transactions on Neural Networks and Learning
Systems, 2020.

[3] Z. Zou et al., “Object Detection in 20 Years: A Survey,” arXiv preprint
arXiv:1905.05055, 2019.

[4] A. Suleiman et al., “Towards Closing the Energy Gap between HOG
and CNN Features for Embedded Vision,” in International Symposium
on Circuits and Systems (ISCAS), 2017.

[5] W. Liu et al., “SSD: Single Shot Multibox Detector,” in European
Conference on Computer Vision (ECCV), 2016.

[6] A. G. Howard et al., “MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

[7] V. J. Reddi et al., “MLPerf Inference Benchmark,” in International
Symposium on Computer Architecture (ISCA), 2020.

[8] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2005.

[9] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,”
in International Conference on Computer Vision (ICCV), 1999.

[10] F. Chollet, “Xception: Deep Learning with Depthwise Separable Con-
volutions,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[11] A. Boutros and V. Betz, “FPGA Architecture: Principles and Progres-
sion,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 4–29,
2021.

[12] L. Jiao et al., “A Survey of Deep Learning-based Object Detection,”
IEEE Access, vol. 7, pp. 128 837–128 868, 2019.

[13] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[14] L. Cai et al., “An FPGA Based Heterogeneous Accelerator for Single
Shot MultiBox Detector (SSD),” in International Conference on Solid-
State & Integrated Circuit Technology (ICSICT), 2020.

[15] Y. Ma et al., “Algorithm-hardware Co-design of Single Shot Detector
for Fast Object Detection on FPGAs,” in International Conference on
Computer-Aided Design (ICCAD), 2018.

[16] Z. Wang et al., “Sparse-YOLO: Hardware/Software Co-design of an
FPGA Accelerator for YOLOv2,” IEEE Access, vol. 8, pp. 116 569–
116 585, 2020.

[17] H. Zhang et al., “Efficient Hardware Post Processing of Anchor-Based
Object Detection on FPGA,” in International Symposium on VLSI
(ISVLSI), 2020.

[18] H. Fan et al., “A Real-Time Object Detection Accelerator with Com-
pressed SSDLite on FPGA,” in International Conference on Field-
Programmable Technology (FPT), 2018.

[19] T. Zhao et al., “A Hardware Accelerator Based on Neural Network for
Object Detection,” in Journal of Physics: Conference Series, 2020.

[20] S. K. Venkataramanaiah et al., “Automatic Compiler Based FPGA
Accelerator for CNN Training,” in International Conference on Field
Programmable Logic and Applications (FPL), 2019.

[21] M. Hall and V. Betz, “From TensorFlow Graphs to LUTs and Wires:
Automated Sparse and Physically Aware CNN Hardware Generation,”
in International Conference on Field Programmable Technology (FPT),
2020.

[22] M. Sandler et al., “MobilenetV2: Inverted Residuals and Linear Bot-
tlenecks,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[23] M. Tan et al., “MnasNet: Platform-Aware Neural Architecture Search
for Mobile,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[24] Terasic Inc., “DE10-Pro User Manual (GH1E1) v1.8,” 2019.
[25] A. Boutros et al., “Neighbors From Hell: Voltage Attacks Against

Deep Learning Accelerators on Multi-Tenant FPGAs,” arXiv preprint
arXiv:2012.07242, 2020.

[26] MLPerf. MLPerf Inference v0.7 Results. https://mlperf.org/inference-
results/ (Accessed on 31-03-2021).

82

