
Compute-Capable Block RAMs for Efficient Deep
Learning Acceleration on FPGAs

Xiaowei Wang, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros†,
Eriko Nurvitadhi†, Charles Augustine†, Ravi Iyer†, Reetuparna Das

University of Michigan †Intel Corporation
{xiaoweiw, vidushi, jiecaoyu, valeria, reetudas}@umich.edu,

{andrew.boutros, eriko.nurvitadhi, charles.augustine, ravishankar.iyer}@intel.com

Abstract—The density of FPGA on-chip memory has been
continuously increasing with modern FPGAs having thousands
of block RAMs (BRAMs) distributed across their reconfigurable
fabric. These distributed BRAMs can provide a tremendous
amount of on-chip bandwidth for efficient acceleration of data-
intensive applications. In this work, we propose enhancing the
ubiquitous FPGA BRAMs with in-memory compute-capabilities.
As a result, BRAMs can act as normal storage units or their
bitlines can be re-purposed as SIMD lanes executing bit-serial
arithmetic operations. Our proposed architectural change results
in 1.6× and 2.3× increase in the peak multiply-accumulate
throughput of a large Stratix 10 FPGA, at a minimal cost of only
1.8% increase in the FPGA die size and no change to the BRAM’s
interface to the programmable routing. Then, we present RIMA,
a reconfigurable in-memory accelerator architecture for deep
learning (DL) inference. RIMA exploits the proposed compute-
capable BRAMs and the FPGA’s reconfigurability to achieve
1.25× and 3× higher performance compared to the state-
of-the-art Brainwave DL soft processor for 8-bit integer and
block floating-point precisions, respectively. In addition, RIMA
implemented on a Stratix 10 FPGA enhanced with compute-
capable BRAMs can achieve an order of magnitude higher
performance compared to a same-generation GPU.

I. INTRODUCTION

Over the past three decades, field-programmable gate arrays
(FPGAs) have evolved from simple arrays of reconfigurable logic
with routing capabilities into complex heterogeneous systems with
several hard blocks [29]. On-chip memories are one of the most im-
portant components of modern FPGAs. In state-of-the-art FPGAs,
users can flexibly configure thousands of block RAMs (BRAMs)
to operate at different modes, widths, and depths depending on
the their application needs. For example, the largest monolithic
Intel Stratix 10 device has 11,721 BRAMs that collectively provide
229 Mb of distributed on-chip memory [15]. Future generations
of FPGA devices are also expected to have higher density of on-
chip BRAMs to satisfy the ever increasing demands of memory-
intensive datacenter workloads [20].

The distributed nature of the FPGA on-chip memories, along
with the flexibility of the reconfigurable fabric surrounding them,
provides tens of TB/s of on-chip bandwidth between the BRAMs
and the compute units implemented in the FPGA’s logic or digital
signal processing (DSP) blocks. With the prevalence of FPGAs in
datacenters, these unique properties have positioned FPGAs as a
fertile choice for accelerating many data-intensive workloads such
as deep learning (DL). By keeping all the model weights persistent
in the large on-chip memory and employing the compute-near-
memory paradigm, FPGAs were able to achieve an order of magni-
tude higher performance than same-generation graphics processing
units (GPUs) on memory-bound DL inference workloads [6].

In this work, we aim to bring the compute even closer to the
data by proposing a new compute-capable BRAM architecture for

FPGAs. Previous work has demonstrated the potential to acceler-
ate a variety of applications with in-memory computation in the
context of CPU caches [8], [11]. In FPGAs, the gains of compute-
capable BRAMs are compelling for three main reasons: (1) The
large number of distinct memory blocks in an FPGA enables a sig-
nificantly higher degree of parallelism. The BRAMs in the largest
monolithic Intel Stratix 10 FPGA can be re-purposed to over
1.5 million bit-serial SIMD compute lanes when enhanced with
compute-capable peripherals. When not computing, BRAMs can
still function as normal memory units. (2) The in-fabric distributed
nature of the FPGA on-chip memory enables tighter integration of
the compute-capable memories with the rest of the design logic.
For operations that cannot be computed in-memory, the data from
a compute-capable last-level cache (LLC) in a CPU would still
need to go through the different levels of the memory hierarchy
and the fixed processor pipeline to reach the compute units, which
is not the case for compute-capable FPGA BRAMs. (3) Performing
the compute in BRAMs eliminates the data movement between
memory and compute units which reduces the competition over the
fabric’s precious routing resources. This can potentially alleviate
congestion and increase the routability of FPGA designs.

Our evaluation shows that enhancing a modern Stratix 10 FPGA
architecture with compute-capable BRAMs can result in 1.6× and
2.3× increase in the device’s peak multiply-accumulate (MAC)
throughput for 8-bit integer and block floating-point precision,
respectively. These gains are achieved with no change to the modes
of operation or routing interface of existing BRAMs and at a min-
imal cost of 1.8% increase in the FPGA die size. We then evaluate
the performance gains of our proposed architectural modification
when accelerating a variety of real-time DL workloads.
To the best of our knowledge, this work is the first attempt to:
• Evaluate the performance gains and area cost of enhancing

modern FPGAs with in-BRAM compute capabilities,
• Implement a matrix-vector multiplication engine that combines

and balances the use of in-BRAM and DSP compute units to
maximize the overall throughput,

• Quantify the performance gains of FPGAs with compute-
capable BRAMs on a variety of real-time DL workloads.

II. BACKGROUND: IN-SRAM BIT-SERIAL COMPUTE

Prior work has investigated the use of SRAM memory arrays
for performing bit-serial, in-memory computations. Neural Cache
[8], which we build our work on, re-purposes the SRAM in the
last-level cache of commodity processors, as bit-serial arithmetic
units. In Neural Cache, the studied CPU model has 14 LLC
slices, and there are 320×8 KB SRAM arrays in each slice. Each
array contains 256 wordlines and 256 bitline pairs. To enable in-
situ compute inside the SRAM array, an additional row-decoder
is added to the memory array to enable the activation of two
wordlines at the same time. The design of the sense amplifiers is
also modified such that, by sensing the shared bitlines, it is possible
to perform a bitwise Boolean operation, and or nor, between
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(a) (b) (c)
Fig. 1: Steps for different in-SRAM bit-serial (a) addition, (b) multiplication, and (c) reduction operations. Green and blue shades correspond
to read and write activated wordlines at each time step. The bits from a single data word are marked with the same color.
TABLE I: Number of cycles for in-SRAM bit-serial operations where
n is the operands’ bitwidth and k is the number of reduced elements.

Operation # Cycles
Addition n+ 1

Multiplication n2 + 3n− 2
Reduction (2n+ log2 k) · log2 k

the two activated wordlines. For the activated cells attached to the
same bitline pair (BL and BL), sensing the BL performs an and
operation (i.e. sensed result is high only if both cells store value 1)
and sensing the BL performs a nor operation (i.e. sensed result
is high only if both cells store value 0). With these modifications
to the SRAM array peripherals, a 256-bit-wide logical (and/nor)
operation can be performed every cycle.

To perform more complex computations with a high degree
of parallelism, Neural Cache proposes a transposed data layout
and bit-serial arithmetic algorithms for addition, multiplication and
reduction operations. In the transposed layout, all the bits of one
data word are stored vertically in cells attached to the same bitline,
such that bit i of all the data words map to the same wordline.
With this transposed format, a region with n wordlines and 256
bitlines in an SRAM array can hold 256 n-bit operands. Arithmetic
operations are built out of logical operations in a bit-serial fashion,
where each bitline acts as a SIMD lane. Full adder circuitry is
added to the bitline peripherals to compute the sum and carry bits
out of the and and nor results from the sense amplifiers. Fig. 1
and Table I summarize the steps of each arithmetic operation and
the number of cycles it takes as explained below.

For addition, in each cycle, the two wordlines of the same
bit position of the two operands are activated. Then, the bit-
line peripheral computes the sum bit, updates the carry for the
next cycle computation, and writes back the sum bit to the result
location before proceeding to the next bit position in the next cycle.
Thus, the addition for n-bit operands takes n+ 1 cycles. Bit-serial
multiplication is based on iterative addition of partial results. In
each iteration, one bit of the first operand is loaded as a tag value,
and the second operand’s bits are added to the partial sum only if
the tag value is 1, as shown in Fig. 1b. In total, the multiplication
takes n2 + 3n − 2 cycles. Finally, the reduction operation is
implemented as a series of across-bitline copies and additions. In
each iteration, the number of operands is halved, until the final
result is generated. Note that other common INT/FP arithmetic
operations as well as transcendental bit-serial in-array operations
can also be implemented [11]. With the modified peripherals and
the right control sequence, the 35 MB LLC in [8] operates as a
massively parallel ALU with 1, 146, 880 single-bit SIMD lanes.

III. COMPUTE-CAPABLE BLOCK RAMS FOR FPGAS

A. Enhanced BRAM Architecture
Fig. 2a shows the proposed BRAM architecture following the

dual-port 1-bank SRAM array design from [30]. Blocks added
or modified to enhance the FPGA BRAM with the in-memory
compute capabilities are highlighted in a different color. One of

our main design targets is to implement all the necessary changes
while reusing the same existing BRAM interface (i.e. keep the
same number of input/output ports) to minimize the area overhead
of the proposed changes and avoid stressing the routing from/to the
BRAMs. Therefore, as highlighted in Fig. 2a, all the changes in the
proposed BRAM architecture are limited to the block’s internals.

The two major changes are the addition of: (1) a second row
decoder to one of the two BRAM ports to allow the simultaneous
activation of two memory cells that share the same bitline and (2)
the bit-serial compute logic to the peripherals of each bitline. Fig.
2b shows the circuitry of the modified bitline peripheral. On the
read path, the outputs of the sense amplifiers (SA) go through a
few logic gates to create the sum and carry bits for adding the two
activated memory cells. The carry bit is stored in the carry flip-flop
(FF) to be used in the following cycle’s computation. The sum bit
is routed to the write path to be stored back to the memory array in
the location reserved for the results. The output of the SA can be
passed directly to the output for a normal read operation, or stored
in the tag FF used in the bit-serial multiplication operation. On the
write path, a 3:1 multiplexer is added to choose between different
sources for a memory cell write: input data bit (for a normal write
operation), sum bit (for addition), or carry bit (for the final carry
out value). We also add logic circuitry to allow enabling/disabling
the write drivers (WD) based on the tag value, which is key for
implementing the bit-serial multiplication algorithm described in
Section II. Our SPICE simulations using 28 nm process technology
at 0.9V supply voltage show that the added circuitry results in a
1.6× increase in the BRAM cycle time only when it is operating
in the compute mode. In the memory mode, the 3:1 multiplexer
in Fig. 2b is the only circuitry added on the normal write path.
However, this added negligible delay and did not affect the BRAM
speed in the conventional memory mode.

The proposed compute-capable BRAM can function in the
conventional memory mode or the new compute mode. The mode
of operation is determined by an additional configuration SRAM
(CRAM) cell for each BRAM tile, which is configured during
programming the FPGA. These added configuration bits represent
a negligible 12 Kb increase to the 577 Mb compressed bitstream of
the largest Stratix 10 device. When the compute-capable BRAM
is configured in memory mode, its operation is exactly the same
as that of a conventional BRAM and the designer can flexibly
configure the number of ports and the width/depth of the BRAM.
On the other hand, when configured in compute mode, the BRAM
is automatically configured to its maximum width to maximize the
read/write throughput for populating the memory array with input
data and reading the final results in transposed format. In addition,
a special address (0x1ff) is reserved; any data word written to the
reserved address is treated as an in-memory compute instruction,
while accesses to other addresses are processed normally. In this
case, the row address, the SRAM array access control signals
(including wr_en), and the bitline peripheral control signals are
all packed into the incoming instruction. To support that, we insert
several multiplexers (shown in Fig. 2a) to select the set of right
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(a) (b)

Fig. 2: Block diagrams for: (a) internal architecture of the compute-capable dual-port single-bank BRAM, and (b) peripheral logic circuitry
added for each bit-line of the memory cell array. The added/modified circuitry is highlighted in color.

Fig. 3: Peak MAC throughput gains when enhancing a baseline
Stratix 10 GX2800 FPGA with compute-capable BRAMs for 8-bit
integer and block floating-point precisions.

control signals based on the operation mode, and a comparator to
determine if the input address is equal to the reserved one. These
instructions are generated by a control finite-state machine (FSM)
implemented in the soft logic and supplied to the in_data port
of the BRAM. The control FSM is lightweight; it utilizes less than
∼300 look-up tables (LUTs), which can be amortized by sharing
the FSM across multiple BRAMs working in lockstep.

B. Peak MAC Throughput Gain
In this subsection, we evaluate the peak MAC throughput gains

achieved by enhancing the largest Stratix 10 (GX 2800) FPGA ar-
chitecture with our proposed compute-capable BRAMs. This study
gives the workload-agnostic performance gains before evaluating
the achievable gains with real benchmarks. We experiment with
two numerical precisions: 8-bit integer (INT8) and block floating-
point (BFP8) with 1 sign bit, 2 mantissa bits, and 5 exponent bits
(1s.2m.5e), which is used in various DL workloads [10]. For the
INT8 experiments, we assume 27-bit accumulation as in [19].

To calculate the peak throughput of the soft logic, we synthesize,
place and route one MAC unit to LUTs to determine its operating
frequency and resource utilization. We then calculate the total LUT
throughput by optimistically assuming that we can fill all the avail-
able LUTs with MAC units at the same operating frequency. This is
an unrealistic assumption as it does not consider the routability and
frequency degradation as we fill the device, but serves the purpose
of this peak throughput study. In addition, we run simple Quartus
experiments to determine the the maximum operating frequencies
for DSP blocks in the 2× integer MACs mode and BRAMs in the
simple dual-port mode, which are found to be 866 MHz and 998
MHz, respectively. This means that the BRAMs would run at a
maximum frequency of 624 MHz when configured in the compute

mode (1.6× slower than memory mode). A single MAC operation
implemented using the in-BRAM bit-serial algorithms takes 113
and 23 cycles in case of INT8 and BFP8, respectively.

Fig. 3 shows the peak throughput in TMACs/sec for the baseline
and enhanced Stratix 10 FPGA architectures for the two studied
precisions. It shows that compute-capable BRAMs can deliver an
additional 8.3 INT8 TMACs/sec and 40.7 BFP8 TMACs/sec,
enhancing the peak device throughput by a factor of 1.6× and
2.3× for INT8 and BFP8, respectively. These gains come with
minor degradation to the contribution of LUTs to the peak device
throughput since, with every 64 BRAMs sharing the same control
FSM, all the compute-capable BRAMs in the device utilize ∼55k
LUTs (less than 6% of the device resources).

C. Area Overhead and CAD Support
The area overhead due to the added row decoder and column

peripherals for bitline computing is estimated to be 7.5% for a
64 Kb SRAM array in 28 nm process technology [8]. This was
then verified by a fabricated prototype chip in [27]. Since the
BRAM’s interface to the programmable routing is not changed at
all when adding the in-memory compute capabilities, we simply
rely on the data produced by the COFFE automatic transistor sizing
tool for FPGA circuitry [25] to quantify the FPGA BRAM tile
area overhead. According to this data, a 64 Kb SRAM array in
an FPGA BRAM tile is 11, 016 µm2 in a similar 22 nm process
technology and therefore the area of added compute circuitry
would be 826 µm2 for its 256 wordlines and 256 bitlines. Since the
added circuitry size scales linearly with the number of wordlines
(the extra decoder) and bitlines (the column peripherals), then
the overhead for an M20k block in a Stratix 10 architecture
with 128 wordlines and 128 bitlines (excluding ECC bits) would
be 413 µm2. This represents a 7.4% increase in the BRAM
tile area according to the data generated by COFFE [25]. With
BRAMs occupying ∼25% of the die size of modern FPGAs with
traditional compositions [24], this overhead corresponds to only
1.8% increase in the FPGA die size.

In addition, enhancing BRAMs with in-memory compute capa-
bilities does not require any significant CAD support. In an FPGA
design tool like Quartus, an RTL designer usually instantiates a
memory block from the library of vendor-supplied IPs [16]. For
compute-capable BRAMs, a new IP is added to the IP catalog
that maps to one or more BRAMs. The designer only needs to
instantiate the new IP wherever necessary in the design. Then, the
synthesis engine can directly map the instantiated IP to BRAMs
and implements its associated control FSM in soft logic.
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IV. RIMA: DL RECONFIGURABLE IN-MEMORY
ACCELERATOR

In this section, we introduce our DL reconfigurable in-memory
accelerator, or RIMA for short. RIMA utilizes our proposed
compute-capable BRAMs to achieve higher DL inference through-
put. It also exploits the FPGA reconfigurability by customizing the
workload balance between compute-capable BRAMs and DSPs to
further optimize performance for each workload.

A. Target DL Workloads
RIMA is targeted for accelerating recurrent neural networks

(RNNs). These networks process sequence inputs such as speech
samples or sentences and are typically used in natural language
processing and machine translation. They consist of multiple
matrix-vector multiplications followed by vector operations known
as gates. Different variations of RNNs include vanilla RNNs, gated
recurrent units (GRUs), and long short-term memories (LSTMs)
with 2, 6, and 8 vector-matrix multiplications per time step. The
multiple matrix-vector multiplications typically consume the ma-
jority of the compute time of an RNN. With no data dependencies
between the matrix-vector multiplications of the same time step,
they can be combined into a larger matrix-vector multiplication, in
which the input is a vector of C elements, the weight matrix is of
size R× C, and the output is a vector of R elements.

B. Accelerator Architecture
Our accelerator adopts a similar architecture as that of the

Brainwave neural processing unit (NPU), a state-of-the-art FPGA
overlay for DL acceleration [10], [19]. However, RIMA has two
key differences compared to the NPU: (1) it utilizes compute-
capable BRAMs as massively parallel SIMD lanes in the matrix-
vector multiplication engine, and (2) it customizes its architecture
parameters and instruction sequences for each specific workload
instead of being a one-size-fits-all software programmable overlay.
In this work, we apply per-workload architecture customization
to maximize the overall performance by balancing between in-
BRAM and DSP compute. Fig. 4a illustrates the top-level or-
ganization of our accelerator. It consists of five pipeline stages:
the matrix-vector multiplication unit (MVU), the external vec-
tor register file (eVRF) for skipping the MVU when necessary,
two identical multi-function units (MFUs) for vector elementwise
operations (e.g. activation, addition, subtraction), and finally the
loader (LD) which writes back to any of the VRFs. RIMA uses the
same eVRF, MFUs, and LD blocks as in [19], but re-designs the
MVU (the key compute complex) to exploit the compute-capable
BRAMs in our proposed enhanced FPGA architecture.

The MVU, as illustrated in Fig. 4a, consists of T tiles followed
by an inter-tile global reduction tree to generate the final MVU
output. As shown in Fig. 4b, each tile consists of dot product
engines (DPEs) that compute dot product operations between a
portion of the input vector and several rows of the weight matrix.
There are two types of DPEs in each tile; the logic DPEs (L-DPEs)
that implement an array of multipliers and an adder tree to accumu-
late the products using LUTs and DSP blocks, and memory DPEs
(M-DPEs) that perform the same operation using compute-capable
BRAMs. The two sets of DPEs work in tandem to fully exploit the
computational resources in our proposed FPGA architecture with
in-BRAM compute capabilities. To further optimize performance,
the M-DPEs are designed such that they belong to a different clock
domain than the rest of the architecture, since the M-DPEs can
perform in-memory computations at a much faster clock speed due
to their reduced routing utilization and simple control logic. The
values of the weight matrix used by each L-DPE are pinned in
a tightly coupled matrix register file (MRF) implemented using
conventional memory-mode BRAMs. The M-DPEs do not need
an MRF since the data is stored and processed in-place in the

Fig. 4: Block diagrams showing: (a) overview of the RIMA architec-
ture, (b) our proposed hybrid MVU tile, and (c) the architecture of
an M-DPE, with compute-capable BRAMs.

compute-capable BRAMs. Additionally, each tile has two VRFs
(instead of one in the baseline NPU) that store the same part of the
input vector in different layouts and supply inputs to the L-DPEs
and M-DPEs at different rates due to their different compute styles.

C. Memory Dot-Product Engines
Fig. 4c depicts the internal architecture of an M-DPE. The core

of the M-DPEs is an array of compute-capable BRAMs ( 1 ).
Unlike an L-DPE that computes a single dot product operation
between part of the input vector and a single matrix row, multiple
dot product operations with multiple matrix rows are mapped to an
M-DPE to maximize the degree of parallelism on the BRAM bit-
lines. Each M-DPE has one Instruction FSM ( 2 ) that sequentially
generates the required bitline compute instructions. Instructions are
broadcast to all the BRAMs in an M-DPE, as they all act as SIMD
lanes executing the same instructions in lockstep. We implement a
set of registers ( 3 ) that buffer a complete data word coming from
the VRF while the controller sequentially loads the appropriate
portions of it to the input-reserved locations in the BRAMs. We use
a pipelined tree interconnect network ( 4 ) to broadcast instructions
and input vector values to all BRAMs in an M-DPE without
stressing the FPGA routing with such high fanout connections.
This broadcast network is time-shared between the register buffer
and instruction FSM, as the data loading and computation never
occur simultaneously. The output of each BRAM is fed to a
reduction unit ( 5 ) where the results on multiple bitlines are added
together as detailed later in Section IV-D. Finally, the results from
all reduction units are serialized and passed to an accumulator ( 6 )
that performs any necessary additions across different BRAMs to
produce the final results of the M-DPE.

D. Transposed Integer Arithmetic
We discuss our implementation of the dot product operation

of two vectors in compute-capable BRAMs for INT8 and BFP
formats in this subsection and the next, respectively.

1) Data Mapping: In the transposed data mapping, each INT8
value is mapped to 8 memory cells attached to the same bitline (i.e.
across 8 consecutive memory words), and different values in an
operand vector are mapped to consecutive bitlines. Once all bitlines
in the SRAM array are filled, the remaining values in the operand
vector can be mapped to another set of 8 wordlines. The elements
of the other operand vector are mapped similarly such that each
two corresponding elements (i.e. elements in the same position) of
the two vectors are mapped to memory cells on the same bitline.
For example, for a memory cell array with 128 bitlines and a dot
product between input and weight vectors of length 256 elements,
the first 128 weights are mapped to all bitlines of wordlines 1-8
and weights 129-256 are mapped to wordlines 9-16. Similarly, the
256 inputs are mapped to word-lines 17-32.
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Fig. 5: External reduction unit for summing up 16 partial results.
Every cycle a bit slice from all values is accumulated with pop-
count, addition, and shift.

2) Operand Loading: Before any computation starts, the
weight matrix and input vector need to be loaded to the memory
array. For persistent-style DL, the weights remain unchanged in
the on-chip memory during inference. Therefore, they can be trans-
posed and loaded into the memory array offline in a preprocessing
step. On the other hand, the input values are supplied by the user
in the MVU VRFs and loaded to the compute-capable BRAMs
from the register buffer (see Fig. 4c). In our implementation, the
register buffer holds 32 consecutive values in the input vector (one
VRF word) that, when loaded to the compute-capable BRAM, goes
through an 8:1 bit-slice selector before broadcasting. Then, the
selected bit slice of the 32 values maps to 32 cells on consecutive
bitlines and the same wordline.

3) In-BRAM MAC & Reduction: After loading the operands
into the BRAMs, the corresponding weights and inputs are mul-
tiplied with the bit-serial algorithm, and the products are accu-
mulated in each bitline with bit-serial addition. After the MAC,
the accumulated partial sums in all bitlines are iteratively reduced
until there are 16 partial sums left. Performing further in-BRAM
reduction significantly degrades the BRAM compute throughput
as only a successively smaller portion of the BRAM bitlines
are actively performing compute during each reduction iteration.
We empirically choose to reduce down to 16 partial results as
this design point achieves a good balance between the BRAM
throughput and the resources of the external reduction unit.

4) External Reduction: Then, the 16 remaining partial results
are read out from the BRAM, one bit slice at a time (starting
from the least significant bit), and sent to the external reduction
unit shown in Fig. 5 to obtain the final sum. The formula for
accumulating with bit-slices is

∑N
i=0 pop-count(bit-slice i) × 2i,

where N is the bitwidth of the partial results. At each cycle, 16
bits from the same position of 16 different values first go through
pop-count logic (counting the number of 1’s). Then, the pop-count
result is left-shifted by i bits and added to the accumulated sum.
Practically, a barrel shifter (i.e. with variable offset) is expensive to
implement on an FPGA, so we designed the external reduction unit
using a circular shift register instead, as shown in Figure 5. In each
cycle, the pop-count result (5 bits representing a value between
0 and 16) is added to the last 4 bits of the current accumulation
value. After addition, the bits are circularly right-shifted by 1
bit to prepare for the next cycle addition. This addition-and-shift
operation repeats until the most significant bit slice is processed.
The external reduction unit is pipelined with the addition in the
last iteration of the in-BRAM reduction to hide its latency. The
external reduction unit reads out and operates on bit slice i, while
the in-BRAM reduction generates bit slice i + 1 at the same time
since the FPGA BRAMs have separate read and write wordlines.

5) Bit Slicing: We further implement bit slicing, an optimiza-
tion for achieving higher utilization of bitline SIMD lanes. First,
each weight/input value is partitioned into multiple slices (e.g.

Fig. 6: In-memory operations for dot-product with block floating-
point in a compute-capable BRAM. Vector has 512 elements and is
partitioned into 2 exponent-sharing groups in BFP.

an 8-bit value is split into higher 4 bits and lower 4 bits). Then,
different slices are mapped to different compute-capable BRAMs
to extract a higher degree of parallelism and reduce the bit-serial
processing latency. Finally, the results from different slices are
shifted to the appropriate bit position and summed up in the soft
logic to produce the combined results.
E. Transposed Block Floating-Point Arithmetic

The BFP data format is mainly used in DL acceleration due to
its computational efficiency and adequate accuracy [10], [2], [7].
Unlike the traditional floating-point format, where each value has
its own sign, mantissa and exponent, the BFP format shares the
same exponent across a block of values. Therefore, to compute the
dot product of two BFP vectors, only the mantissa bits need to be
multiplied and accumulated as integer values, while the new shared
exponent is calculated based on the shared exponents of operands.

As the mantissa of each BFP value has fewer bits, multiple
weights and one input can be mapped to each bitline, so that
the input can be reused for multiplying with different weights. In
addition, each memory array is partitioned into groups of bitlines,
and the elements with a shared exponent are mapped within a group
for efficient accumulation as shown in Fig. 6. Bit-serial reduction is
done in parallel for all the groups, and then the external reduction
unit handles results from all groups sequentially. The reduction
operation beyond the block size is performed using DSP blocks in
floating-point mode, after the results of the external reduction unit
are converted to the normal single-precision floating-point format.

V. ARCHITECTURE MODELING & CUSTOMIZATION

A. Load Partitioning and Execution
Fig. 7 illustrates how the matrix-vector multiplication is par-

titioned into sub-problems and mapped to the tiles and DPEs of
the MVU in RIMA. The matrix and input vector are equally split
(horizontally) into T column blocks, such that each tile is responsi-
ble for a matrix-vector multiplication sub-problem of dimensions
R × (C/T ). Within a sub-problem, each matrix column block is
split (vertically) into several row blocks, such that each row block
is mapped to a DPE. The number of matrix rows in a row block
(i.e. row block size) differs depending on whether the row block
is mapped to an L-DPE or an M-DPE. Within an M-DPE, the
weights in one matrix row are mapped to one or more compute-
capable BRAMs as described in Section IV-D. The number of L-
DPEs and M-DPEs in a tile, as well as the portion of the matrix
mapped to each type, are architectural parameters specified by the
designer and can be different for each workload. All the DPEs in
the same tile, regardless to their type, use the same portion of the
input vector stored in the tile’s VRFs. The outputs from all DPEs in
a tile are concatenated to form an R-element partial result vector,
then different partial results from different tiles are summed up in
the global reduction unit (see Fig. 4) to produce the final output.

The execution of an RNN dataflow graph on RIMA proceeds
as follows. The weights are loaded into the M-DPEs and the
MRFs of L-DPEs offline as a pre-processing step. Different parts
of the user-supplied input vector are first dispatched to their
corresponding VRFs in different tiles. Then, all the DPEs in all

92



Fig. 7: Partitioning of a matrix-vector multiplication operation to an
example RIMA architecture with 4 tiles, M L-DPEs and N M-DPEs.
tiles process their own sub-problem concurrently. The M-DPEs
perform input loading, MAC, and reduction in parallel. Each M-
DPE then performs across-BRAM accumulation, and sends out
the results sequentially to reduce data transfer bandwidth. The L-
DPEs load partial matrix rows and input vector from MRFs and
VRF respectively, and perform the dot product computations in
a pipelined fashion. Finally, after the complete output vector of
the matrix-vector operation is produced, the subsequent MFUs
consume it in chunks of 40 elements each to perform the vector el-
ementwise operations depending on the workload dataflow graph.
These steps are repeated again for the next time step of the RNN.
For simplicity, these execution steps assume no overlap between
different stages of the RIMA pipeline. For example, the first MFU
does not start processing until the MVU is completely done. This is
definitely sub-optimal and can be avoided by passing a part of the
MVU result to the MFU while generating the next part. However,
we leave this optimization for future work as we focus more on
showcasing the gains of FPGA in-memory compute capabilities,
rather than building the most efficient accelerator architecture.

B. Design Space Exploration & Architecture Customization
To achieve the optimal performance within the available FPGA

resources, it is necessary to change the M-DPE configuration as
well as the workload partitioning between the L-DPEs and M-
DPEs for different problem sizes. Assigning a large portion of a
large workload matrix to M-DPEs will cause all the model weights
not to fit within the total chip BRAM capacity, since a portion
of the BRAMs configured in compute mode must be reserved for
the intermediate and final computation results. On the other hand,
assigning only a small portion of the matrix to M-DPEs can cause
significant underutilization of the BRAM compute throughput.

Since our RIMA architecture is very deterministic (e.g. with no
pipeline overlaps or multi-threading), it is possible to estimate a
given workload’s performance using a detailed analytical model
for a given architecture configuration. Therefore, we implement a
design space exploration tool that uses an analytical model to find
the optimal combination of architecture parameters that minimizes
the processing latency for each specific workload. The analytical
model includes the following configurable architecture parameters:
the fraction of elements in the output vector that are computed by
the M-DPEs (f ), the number of MACs performed serially in each
bitline (m), the operands’ bitwidth after applying bit slicing (b),
and the number of MVU tiles (T ).

The optimal configuration of these parameters minimizes the
MVU latency of a given workload with dimensions R × C under
specific resource constraints. The overall MVU latency is the
higher of L-DPE and M-DPE latencies, and the resource constraint
is that the number of BRAMs used by L-DPEs (for MRFs) and M-
DPEs, and the number of DSPs used by the L-DPEs do not exceed
85% of the total number of available BRAMs and DSP blocks in
the target FPGA device. This leaves enough BRAMs and DSPs to
implement the rest of the fixed RIMA pipeline. Although it is hard

to capture the logic block utilization in the analytical model, it was
never the design’s bottleneck for all the RIMA instances that we
experimented with in our study.

VI. EVALUATION METHODOLOGY

A. Platforms and Benchmarks
To highlight the gains of using our enhanced FPGA architec-

ture with compute-capable BRAMs for DL acceleration, we first
evaluate the performance of the RIMA architecture in comparison
to state-of-the-art FPGA-based accelerators for RNNs. To ensure
a fair comparison, we compare the BFP and INT8 versions of
RIMA to the Microsoft Brainwave architecture from [10] which
uses the same (1s.2m.5e) BFP format (BW-BFP) and the INT8
Intel NPU architecture from [19] (NPU-INT8), respectively. Both
BW-BFP and NPU-INT8 use the same Stratix 10 GX 2800 FPGA
device, and RIMA assumes a similar device (in resource count) in
which the BRAMs are enhanced with in-memory compute capa-
bilities. We also compare RIMA’s performance to that of the same-
generation Nvidia Titan V GV100 on the same set of workloads
using the official Nvidia persistent CuDNN kernels. Although this
GPU can perform half-precision (FP16) computations, the official
kernels for these workloads only support single-precision (FP32).
All our experiments use the RNN, GRU and LSTM models from
the DeepBench [3] benchmark suite.
B. FPGA Implementation and Validation

We implement the MVU and MFU of the RIMA architecture
in SystemVerilog RTL. The MVU is the main compute complex
of the architecture and the only pipeline stage of the original NPU
architecture that we re-architect to use in-BRAM compute capabil-
ities. According to the results in [19], the other NPU pipeline stages
(i.e. eVRF, and LD) utilize less than 10% of the FPGA’s LUTs and
BRAMs, and they are never the bottleneck for the NPU’s operating
frequency. For the compute-capable BRAMs, we write an RTL
module that maps to a normal BRAM block since the interface
of compute-capable BRAMs to the programmable routing remains
unchanged. We use Intel Quartus Prime Pro 17.1 to synthesize,
place and route the RIMA architecture with four tiles and necessary
number of M-DPEs/L-DPEs to obtain the frequency and resource
utilization results for each instance customized for each specific
benchmark. Then, we add in the resources utilized by the rest of
the RIMA architecture components as previously mentioned. We
also validate the functional correctness of our RIMA architecture
by performing RTL cycle-accurate behavioral simulations using
ModelSim. To simulate the compute-capabilities of our enhanced
BRAMs, we write a black-box simulation model for the BRAM
that supports both the memory and compute modes of operation.
The evaluation on the RIMA architecture accounts for the over-
heads of routing and on-chip data movement, demonstrating the
realistic effects of the improved computing throughput on FPGA.
C. Performance Modeling

As existing FPGAs do not have the needed circuitry for in-
BRAM compute, we rely on cycle-accurate RTL simulation with
our behavioral simulation model of the compute-capable BRAM
to obtain the cycle count for the RIMA MVU, which constitutes
the majority of processing cycles. Then we combine that with
an analytical model latency estimation for the deterministic MFU
vector element-wise operations, assuming no overlap between the
MVU and MFU processing. We obtain the maximum operating fre-
quencies of the M-DPEs and the rest of the design from the Quartus
timing reports. The BRAM in compute mode has a 1.6× lower
frequency upper bound than an unmodified BRAM; in memory
mode, the BRAM maximum frequency remains unchanged. The
overall performance of the each RIMA instance is then calculated
based on the obtained frequencies and number of processing cycles
for each benchmark.
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(a) (b)

(c) (d)
Fig. 8: Design space exploration for the RIMA architecture param-
eters with number of tiles and L-DPE lanes fixed at 4 and 40,
respectively. Each pixel is one architecture configuration and the
color represents the processing latency. White points are invalid
configurations violating the resource constraints.

VII. EXPERIMENTAL RESULTS

A. RIMA Architecture Design Space Exploration
The heatmaps in Fig. 8 show the latency results obtained by the

analytical model during the design space exploration process for
the RIMA-INT8 variation for four different LSTM benchmarks. In
this experiment, we fix the number of MVU tiles and lanes of the L-
DPEs to be 4 and 40 respectively, similar to that used in [19]. Each
pixel in the heatmap represents one architecture configuration.
The pixel color indicates the estimated latency for one time step
in nanoseconds, a lighter color represents a higher latency and a
darker color represents a lower latency (i.e. the darker the color
is, the better). The white parts of the heatmaps indicate that the
corresponding configuration violates the resource constraints of the
analytical model. On the horizontal axis, the parameter f (fraction
of compute mapped to M-DPEs) changes from 0% to 100%. The
vertical axis represents 16 different combinations of the parameters
(b,m), where b (bits per slice) takes the value 8 or 4, andm (MACs
in serial on the same bit-line) is swept from 1 to 8.

With infinite resources, a larger f and smaller m would increase
the degree of extracted parallelism and therefore lead to better
performance. However, as shown in the figure, the larger the model
size gets, the less fraction of compute can be mapped to the M-
DPEs to ensure that the complete model still fits in the on-chip
BRAMs. The optimal configurations for these models (highlighted
by a red star on the heatmaps) are different, which highlights the
importance of hardware customization. Our experiments show that
the per-workload customization of the RIMA architecture offers an
average 18% (up to 40%) performance improvement compared to
a fixed RIMA instance for all workloads. For the largest LSTM
model (h = 1536), the optimal architecture configuration has
m = 6, b = 8, and f = 0.15. This model has 13.5 MB of
weight data, which imposes tighter constraints on the fraction of
computations that can be offloaded to the M-DPEs (only 15%).
To offload more computation to the M-DPEs, six bit-serial MACs
(m = 6) are performed sequentially on the same bitline, and no
bit slicing is applied. On the other hand, for the smallest LSTM
(h = 256), the optimal architecture configuration has m = 1,
b = 4, and f = 0.68. This small model has a 512×1024 weight
matrix, which enables us to map 68% of the compute to the M-
DPEs, perform only 1 MAC operation per bitline (fully unrolled)
and apply the bit slicing to extract a high degree of parallelism.

For RIMA-BFP, we found that for all the studied workloads,
we were able to map all the computations to M-DPEs, which pro-

TABLE II: FPGA implementation results of RIMA instances cus-
tomized for each workload. The operating frequencies are for the
M-DPE clock domain.

Benchmark Precision Logic BRAMs DSPs Freq. (MHz)
RNN

h=1152
INT8 87% 72% 50% 328
BFP 59% 46% 44% 333

RNN
h=1792

INT8 70% 65% 50% 417
BFP 79% 64% 60% 250

LSTM
h=256

INT8 60% 55% 50% 455
BFP 49% 46% 40% 345

LSTM
h=512

INT8 74% 69% 50% 417
BFP 63% 42% 39% 323

LSTM
h=1024

INT8 73% 69% 50% 313
BFP 63% 42% 39% 323

LSTM
h=1536

INT8 89% 93% 50% 278
BFP 84% 57% 60% 303

GRU
h=512

INT8 74% 69% 50% 417
BFP 82% 57% 60% 303

GRU
h=1024

INT8 70% 65% 50% 417
BFP 82% 57% 60% 303

GRU
h=1536

INT8 85% 89% 50% 296
BFP 82% 57% 60% 303

Fig. 9: Speedup achieved by RIMA INT8 and BFP compared to
NPU-INT8 and BW-BFP, respectively.

vides superior performance than any hybrid configurations. This
highlights that in-BRAM compute on FPGAs achieves the best
performance gains for lower precisions (3-bit operations in BFP8),
which are becoming more widely adopted for DL inference.

B. RIMA FPGA Implementation Results
The FPGA resource utilization results of the per-workload cus-

tomized RIMA instances are shown in Table II. The results show
that the implemented RIMA instances achieve a high degree of the
FPGA resource utilization in all cases. Models with a larger weight
size generally have a higher BRAM usage, as more weights need
to be pinned on chip. The M-DPE clock frequencies for different
workloads also vary due to the effect of architecture parameter
customization on the external reduction units and accumulators. In
RIMA-BFP, the whole architecture operates at the same frequency
reported in Table II, while in RIMA-INT8, the M-DPEs operate at
a higher frequency (shown in the table) than the 278 MHz clock
driving the rest of the architecture.

C. Performance Results
Fig. 9 presents the speedup achieved by RIMA-INT8 com-

pared to the NPU-INT8, and RIMA-BFP compared to the BW-
BFP. RIMA-INT8 and RIMA-BFP achieve average speedups of
1.25× and 3× over the baseline NPU-INT8 and BW-BFP that
do not use compute-capable BRAMs, respectively. As previously
discussed, the gains of adding BRAM compute-capabilities are
higher when used to accelerate narrower precisions. This can be
attributed to two main reasons: (1) bit-serial multiplication latency
grows quadratically with operands bitwidth as shown in Table I,
and (2) narrower bitwidths allow sharing the same memory array
bitline among different weight values that are all multiplied by the
same input. Therefore, the RIMA architecture has the potential to
accelerate other low-bit-width formats such as INT4; the detailed
analysis for other precisions is left for future work. The figure also
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Fig. 10: Latency breakdown of RIMA-INT8 for the LSTM (h =
1024) benchmark.

TABLE III: Processing latency comparison between RIMA and
Nvidia Titan V GV100 GPU. All numbers are in milliseconds.

Workload RNN LSTM GRU
h 1152 1792 256 512 1536 1024 1536
t 256 256 150 25 50 1500 375

GPU (FP32) 1.0 1.38 0.44 0.15 5.7 12.5 29.94
RIMA (INT8) 0.21 0.42 0.06 0.02 0.24 2.63 1.26
RIMA (BFP8) 0.19 0.39 0.04 0.02 0.15 1.86 0.89

shows higher speedups for smaller workloads that impose more
relaxed constraints on the amount of workload computation that
can be mapped to M-DPEs. The smaller the amount of weights
that need to be kept persistent in the on-chip memories, the higher
the degree of compute parallelism that can be extracted from the
compute-capable BRAMs.

For some of the workloads in Fig. 9, the speedup achieved by
RIMA exceeds the peak performance gains of compute-capable
BRAMs (1.6× and 2.3× in Section III). This is because the base-
line NPU-INT8 and BW-BFP architectures suffer from significant
underutilization and padding overheads due to their fixed overlay
architecture for all workloads. In contrast, RIMA best exploits the
FPGA reconfigurability by customizing the architecture parame-
ters to achieve the optimal performance for each given workload.

As an example, Fig. 10 shows the breakdown of the processing
latency of RIMA-INT8 for the LSTM benchmark with 1024 hidden
units (h = 1024). It shows that the matrix-vector multiplication
in M-DPEs constitutes 84% of the processing time, where the
majority of this time is spent in bit-serial MAC and reduction
operations. The latency of the external reduction unit is fully
overlapped with the in-BRAM computation. Loading the inputs to
the compute-capable BRAMs takes 17% of the cycles, while the
remaining time is spent on the vector operations in the MFUs.

Table III compares the processing latencies of different work-
loads running on the RIMA architecture and the Nvidia Titan
GV100 GPU. The results show that the RIMA architecture out-
performs the GPU by 8.1× and 10.6× when using the INT8 and
BFP numerical precisions, respectively.

VIII. RELATED WORK

FPGA Architecture Changes for DL: Prior work on FPGA
architecture changes for more efficient DL acceleration have fo-
cused many on DSPs and logic blocks. Boutros et al. [4] and
Rasoulinezhad et al. [21] re-architect the DSP blocks to support
higher density of low precision MACs for DL inference. Arora et
al. [1] proposes integrating in-fabric tensor units for high-efficient
matrix-matrix multiplications used in many DL models. Boutros
et al. [5] and Eldafrawy et al. [9] propose several ideas for logic
block changes that can substantially increase the arithmetic density
of the soft fabric. To the best of our knowledge, this work is the first
attempt to enhance the FPGA’s on-chip memories with massively
parallel bit-serial compute capabilities.

FPGA DL Accelerators: Several works have proposed in-
teresting techniques to accelerate DL inference on FPGAs. Han
et al. [13], Samragh et al. [22], and Wang et al. [28] use weight
pruning and compression techniques to reduce the model memory
footprint for FPGA deployment. Li et al. [18] proposes a design
methodology to determine the optimal parameters for compres-
sion techniques. Moreover, there are several works that propose
methods to efficiently map the DL computations into available

compute resources on FPGAs such as [23], [12], and [26]. Our
work is orthogonal to all above works, we present a reconfig-
urable accelerator architecture that can flexibly balance between
in-BRAM and DSP compute to achieve the highest performance.
Both [10] and [19] introduce the NPU overlay, which we re-
architect to showcase the performance of our proposed compute-
capable BRAMs in accelerating DL workloads. Our proposal to
enhance FPGA BRAMs with in-memory compute capabilities is
a more fundamental change in the device architecture which can
potentially benefit any accelerator architecture.

In-Memory DL Accelerators: Many interesting prior work
have performed DNN acceleration with in-memory computing.
DRISA [17] is a DRAM-based in-memory accelerator with
Boolean logic operating on data from all bit-lines. Neural Cache
[8] re-purposes a CPU’s last level cache as bit-serial computing
units, and is compared to our work in evaluation. FloatPIM [14]
performs high precision floating point operation directly on dig-
ital signals. In contrast to the above works which target a fixed
accelerator ASIC or fixed structure of CPU caches, our proposal
is to leverage in-memory computing in FPGAs which can be
optimally reconfigured for both different applications and different
DL models. Zha et al. [31] proposes a ReRAM based recon-
figurable fabric where each tile can be configured for compute,
memory or interconnect mode. While the above work [31] builds a
new architecture based on ReRAM for reconfigurable in-memory
computing, our work leverages the existing BRAMs on FPGA for
computation with minimal architecture modifications and area cost
while maintaining the reconfigurability of FPGAs.

IX. CONCLUSION

The continuous increase in the capacity of FPGA on-chip
memories offers a great opportunity to also enhance the device’s
compute throughput by supporting in-BRAM compute capabil-
ities. This work is the first attempt to evaluate the gains and
costs on in-memory compute on FPGAs. Our proposed architec-
tural change can enhance the peak MAC throughput of a large
Stratix 10 device by a factor of 1.6× and 2.3× for 8-bit integer
and block floating-point precisions, respectively. This comes at
a cost of 7.4% increase in the BRAM tile area, which corre-
sponds to only 1.8% increase in the total FPGA die size. In
addition, our proposed compute-capable BRAM does not change
the existing BRAM modes or interface to the programmable rout-
ing, and requires minimal CAD support which further simplifies
its adoption in commercial architectures. We also evaluate the
effect of enhancing FPGAs with compute-capable BRAMs on
deep learning inference performance. To do that, we implement a
reconfigurable in-memory accelerator architecture, RIMA, which
uses compute-capable BRAMs and exploits the FPGA recon-
figurability to perform per-workload architecture customization.
The RIMA architecture outperforms the state-of-the-art Brainwave
overlay by 1.25× and 3× for 8-bit integer and block floating-point
precisions respectively on a variety of real-time memory-bound
RNN workloads. It also achieves an order of magnitude higher
performance compared to same-generation GPUs. While in this
work we focus on RNN workloads, compute-capable BRAMs may
accelerate other compute intensive applications with the abundant
bit-serial computing units created. This study shows promising re-
sults for incorporating compute-capable BRAMs in modern FPGA
architectures, especially for narrower data precisions which are
becoming widely adopted in deep learning inference tasks.
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