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Abstract—The growing importance and compute demands of

artificial intelligence (AI) have led to the emergence of domain-
optimized hardware platforms. For example, Nvidia GPUs in-
troduced specialized tensor cores for matrix operations to speed
up deep learning (DL) computation, resulting in very high peak
throughput up to 130 int8 TOPS in the T4 GPU. Recently, Intel
introduced its first AI-optimized 14nm FPGA, the Stratix 10
NX, with in-fabric AI tensor blocks that offer estimated peak
performance up to 143 int8 TOPS, comparable to 12nm GPUs.
However, what matters in practice is not the peak performance
but the actual achievable performance on target workloads. This
depends mainly on the utilization of the tensor units, and the
system-level overheads to send data to/from the accelerator.

This paper presents the first performance evaluation of Intel’s
AI-optimized FPGA, the Stratix 10 NX, in comparison to the
latest accessible AI-optimized GPUs, the Nvidia T4 and V100, on
a large suite of real-time DL inference workloads. We enhance
a re-implementation of the Brainwave NPU overlay architecture
to utilize the FPGA’s AI tensor blocks, and develop toolchain
support that allows users to program tensor blocks purely
through software, without FPGA EDA tools in the loop. We
first compare the Stratix 10 NX NPU against Stratix 10 GX/MX
versions with no tensor blocks, and then present detailed core
compute and system-level performance comparisons to the T4
and V100 GPUs. We show that our enhanced NPU on Stratix 10
NX achieves better tensor block utilization than GPUs, resulting
in 24× and 12× average compute speedups over the T4 and V100
GPUs at batch-6. Even with relaxed latency constraints that allow
a batch size of 32, we still achieve average speedups of 5× and
2× against T4 and V100 GPUs, respectively. On a system-level,
the FPGA’s fine-grained flexibility with its integrated 100 Gbps
Ethernet allows for remote access at 10× and 2× less system
overhead latency than local access to a V100 GPU via 128 Gbps
PCIe for short and long sequence RNNs, respectively.

Index Terms—FPGA, GPU, Deep Learning, Neural Networks

I. INTRODUCTION

The rapid advances in deep learning (DL) now offer unprece-
dented quality of results in a growing number of application
domains, such as robotics [1], natural language processing [2],
and complex strategy games [3], [4]. These advances have also
opened the door for a myriad of end-user commercial applications.
Major tech companies, such as Microsoft, Google and Facebook,
now offer a variety of DL-based intelligent services [5]–[7]. To
deliver better quality of results, improved DL algorithms con-
tinue to demand more compute, which poses a great challenge
especially in combination with the strict latency constraints of
these applications. This has led to myriad hardware innovations
and diverse solutions for AI-optimized computing. For example,
Nvidia enhanced its GPU microarchitecture to tightly integrate
tensor cores, which are specialized units for matrix operations
targeting DL workloads. Such units offer high tensor arithmetic
throughput, resulting in a substantial increase in the GPU’s peak

tera operations per second (TOPS). More recently, many different
AI ASICs have been announced, such as Groq’s Tensor Streaming
Processors [8] and Graphcore’s Intelligence Processing Unit [9],
that promise even higher peak performance of up to 820 int8
TOPS [10].

For FPGAs, several proposals to improve the peak device
throughput have coarsely integrated an FPGA fabric with a sep-
arate AI-optimized compute complex, such as in the Xilinx Ver-
sal architecture [11] or AI-targeted chiplets in Intel’s system-in-
package ecosystem [12], [13]. More recently, Intel introduced its
first AI-optimized FPGA, the Stratix 10 NX, which integrates new
AI tensor blocks and delivers up to 143 int8 and block fp16
TOPS [14]; a comparable peak performance to similar-generation
GPUs. Unlike prior approaches, the NX AI tensor blocks are
tightly integrated in the FPGA fabric, similar to standard FPGA
DSP blocks. This tight integration allows for a richer and more
flexible connectivity to the programmable fabric, and can still be
programmed using the standard FPGA development flow.

With the race towards incorporation of tensor compute into AI-
optimized hardware, the peak TOPS number is used as a key metric
when comparing potential acceleration solutions. However, this
can be misleading since the peak performance is only attainable
when the tensor units are 100% utilized, which is usually not the
case in real applications. The utilization of the tensor compute
units is typically affected by two main factors: the mapping of
a given workload to the available compute units, and the end-
to-end system-level overheads of bringing the data in/out of the
chip. This work studies the actual achievable performance of AI-
optimized FPGAs and GPUs through detailed evaluation of both
core compute and system-level performance on key AI workloads.

To enable the FPGA evaluation, we enhance the design of
Microsoft’s Brainwave NPU [5], a state-of-the-art commercial AI
soft processor, to efficiently use the tensor blocks in the recently
announced Stratix 10 NX. We then compare our enhanced NPU
implemented on Stratix 10 NX against the baseline NPU from [13]
on Stratix 10 GX/MX devices with no tensor blocks. Finally, we
compare the enhanced NPU on NX against the latest accessible
AI-optimized Nvidia GPUs with tensor cores, the T4 and V1001,
and study their real performance on a large suite of real-time DL
inference workloads, such as: MLPs, RNNs, GRUs, and LSTMs.
The contributions of this paper include:
• Architecture, instruction set and compiler enhancements to the

NPU overlay to utilize the Stratix 10 NX tensor blocks.
• Performance comparison of our enhanced NPU against the prior

baseline NPU on standard FPGAs without tensor blocks.
• Evaluation of actual achievable performance of AI-optimized

FPGAs and GPUs on diverse real-time DL workloads.
• Characterization of system-level overheads in both Ethernet-

connected FPGAs and PCIe-connected GPUs.

1Nvidia has recently announced a 7nm A100 device with higher throughput,
but it is not yet generally available so we cannot benchmark it, and it is also
not a comparable device in terms of process technology.
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def RNN_Step(Wh, Wx, H_prev):

Invec = get_new_input()

p1 = matvec(Wx, Invec)

p2 = matvec(Wh, H_prev)

H_prev = tanh(p1 + p2)

return H_prev
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Fig. 1: Overview of the baseline NPU overlay architecture and the front-end tool chain for programming the NPU soft processor.

II. BACKGROUND
A. DL Workloads: MLPs and RNNs

We study real-time DL inference using multi-layer perceptrons
(MLPs) and recurrent neural networks (RNNs), which represented
90% of Google’s DL datacenter workloads in 2017 [6]. With the
emergence of newer and more sophisticated DL algorithms, these
models still constitute a significant portion of DL workloads since
many of the newer models use MLPs and RNNs as subroutines
[15], [16]. MLPs [17] are arguably the simplest form of neural
networks, as they consist of stacked fully-connected layers with
non-linear activation functions in between. They are pervasively
used in many applications and represent an essential component of
Facebook’s most recent recommendation models [18].

On the other hand, RNNs are models that process sequence
inputs such as speech samples or sentences. They consist mainly
of a number of matrix-vector multiplications followed by vector
element-wise operations that form gates. In this work, we use 3
different variations of RNNs: vanilla RNNs, gated recurrent units
(GRUs), and long short-term memories (LSTMs) with 2, 6, and 8
vector-matrix multiplications per time step, respectively [19]–[21].
The following formulas describe the computation of LSTMs.

it=σ(xtWi+ht−1Ui+bi) ft=σ(xtWf+ht−1Uf+bf )

ot=σ(xtWo+ht−1Uo+bo) gt=tanh(xtWg+ht−1Ug+bg)

ct=ft◦ct−1+it◦gt ht=ot◦tanh(ct)

where xt, it, ft, ot, gt, ct, ht are the input, input gate, forget gate,
output gate, cell input, cell state and hidden state vectors at time
step t, respectively. The ◦ and + operators denote vector element-
wise multiplication and addition, while σ and tanh are the sigmoid
and hyperbolic tangent activations. W and U are the input and
hidden matrices, and the b terms are bias vectors. RNNs are
typically used in speech analysis and natural language processing,
and are part of the most recent MLPerf v0.7 inference benchmark
suite [22]. In this paper, we specify RNNs with their sizes and
number of steps. An LSTM-1024-16 workload describes an LSTM
with eight 1024×1024 matrices and 16 time steps. The RNNs we
use are from DeepBench [23] and Nvidia’s persistent RNNs [24].
B. Baseline NPU Architecture and Toolchain

The Brainwave NPU is an FPGA-based AI overlay that was
designed by Microsoft targeting low-latency batch-1 DL inference
[5]. It keeps all the model weights persistent on one or multi-
ple network-connected FPGAs to eliminate any external off-chip
memory accesses that can increase the processing latency. Our
baseline NPU is a re-implementation of Microsoft’s Brainwave
NPU based on the published description in [5] and [25]. However,
we implement standard int8 precision instead of Microsoft’s
custom floating point formats (e.g. fp11 and fp8) for a more
direct comparison to other hardware platforms. The performance
of our re-implementation closely matches that of the Microsoft
Brainwave when using the same NPU configuration. Fig. 1 gives an
overview of our NPU architecture that has 5 main pipeline stages.
The matrix-vector multiplication unit (MVU) consists of T tiles
followed by an inter-tile adder reduction tree. Each tile contains
a vector register file (VRF) to store the input vectors and D dot
product engines (DPEs), each of which has L multiplication lanes.

A DPE is tightly coupled with a matrix register file (MRF), that
stores the persistent model weights, and a local accumulator. The
output bandwidth of the MVU is reduced from D to L vector
elements using an asymmetric FIFO before exiting the MVU
block. The external VRF (eVRF) block enables skipping the MVU
for instructions that do not have a matrix-vector operation. The
eVRF is followed by two multi-function units (MFUs) for vector
element-wise activation, addition and multiplication. Finally, the
loader (LD) block communicates with the outside world via the in-
put/output FIFOs, and can write back the pipeline results to any of
the architecture’s VRFs. This architecture uses VLIW instructions
of 5 macro-operations (mOPs), one for each stage of the pipeline.
An mOP gets decoded into a sequence of micro-operations (µOPs)
and issued to the different pipeline stages. The NPU illustrated in
Fig. 1 as an example has 4 tiles, 4 DPEs and 2 lanes. We refer to
such configuration as 4T-4D-2L and use this notation to describe
NPU configurations in the rest of this paper.

We also implement a complete NPU software toolchain in which
an application developer can write NPU programs in a domain-
specific language (DSL) as shown in Fig. 1. The NPU program
is compiled into NPU VLIW instructions, that can be simulated
in our C++ cycle-accurate performance simulator, or used to pro-
gram a deployed NPU instance. This approach allows application
developers to rapidly experiment with different NPU programs
without needing any FPGA design expertise or suffering from the
long compile time of FPGA CAD tools. With minor modifications
based on [26], our NPU architecture and toolchain can support
convolutional neural networks which represent another important
class of DL workloads for computer vision applications. However,
we leave that for future work and focus mainly on the workloads
we discussed in this section. We refer the reader to [5] and [13] for
complete details about the NPU overlay and toolchain.

III. STRATIX 10 NX: AN AI-OPTIMIZED FPGA
A. Trends in FPGA Architecture for DL

The growing computational demands and ubiquity of DL mo-
tivates adding more compute units, particularly low-precision in-
teger multiply-accumulates (MACs) for inference. The authors
of [27]–[29] propose several logic block modifications that can
increase the density of soft low-precision multipliers. Other work
focuses on enhancing the fracturability of multipliers in DSP
blocks to increase low-precision MAC density while keeping the
same block interface to avoid adding costly routing ports. In [30],
an Intel-like DSP block is modified to support more int9 and
int4 operations per block with negligible die size increase. In
the same vein, the next-generation Intel Agilex family [31] adds
a DSP mode with four int9 multiplications per block, while
the PIR-DSP block [32] enhances a Xilinx-like DSP block by
incorporating low precisions with interconnect and data reuse
optimizations. Some prior work [33], [34] also explore the idea
of integrating specialized DL hard blocks in the FPGA fabric,
but none of them showed any experimental results on real DL
acceleration architectures. The recently announced Stratix 10 NX
FPGA, with new AI tensor blocks, drops the legacy DSP block
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data_in

B
a
n
k
 
0

B
a
n
k
 
1

O
u
t
p
u
t
s

Reg0

Reg1

Reg2

Reg0

Reg1

Reg2

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Out0

Out1

Out2

shift

shift

multiply

Fig. 3: Tensor mode operation of the Stratix 10 NX AI tensor block.
Shapes represent different input data vectors broadcast to the three
dot product units, and colors represent vectors shifted into the ping-
pong register banks via input cascade from the block above. Dashed
boxes show the register bank fed to the dot products at each cycle to
produce an output of the corresponding shape and color.

modes used to implement efficient filtering structures, and replaces
them with modes and precisions tailored for AI workloads while
maintaining about the same die size [35]. To alleviate the routing
ports limitation, the new tensor block introduces data reuse register
banks that enable fitting a significantly higher number of int8
multipliers than any prior work, while keeping the same number of
input/output ports as the standard Stratix 10 DSP block. Another
line of work proposes integrating the FPGA fabric side-by-side
with a separate AI compute complex, such as the AI engines in
Xilinx’s Versal architecture [11] and specialized AI chiplets using
Intel’s system-in-package ecosystem [12], [13]. In contrast, Stratix
10 NX integrates in-fabric tensor blocks, which enables more
flexible connectivity to the soft fabric and uses the existing FPGA
development flow.

B. The Stratix 10 NX AI Tensor Block
The Stratix 10 NX tensor block is a configurable function

block designed specifically for AI workloads. It replaces the
conventional Stratix 10 variable precision DSP block [36], and
supports scalar, vector and tensor modes of operation with various
numerical formats such as integer (int8/int4), single-precision
floating point (fp32), block floating point, and brain floating
point (bfloat24/bfloat16). To enable a very high multiplier
count per tensor block without additional routing ports, Stratix 10
NX uses a mix of data broadcast and serially loaded data re-use
registers. To best utilize this block, one must carefully consider
how to map an application’s computation to it so enough operands
are available to keep all the multipliers busy each cycle. Next, we
focus specifically on the int8 tensor mode which we use in this
paper. We refer to [35] for more details on the Stratix 10 NX device.

We recreate Fig. 2 as a simplified version of the Stratix 10 NX
AI tensor block diagram from the Intel technology brief [14] to
highlight the int8 tensor mode and how we use it. The tensor
block contains three dot product units, each of which has ten
8×8 multipliers, and three optional accumulators. Two banks of
ping-pong data reuse registers (preload buffers) are used to store
operands and can be populated through either the block’s data input
port (via its ten 8-bit connections to the programmable routing) or
through a dedicated chain from the tensor block above. Typically,
one tensor block at the beginning of each chain is used as an
input bypass to load inputs to the ping-pong register chain of the
tensor blocks below. For the rest of the tensor blocks in the chain,
each dot product unit receives one set of (thirty) operands from
a bank of ping-pong registers and another set of (ten) operands
is broadcast to all three dot product units directly from the data
input port. While the first bank of registers is feeding operands
to the dot product units, the second bank can be loaded (over
3 cycles) from the tensor block above. Dedicated hard chains
between accumulators can also be used to cascade multiple tensor
blocks in a column to form longer dot product units efficiently.
Fig. 3 illustrates the operation of the AI tensor block in this mode,
where colored circles are input vectors shifted into the ping-pong
register banks and uncolored shapes are input vectors to the data
port of the tensor block broadcast to the three dot product units. The
bank of registers feeding the dot product units each cycle is marked
with a dashed box. After 3 clock cycles, the outputs drawn using
the shape and colors of their corresponding operands are produced.

IV. ENHANCED NPU FOR STRATIX 10 NX
A. NPU Architecture & Toolchain Enhancements

1) Matrix-Vector Multiplication Mapping: Fig. 4a illustrates
the mapping of the matrix-vector operation to an MVU with two
tiles and DPEs in the baseline NPU. The matrix is split horizontally
into T column blocks such that each tile is responsible for one
column block. Each DPE in a tile performs dot product between
a block of an input vector and a matrix row block over multiple
cycles. Then, outputs of corresponding DPEs from different tiles
are reduced to produce the final result before progressing to the
next row block of the matrix. To leverage the new tensor blocks
in Stratix 10 NX, we must reorganize the NPU’s MVU. We load
blocks of 3 different input vectors (to feed the 3 dot product units)
to one of the register banks (B0) and reuse them across enough
matrix rows to hide the latency of loading the next 3 blocks of the
input vectors to the other register bank (B1), as shown in Fig. 4b.
Recall that B0 and B1 correspond to Bank0 and Bank1 in Fig. 2.
This means that the architecture is working on a batch of 3 inputs.
However, this leads to interleaving the accumulation of multiple
partial results (shown as dash-outlined orange, yellow and violet
results in t = 1, 2, 3), and requires redesigning the accumulators as
discussed later in this section.

An alternative mapping would be to shift matrix blocks into the
register banks and broadcast vector blocks instead. However, as we
cascade more tensor blocks, the latency of loading to the chained
register banks becomes longer, and therefore requires a larger batch
size to hide. For example, with 40-lane DPEs, we would need to
cascade 4 tensor blocks and have at least a batch size of 12 input
vectors to hide the loading latency to a chain of 12 registers (3
registers per block). Thus, we use the first mapping (in Fig. 4b) to
keep a low batch size and use matrix rows, which are typically a
large number, as broadcast inputs to hide the loading latency.

2) Accumulator Design: As a result of interleaving the ac-
cumulation of multiple partial results as illustrated in Fig. 4b, the
MVU accumulators can no longer be a simple register and adder.
Instead, we implement a BRAM-based accumulator that functions
as a small scratchpad for storing multiple interleaved partial results
feeding a single adder, as shown in Fig. 4c. The accumulation is
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Fig. 4: Matrix-vector multiplication mapping in the (a) baseline NPU and the (b) enhanced NPU on Stratix 10 NX. (c) MVU architecture
in our enhanced NPU with BRAM-based accumulators, daisy-chain interconnect, and 2 cores sharing the same MRFs.

done in int32 precision, and therefore only a few BRAMs are
needed to store the partial results. We also move the accumulators
after the inter-tile reduction (see Fig. 1), such that we reduce, then
accumulate. This amortizes the cost of the accumulators across all
tiles instead of having a different set of accumulators for each tile
as in the baseline NPU [13].

3) Daisy Chain Tiles: The output bandwidth of the MVU
tiles is tripled compared to the baseline NPU as a side-effect of
operating on a batch of 3 input vectors. As a result, routing wide
buses from each tile to a central adder tree to perform the inter-tile
reduction can cause substantial routing congestion. For example,
an MVU tile with 40 DPEs, each producing three 32-bit outputs,
results in a 3, 840-bit wide bus going from each tile to the central
adder reduction tree. To mitigate the resulting routing congestion,
we redesign the MVU to have a daisy-chain architecture in which
each tile gets the results of the previous tile, performs a local binary
reduction and passes the results to the next tile, as shown in Fig. 4c.
This architecture uses shorter and more localized routing between
each two consecutive tiles and is found to be more efficient and
routing-friendly [37], at the cost of a few cycles higher latency.

4) Multi-Core NPU: To choose the configuration of our en-
hanced NPU, we use our cycle-accurate performance simulator
to rapidly explore the design space. We find that the mismatch
between the MVU output bandwidth (3×D elements) and the rest
of the pipeline blocks (L elements) can become the performance
bottleneck if D is significantly larger than L, where D and L are
the numbers of DPEs and lanes, respectively. Therefore, we decide
to keep D = L to minimize the bandwidth mismatch without
spending a significant amount of logic and routing resources to
increase the bandwidth of all the pipeline blocks. We also find
that L = 40 offers a good tradeoff between the number of tensor
blocks used as input bypass (1 for every dL/10e chained tensor
blocks) and the number of cycles needed to load the chain of
ping-pong registers (3 × dL/10e cycles). Therefore, to scale up
our NPU architecture, this leaves only the number of tiles T as a
free parameter. However, introducing too much parallelism only
in one dimension can result in underutilized hardware, especially
for smaller workloads. As a result, we introduce the concept of
cores to the NPU architecture. An NPU core is a complete NPU
pipeline with all 5 blocks in Fig. 1, except that all cores share
the same MRFs holding the persistent model weights and execute
the same instruction stream in a single-instruction multiple-thread
(SIMT) fashion. Based on our design space search, we implement
an NPU architecture with 2 cores, 7 tiles, 40 DPEs, and 40 lanes
(2C-7T-40D-40L), which offers a good tradeoff between hardware
utilization, processing latency, and FPGA resource utilization. In
this configuration, each core processes a batch size of 3 in parallel,

TABLE I: Implementation results for the largest NPU overlay in-
stance on Stratix 10 NX, MX and GX devices (TBs: Tensor Blocks).

S10 NX S10 MX 2100 S10 GX 2800
NPU Config. 2C-7T-40D-40L 1C-4T-80D-40L 1C-4T-120D-40L
# Multipliers 67,200 12,800 19,200

ALMs 256,125 (37%) 399,506 (57%) 567,982 (61%)
BRAMs 6,400 (93%) 6,428 (94%) 9,018 (77%)

TBs/DSPs 3,600 (91%) 3,360 (85%) 4,880 (85%)
Freq. (MHz) 300 290 275

Peak int8 TOPS∗ 40.3 7.4 10.6
TOPS/Mil.LEs 19.45 3.58 3.84

∗ NPU peak TOPS is calculated using only the TBs/DSPs in the MVU which
are 2240, 3200 and 4800 in the NX, MX and GX versions, respectively. Other
TBs/DSPs are used in the MFU or as input bypass in NX.

resulting in an effective batch size of 6. The new MVU architecture
of the enhanced NPU is shown in Fig. 4c.

5) ISA & Toolchain: The enhanced NPU also introduces new
instructions for batch-3 operations. The mOP definition of all the
pipeline blocks now have 3 fields for addresses of 3 operand
vectors instead of 1 in the baseline NPU. In addition, the MVU
µOP definition is changed to add the low-level control signals of
the tensor blocks such as register enables for the ping-pong register
banks, and mux select signals to choose the set of inputs to feed the
dot product units. The C++ performance simulator is also modified
to reflect the new architectural changes for rapid, yet accurate,
performance estimation. Finally, we add support to the DSL and
NPU compiler for batch operations. This approach allows the
application developer to program the FPGA’s tensor blocks purely
in software without the need to worry about operation mapping and
low-level control sequencing for the tensor blocks.

B. Implementation Results
Table I presents the implementation results of our enhanced

NPU on the Stratix 10 NX device in comparison to our baseline
NPU from [13] on both the MX 2100 and GX 2800 devices with
no tensor blocks. We use the fastest fabric speed grade for all three
devices and report results from Intel Quartus 20.1 with device
support for the Stratix 10 NX provided by Intel. Our enhanced
NPU on NX runs at a slightly higher frequency, and achieves
5.25× and 3.5× higher multiplier count compared to the NPU on a
(similarly sized) MX and a (larger sized) GX devices, respectively.
Out of the 3600 tensor blocks utilized by the NPU on NX, only
2240 (57% of the device’s tensor blocks) are used in tensor mode
by the MVU; we only count these blocks to compute 40.3 peak
TOPS, as this best lines up with GPU and baseline NPU practices.
The remaining tensor blocks are used to implement the MFU’s
int32 element-wise multiplications (800 blocks) or used as input
bypass to feed the data reuse registers of a chain of tensor blocks



TABLE II: Batch-6 performance results of our enhanced NPU on
Stratix 10 NX for different workloads (MLP-5: five-layer MLP).

Workload Size
(h)

Steps
(t)

Latency
(ms)

Eff. int8
TOPS

HW
Util.

MLP-5 512 – 0.004 4.3 10.7%
1024 – 0.005 12.3 30.4%

RNN

512 256 0.23 7.0 17.4%
1024 256 0.33 19.1 47.2%
1152 256 0.39 20.4 50.7%
1536 256 0.49 29.1 72.2%
1792 256 0.61 32.4 80.3%

GRU
512 256 0.59 8.1 20.1%

1024 256 0.95 20.4 50.7%
1152 256 1.1 22.6 55.9%

LSTM 512 256 0.51 12.7 31.6%
1024 256 0.89 29.0 71.9%
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Fig. 5: Effective int8 TOPS per million LE of the NPU on the
Stratix 10 MX, GX and NX devices for GEMV and DL workloads.

through the input cascades (560 blocks). This is an artifact of our
NPU that is tailored for low-batch persistent AI use cases. Other
applications can use longer chains with only one input bypass
tensor block per clock sector. In addition, if the application is not
bound by BRAM utilization, vector element-wise multiplications
can still be implemented efficiently in the soft logic [38], while the
tensor blocks are freed up for more dense compute operations. In
the MX and GX NPU versions, we implement dense packing of
four int8 multipliers with shared inputs per DSP block, using the
two 18-bit hard multipliers with soft logic for result contamination
recovery and dot product reduction [39]. The tensor blocks with na-
tive int8 support eliminate the use of soft logic in implementing
the DPEs. This, along with other microarchitectural optimizations,
reduces soft logic utilization by 36% and 55% compared to the MX
and GX implementations, respectively.

Table II shows the batch-6 latency, effective performance and
hardware utilization results of our enhanced NPU on the Stratix
10 NX device on real-time DL workloads. We experimentally
measure the NPU performance on a Stratix 10 NX development kit
using hardware timestamps to count the number of cycles starting
from consuming the inputs from the input FIFO, executing all
NPU instructions and writing the outputs to the output FIFO. We
also verified that these measurements exactly match the expected
number of cycles from RTL simulation. The results show that
the effective performance of our NPU increases with increasing
problem size, achieving up to 32.4 TOPS with 80.3% utilization
of the NPU’s peak throughput. In addition, despite using a batch
size of 6, we still achieve very low latency. The biggest GRU
workload with a very long sequence length of 256 takes only 1.1
ms. To put this into context, the average sentence length in the
English language is 15-20 words [40], which means that we can run
inference over 11, 600-15, 500 sentences per second. This shows
that while we use batch 6 (instead of batch 1) for inference, we still
meet real-time application requirements, while achieving higher
throughput and hardware utilization.

Fig. 5 shows the performance of the three NPU versions under
study across a diverse set of workloads. We normalize the results

TABLE III: Summary of the specifications of the three AI-optimized
devices under study: V100, T4, and Stratix 10 NX.

Nvidia
V100†

Nvidia
T4†

Intel S10
NX‡

Peak FP32 TOPS 15.7 8.1 3.96
Peak FP16 TOPS (125) (65) 143∗
Peak INT8 TOPS 62.8 (130) 143

On-chip Mem. (MB)? 16 10 16
Process Tech. TSMC 12nm TSMC 12nm Intel 14nm

Die Size (mm2) 815 545 < 500 [43]
† Perf. in brackets is with tensor cores ‡ FPGA peak perf. at 600 MHz
∗ Using block floating point ? Register Files for GPUs, M20Ks for FPGA

by the number of logic elements in each device to account for the
difference in device sizes. Assuming equal hardware utilization
across devices for a given workload, the maximum performance
gain that could possibly be achieved by our enhanced NPU can be
computed from the peak TOPS/LE of Table I: 5.4× and 5.1× vs.
the baseline NPU on the MX and GX devices, respectively. Fig.
5 shows that our enhanced NPU achieves gains very close to the
maximum possible gains on bigger workloads (e.g. 5.2× and 5.1×
on LSTM-1024, and 5.4× and 5.1× on RNN-1792). The geomean
speedup over the baseline NPU on MX and GX across all studied
workloads is ∼3.5×, due to the lower utilization of our enhanced
NPU on smaller workloads.

V. CORE COMPUTE BENCHMARKING

A. Experimental Setup
In this section, we compare the performance of our enhanced

NPU on the Stratix 10 NX AI-optimized FPGA against the latest
accessible AI-optimized GPUs from Nvidia, the T4 and V100 . The
T4 and V100 have 320 and 640 tensor cores (specialized matrix
multiplication engines for AI workloads) respectively [41], [42].
Table III summarizes key specifications for these GPUs compared
to Stratix 10 NX. The three devices use similar generation process
technology. The V100 is the largest Nvidia 12nm GPU and is
almost 50% bigger than the T4, while Stratix 10 NX is smaller
than both GPUs [43].

First, we perform GPU micro-benchmarking using the GPU’s
favourite workload: square matrix-matrix multiplication (GEMM)
to ensure that our setup is optimal by reproducing similar GEMM
performance as in prior studies [44]. To measure the best GPU
performance, we use the latest library for each device and precision
that does not error out, and measure the performance with and
without the tensor cores enabled. For the fp32 and fp16 experi-
ments, we use the cuBLAS library from CUDA 10.0 and 10.2 for
V100 and T4, respectively. For int8, we use the cuBLASLt li-
brary from CUDA 10.2 which achieves higher int8 performance
than cuBLAS [44]. We use Nvidia’s official (highly-optimized)
cuDNN kernels for the DL workloads. We use cuDNN 7.6.2 and
7.6.5 for the V100 and T4, respectively. The cuDNN libraries
do not support int8 compute kernels; however, they support a
persistent mode which, if possible, keeps all the model weights in
on-chip memory for higher performance similarly to the NPU per-
sistent approach. For every workload, problem size and sequence
length, we exhaustively run all possible configurations in terms
of precision {fp32, fp16, int8}, compute style {persistent,
non-persistent}, tensor core settings {enabled, disabled} on both
GPUs. Then, we pick the best achieved performance to compare
to the NPU on Stratix 10 NX. All the results in this section are
measured using the cudaEventRecord() API which records
time stamps on the GPU device at the specified points. Therefore,
we only account for the core computation excluding any initial-
ization, kernel launch or host-GPU data transfer overheads, which
corresponds exactly to the NPU execution cycles on the FPGA. In
Section VI, we include all these overheads for the GPU and FPGA
to perform an end-to-end system-level performance evaluation.
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B. Know The Competition: GEMM Micro-Benchmarking

Fig. 6 shows the GEMM micro-benchmarking results for fp32,
fp16 and int8 precisions on the T4 and V100 GPUs. The
results show that tensor cores can significantly increase the GPUs’
performance on GEMM (red lines) vs. the tensor cores disabled
case (blue lines). However, a general trend is that the tensor
cores, despite being designed for GEMM, are still significantly
underutilized compared to their peak performance (red dashed
lines) at matrix sizes of 2048 or below. They do not achieve high
utilization except at very large matrix sizes that are uncommon
in real DL workloads, which is similar to prior findings in [44].
The tensor cores on both the T4 and V100 do not support fp32
precision; instead fp32 data is converted into fp16 before exe-
cuting the multiplication operations on the tensor cores [45]. This
data conversion overhead decreases tensor cores performance vs.
pure fp16 GEMMs. Another interesting observation is that when
the T4 tensor cores are operating in int8 mode, they require
transforming the input matrices from the standard row/column
major formats to a special tensor-core-specific layout [46]. As
a result, the achieved int8 performance on tensor cores (red
line without markers) is less than 45% of the peak performance,
even when processing very large 8192 × 8192 matrices. To better
understand the overhead of this transformation, we conduct an
additional experiment in which we supply the input matrices in
the tensor core special layout (red line with markers). Even without
the matrix layout transformation overhead, tensor core utilization is
less than 40% for sizes of 4096×4096 and below, with a maximum
of 72% utilization at 6144× 6144 matrices.

We implement GEMM on our NPU by keeping one matrix
persistent on-chip and streaming in the other matrix as a sequence
of row vectors. The top right plot of Fig. 6 compares the NPU
performance on Stratix 10 NX to the T4 GPU with int8 tensor
cores. For a fair comparison, we disable the matrix layout transfor-
mation for one of the two input matrices which corresponds to the
persistent matrix on the NPU side. However, we keep the layout
transformation for the second input and output matrices, since the
NPU consumes and produces these matrices in standard formats.
Although the NPU was designed for matrix-vector operations, it
still achieves similar performance to T4 on GEMM workloads
with sizes ranging from 512 to 3072 (the biggest matrix that can
fit persistently in on-chip BRAMs). We could exploit the FPGA’s
reconfigurability to customize the NPU overlay for GEMM by
adding a systolic matrix multiplication unit that maps well to the
NX tensor blocks. However, that is out of scope for this work, since
target workloads studied here do not use large GEMMs.

C. Performance Comparison on AI Workloads
Fig. 7 compares the performance of our enhanced NPU on

Stratix 10 NX to the best T4 and V100 performance, across the
exhaustive combination of configurations detailed in Section V-A,
on GEMV and real-time DL workloads. The NPU performance
is always significantly higher than both GPUs for small batches
of size 3 and 6. The NPU performs best at batch-6 (which it was
designed for: 2 cores at batch-3 each) with a 24.2× and 11.7×
higher performance on average compared to the T4 and V100,
respectively. Our NPU is less performant at batch-3 compared to
batch-6 since one of the two cores is completely idle. However, it
still achieves average speedups of 22.3× and 9.3× compared to
the T4 and V100, respectively. At batch sizes higher than 6, the
NPU can be underutilized if the batch size is not divisible by 6. For
example, at batch sizes of 8, 32 and 256, the NPU can achieve at
most 67%, 89% and 99% of its batch-6 performance respectively,
while batch sizes of 12, 36 and 258 (shown as dashed lines in
Figure 7) would all achieve 100% efficiency. At medium size batch
with 32 inputs, the NPU still has better performance than the T4,
and better or comparable performance to the V100. Even at large
batches of size 256, our NPU has 58% higher performance than the
T4, and only 30% less performance than the more powerful and
larger V100. These results show that AI-optimized FPGAs can not
only achieve an order of magnitude better performance than GPUs
at low-batch real-time inference, but also compete in high-batch
inference with relaxed latency constraints. The bottom right plot in
Fig. 7 summarizes the geomean speedups of all studied workloads
relative to the T4 performance at different batch sizes.

The top right plot of Fig. 7 shows the geomean utilization of the
NPU compared to both GPUs at different batch sizes. The NPU
achieves a geomean utilization of 37.1% at batch-6 compared to
1.5% and 3% for the T4 and V100, respectively. GPU tensor cores
are not directly connected to each other [47]; they can only receive
inputs from local in-core register files. Therefore, each GPU tensor
core has to send its partial result (e.g. subset of output vector in
RNN) to global memory and synchronize with other tensor cores
to combine these partial results. The GPU then reads the combined
vector from global memory to perform further operations, such
as activation functions. A higher batch size can amortize such
synchronization latency, but even at batch-256, the GPU utilization
is only 13.3% and 17.8% in the T4 and V100, respectively. On
the other hand, the FPGA has dedicated interconnect between the
tensor blocks for reduction. The FPGA’s programmable routing
also allows cascading the MVU tiles and the vector elementwise
engines for direct spatial communication, alleviating the need to
communicate through memory as the case in the GPUs.
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TABLE IV: Specifications summary for the GPU and FPGA systems.
CPU Host OS Host-Device

Link
BW

(Gbps)
Nvidia T4 Intel Xeon Platinum Virt. PCIe Gen3x16 128(AWS) 8259CL @2.5 GHz Linux

Nvidia V100 Intel Xeon Platinum Linux PCIe Gen3x16 128(TACC) 8160 @2.1 GHz
Intel S10 Intel i7-4790 CPU Linux PCIe Gen3x16∗ 128
MX/NX @3.6GHz 100G Ethernet† 100

∗ Between client CPU and its network interface card (NIC)
† Between client NIC and FPGA

VI. SYSTEM-LEVEL BENCHMARKING

A. GPU & FPGA Systems for AI Acceleration
A typical GPU-based inference system consists of a server with

the host CPU connected to a GPU card via a PCIe interface. An
inference request sent from a remote client goes first to the server’s
NIC, then to host CPU, and finally to the GPU card. For the FPGA
system, we leverage the tightly integrated Ethernet interface on the
FPGA to directly receive inputs from a remote client similarly
to Microsoft’s Brainwave [25]. To get concrete insights on real
end-to-end system performance, we evaluate the aforementioned
prototypical GPU and FPGA systems, as detailed in Table IV. We
have physical access to the V100 GPU on TACC [49], and we
access the T4 GPU on an AWS virtual machine instance [50].

B. Steps of an End-to-End AI Inference Application
An end-to-end AI inference workload goes beyond just core

compute on the accelerator card, as Table V highlights. Gener-
ally, it consists of one-time initializations, preparing and sending
application input data to the accelerator, accelerator execution,
and sending back results. For the FPGA-based system, the remote
client CPU needs to access its NIC with optimized software
libraries. We use the Data Plane Development Kit (DPDK) [48]
in this study. On the other hand, we use Nvidia-recommended
methods for interaction between the host CPU and GPU card, such
as pinning the host memory space to be transferred to the GPU
device using cudaMallocHost() to avoid paging overhead.
Stage 1 only needs to be performed once for any number of
inference requests, and stage 2 is common for both the GPU
and FPGA systems. Therefore, we focus only on stages 3-5 in
our study. For a fair comparison, since the NPU weights in the
FPGA system are persistently stored on-chip, we do not include
the cudaMemcpy() for weights in our evaluation.
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Fig. 8: Measured bandwidth (left) and bandwidth utilization (right)
on Ethernet-based FPGA and PCIe-based GPU systems.

C. Data Movement Efficiency Characterization
We first study the efficiency of moving data to/from the FPGA

via ethernet and the GPUs via PCIe. A loopback logic is imple-
mented on the FPGA using Intel’s 100G Ethernet Hard IP [51],
which immediately sends the received packets back to the CPU.
For our experiments in this section, we use a network-connected
Stratix 10 MX board, which has the exact same 100G Ethernet
interface as the NX board, to evaluate the FPGA system overheads.
On all systems, we measure host-to-device and device-to-host data
transfer performances separately and take their average. As shown
in Fig. 8, the measured bandwidth on the 3 systems first increases
with the data size and then it saturates. The V100 GPU system
achieves the highest bandwidth at all data sizes, since its PCIe
offers the highest peak bandwidth. We observe that the T4 system
realizes lower bandwidth, possibly due to the AWS virtualization
overheads (e.g. when sending GPU input data from a memory
space pinned in the virtual machine’s physical memory). The
FPGA achieves the best utilization of its 100G Ethernet interface
with up to 90% utilization, whereas the V100 can only utilize up
to 80% of its peak 128 Gbps PCIe bandwidth.

D. End-to-end Performance Comparison on AI Workloads
Fig. 9 shows system-level execution time of RNN workloads at

batch-6 and sequence lengths of 8 (short) and 256 (long). After
including the system overheads, the FPGA system achieves 16-
19× and 15-25× speedups on RNNs with short input sequences
and 11-16× and 5-6× for long sequences compared to the T4
and V100 systems, respectively. These speedups are less than the
core compute speedups reported in Section V due to Amdahl’s
law; the FPGA system does not achieve the same speedup for
system overhead as for kernel execution time compared to the
GPU systems. For long sequences with more output data, the NPU
achieves ∼2× lower system overhead, since it overlaps streaming



TABLE V: End-to-end steps of an AI inference workload on both the FPGA and GPU systems.
# Stage FPGA System GPU System
1 One-time

Initialization
Allocate memory on remote CPU (e.g. using DPDK [48]

to allocate NIC packet buffers).
Allocate memory on local CPU host and GPU device
using cudaMallocHost() and cudaMalloc().

2 Prepare inputs Initialize remote CPU host memory with input data (e.g.
in the DPDK TX buffer).

Initialize local CPU host memory with input data.

3 Send input to
accelerator

DPDK APIs are used to construct the Ethernet packets
and send them via the NIC. For RNN workloads, hidden

vectors initialization is done on the NPU.

Move data from host memory to GPU memory using
cudaMemcpy(). For RNN workloads, host calls a GPU

kernel to initialize hidden vectors.
4 Accelerator

execution
FPGA receives inputs from Ethernet, and triggers NPU
execution. NPU execution is non-blocking and can send
back partial results (one time step in RNN) once ready.

Call GPU application library (e.g. RNN in cuDNN).
Execution is blocking and can send final results (i.e. all

time steps in RNN) only after GPU execution is finished.
5 Send back

results
Remote CPU host receives results from its NIC. We use

DPDK to access NIC buffers.
Copy result from GPU memory back to host using

cudaMemcpy().
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Fig. 9: System-level execution time of RNN workloads for short (left)
and long (right) sequences.

out the per-step result with the computation of subsequent steps. In
contrast, the GPU’s predefined programming model requires that it
computes results of all time steps before they are accessed by the
CPU host. In addition, the GPUs require a kernel call to initialize
their states (such as the hidden vector in RNNs) [52], while the
FPGA’s flexible programming model does not suffer from such
overheads. For short sequences, such overheads become prominent
as data transfer and kernel execution times are reduced. Hence,
the FPGA system overhead in this case is even smaller; ∼5× and
∼10× better than the T4 and V100, respectively.

VII. POWER ANALYSIS
For the GPUs, power is measured with the Nvidia SMI tool,

which reports power for the entire GPU card (including the pack-
aged GPU chip and other components such as memories and fans),
as well as the GPU die temperature [53]. Since the GPUs we use
have aggressive cooling solutions (e.g. production-grade cooling
in AWS and immersion cooling in TACC [54]), the Nvidia SMI
tool reports 35◦C and 40◦C core GPU temperature for the V100
and T4, respectively. For all the workloads we study, the GPU is
significantly underutilized, and therefore the measured GPU power
is in the range of 27-45W for the T4 and 35-72W for the V100.
However, when running a workload that achieves high utilization
on the GPUs, such as 8192×8192 GEMM, the power consumption
goes up to 70W and 190W for the T4 and V100, respectively.

We also measure the power of the Stratix 10 NX development
kit using a high resolution power meter. The development kit we
use has an air-cooled heat sink and on-board temperature sensors.
We carry out all our experiments with room temperature ambient
and the FPGA board sitting on a desk in our lab without any
special cooling solutions. We configure the NPU to run GEMV
and DL workloads in an infinite loop and record the power and
temperature measurements after a few minutes of continuously
running each workload. The measured power is in the range of
54-70W at measured board temperatures of 35-39◦C depending on
the NPU utilization of the running workload (as indicated in Table
II). These results show that the Stratix 10 NX NPU running batch-

6 inference achieves 12-16× and 8-12× higher average energy
efficiency (i.e. TOPS/Watt) on the studied workloads compared to
the T4 and V100 GPUs, respectively.

VIII. RELATED WORK

We discussed related work on the baseline NPU overlay and
various FPGA architecture optimizations for DL in Sections II
and III, respectively. In this paper, we evaluated the performance
of the new Stratix 10 NX FPGA on different variations of RNN
models. Several prior works have focused on accelerating RNNs
on FPGAs [5], [13], [55]–[59]. Our enhanced NPU utilizing the
NX tensor blocks outperforms all prior work on FPGA-based RNN
acceleration, even the ones that use lower than int8 precision,
on the studied workloads. Some prior studies also compared the
performance of FPGAs and GPUs on AI workloads such as [60]–
[62]. However, this work is the first performance evaluation of
an AI-optimized FPGA, the Stratix 10 NX, with integrated tensor
blocks in comparison to the latest accessible AI-optimized GPUs
with tensor cores. We show that at comparable peak TOPS, the
FPGA’s flexible architecture can offer significantly higher uti-
lization of tensor units than GPUs. In addition, prior work has
also studied host to FPGA PCIe communication overheads [15],
[63], as well as GPU system overheads [64]. Our work studies
100G Ethernet-connected FPGA system overheads in comparison
to PCIe-connected GPUs, especially for real-time DL workloads.

IX. CONCLUSION

In this work, we presented the first evaluation of the performance
of Intel’s AI-optimized Stratix 10 NX FPGA with tensor blocks
compared to the latest accessible AI-optimized Nvidia GPUs, the
T4 and V100. We proposed enhancements to the prior Brainwave
NPU architecture, ISA, and toolchain to restructure computation
to best leverage the tensor blocks in NX. Our enhanced NPU on
Stratix 10 NX achieves 3.5× higher performance per LE than the
baseline NPU (without tensor blocks) on Stratix 10 MX/GX on
average across key AI workloads, with up to 80% NPU utilization.
On the other hand, we show that even for simple square GEMM
benchmarks, the GPU tensor cores can be significantly underuti-
lized. Our enhanced NPU on Stratix 10 NX delivers 24× and 12×
higher core compute performance on average compared to the T4
and V100 GPUs at batch-6, despite the smaller NX die size. Even
at a large batch size of 256, our NPU still achieves 58% higher
performance than the T4, and only 30% less performance than
the larger V100. Finally, we evaluate the (commonly overlooked)
end-to-end system level overheads in both FPGA-based and GPU-
based AI inference systems. We show that the FPGA’s integrated
100G Ethernet results in 10× and 2× less overhead compared to
the 128 Gbps PCIe interface on the V100 GPU for RNN workloads
with short and long input sequences. Including all system-level
overheads, the NPU on Stratix 10 NX averages approximately an
order of magnitude speedup compared to the studied GPUs.
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