
Neighbors From Hell: Voltage Attacks Against Deep
Learning Accelerators on Multi-Tenant FPGAs

Andrew Boutros1,2, Mathew Hall1, Nicolas Papernot1,2 and Vaughn Betz1,2
1Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

2Vector Institute, Toronto, ON, Canada
{andrew.boutros, mathew.hall}@mail.utoronto.ca, nicolas.papernot@utoronto.ca, vaughn@eecg.utoronto.ca

Abstract—Field-programmable gate arrays (FPGAs) are be-
coming widely used accelerators for a myriad of datacenter
applications due to their flexibility and energy efficiency. Among
these applications, FPGAs have shown promising results in
accelerating low-latency real-time deep learning (DL) inference,
which is becoming an indispensable component of many end-
user applications. With the emerging research direction towards
virtualized cloud FPGAs that can be shared by multiple users, the
security aspect of FPGA-based DL accelerators requires careful
consideration. In this work, we evaluate the security of DL
accelerators against voltage-based integrity attacks in a multi-
tenant FPGA scenario. We first demonstrate the feasibility of
such attacks on a state-of-the-art Stratix 10 card using different
attacker circuits that are logically and physically isolated in a
separate attacker role, and cannot be flagged as malicious circuits
by conventional bitstream checkers. We show that aggressive
clock gating, an effective power-saving technique, can also be a
potential security threat in modern FPGAs. Then, we carry out
the attack on a DL accelerator running ImageNet classification in
the victim role to evaluate the inherent resilience of DL models
against timing faults induced by the adversary. We find that,
even when using the strongest attacker circuit, the prediction
accuracy of the DL accelerator is not compromised when running
at its safe operating frequency. Furthermore, we can achieve
1.18−1.31× higher inference performance by over-clocking the
DL accelerator without affecting its prediction accuracy.

Index Terms—Voltage Attacks, FPGA, Deep Learning, Security

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are being deployed
on a large scale in datacenters due to their flexibility and energy
efficiency. The Catapult project [1] coupled every server node
in Microsoft’s datacenters with an FPGA to accelerate search
engines, and perform on-the-fly compression and cryptography for
the data transferred over the network [2]. Currently, FPGAs in
the cloud are either used by a service provider to offload specific
datacenter workloads from CPUs, as in the case of Microsoft’s
Catapult project [1], or rented out to external users as single-tenant
compute nodes, as in Amazon F1 instances that come with 1, 2 or 8
FPGAs [3]. However, several studies envision FPGAs in the cloud
as virtualized compute resources that can be shared by multiple
users, similar to the traditional datacenter CPUs [4]. This requires
abstracting the low-level design details and external interfaces of
an FPGA from the user. Typically, the service provider designs a
shell that handles all the interfacing to external resources, such as
off-chip memory, Ethernet, and PCIe, and delivers the bandwidth
of these external interfaces to user roles. In this case, user roles
are partially reconfigurable regions that implement user-specified
functionality and can be re-programmed without disrupting the
operation of other roles.

As deep learning (DL) is rapidly becoming the cornerstone of
many real-time datacenter services, service providers implement
and deploy highly-efficient specialized accelerators to handle the
ever-increasing computational demands of DL workloads. In these
DL-based services, such as speech-inquired smart assistants and
machine translation, low latency is key for a seamless user ex-
perience. In 2014, the maximum tolerated latency for Google’s
datacenter DL workloads was 10 ms, which went down to 7 ms
in 2016 [5]. Later in 2017, Microsoft used its FPGA cloud to
build a cloud-scale DL inference engine, Brainwave [6], targeting
the lowest possible inference latency. A single-node Brainwave
implemented on an Intel Stratix 10 FPGA runs DeepBench models
in less than 4 ms inference latency [6], achieving up to 8.6× lower
latency compared to same generation GPUs [7].

With the increasing research focus on the reliability, privacy,
and security aspects of DL models [8]–[10], we believe there
is a big gap in understanding the security implications of DL
accelerators, especially on reconfigurable and potentially shared
devices as FPGAs. In this work, we focus on multi-tenant FPGAs
in the cloud and we demonstrate the feasibility of voltage attacks
on a state-of-the-art Intel Stratix 10 FPGA card in a multi-tenancy
scenario (i.e. physically isolated user roles). In a voltage attack,
a malicious attacker circuit implements logic that draws a large
amount of current, causing voltage drops in the chip’s power
distribution network (PDN). These voltage drops can induce timing
violations in a neighboring victim circuit and potentially lead to
faulty functionality. We first use a simple timing violation detection
circuit to quantify the safety timing margins introduced by the
FPGA CAD tools. Then, we characterize the effects of the voltage
attack using different attacker circuits, some of which use vendor-
supplied clock gating circuitry. Unlike prior work, these attacker
circuits can not be detected by conventional bitstream verifiers as
malicious circuits. In fact, designs using clock gating as a power-
saving mechanism could unintentionally create voltage disruptions
and timing violations similar to our attacker circuits. We finally
study the effect of the voltage attack on the integrity of a victim
role implementing a state-of-the-art DL accelerator.
To the best of our knowledge, this work is the first attempt to:
• demonstrate voltage attacks on a modern Intel Stratix 10 FPGA

in a multi-tenant scenario with unaltered placement and routing
of attacker/victim circuits,

• investigate the use of clock gating as a potential security threat
that cannot be detected by conventional bitstream checkers,

• quantify the resilience of DL models against timing violations,
introducing the accelerator’s operating frequency as an addi-
tional knob, similar to model sparsity and precision, that offers a
tradeoff between computational efficiency and model accuracy.

II. BACKGROUND AND RELATED WORK

A. Security of Virtualized FPGAs
With the large-scale deployment of FPGAs in datacenters, mul-

tiple previous studies have investigated the virtualization of FPGAs
in the cloud. The terms shell and role were first defined in [1] as the
portion of reusable FPGA logic common across all applications,
and the application logic itself, respectively. There are multiple
industrial [2], [11] and academic [4], [12], [13] proposals for the
shell implementation, which either connects the FPGA to the host
processor through PCIe or place the FPGA as a bump-on-the-wire
between the host CPU and the network. Some of the proposed
shell implementations also enable multi-tenancy by supporting up
to four application roles per FPGA device [4], [13]. In this work,
we focus on multi-tenant virtualized FPGAs. Although we limit
our experiments to two roles per device for simplicity, our work is
not fundamentally limited to a specific number of roles or a specific
shell design. We point the reader to [14] for a comprehensive
survey on FPGA virtualization.

Virtualizing FPGAs in the cloud comes with a myriad of security
threats that have been investigated in previous studies and can be
classified as follows. This section is intended to place our work in
context; however, a detailed survey on security of cloud FPGAs
can be found in [15].

Extraction Attacks: In this class of attacks, the adversary’s
main goal is to obtain unauthorized access to data that belongs to
the victim circuit. For example, the authors of [16] implement an
adversary circuit that can sense the crosstalk from neighbouring
long wires of a victim circuit and extract the data transmitted on
it. They successfully extract the encryption key from an AES en-
cryption core by exploiting this side-channel information leakage.
The long wire data leakage vulnerability is further investigated in
[17] and found to be exploitable in three different generations of
FPGA chips. This attack requires placing the adversary sensing
circuitry adjacent to a victim wire. Therefore, it assumes a white-
box attack in which the adversary is aware of the physical design
implementation details of the victim circuit and has the ability
to impose such placement constraints during the CAD flow. In
[18], the authors implement an on-chip power monitoring circuit
in the adversary role to observe the power consumption of the
victim circuit and use it to perform a power analysis attack and
extract the key of an RSA cryptography engine. Another attack
that is mentioned, but not practically demonstrated, in [19] is
reverse engineering the bitstream of a target FPGA and configuring
some routing multiplexers to observe shell wires that pass through
the adversary role. The FPGAhammer attack [20] induces timing
faults in the victim logic by repetitive activation patterns and then
performs a differential fault analysis to recover an AES key.

Denial-of-Service Attacks: These attacks target crashing an
FPGA device by drawing a substantial amount of current either by
forming short circuit connections [21] or by power hammering the
FPGA using conventional or camouflaged ring oscillators (ROs)
[22]. It is also shown in [23] that excessive voltage drops due to
high signal activity in a fraction of the FPGA can result in crashing
the entire FPGA. The authors of [24] introduce the GoAhead tool
for optimizing and tuning ROs for maximum speed and power con-
sumption. The optimized RO grid designed by their tool is able to
crash a Xilinx Alveo using only 15% of the FPGA’s resources. The
same authors also show that glitch amplifying circuits consisting

of XOR trees and long wires can crash a Xilinx Ultrascale+ FPGA
using only 0.8% of the LUTs and 25% of the routing resources
on the device [25]. In addition, they implement an FPGA virus-
scanning tool, FPGADefender, that detects malicious circuits in a
given bitstream to mitigate such attacks.

Integrity Attacks: This class of attacks aims to compromise
the victim circuit resulting in incorrect functionality. A recent work
[26] evaluates the ability of malicious circuits to induce delay faults
in a neighboring circuit on an FPGA. They focus mainly on char-
acterizing the response of the FPGA’s PDN. They also study how
the effect on the victim circuit changes by changing the time and
strength of the voltage drops and the distance between the victim
and attacker circuits. Using asynchronous RO attacker circuits,
they managed to induce timing faults in simple adder circuits that
are 42 columns away from the center of the attacker. In addition to
that, they also implement a network of light-weight voltage sensors
to monitor voltage gradients and mitigate a potential attack.

In contrast to our work, which falls under the same category,
[26] uses asynchronous ROs as their attacker circuit, which can
be detected by scanning the given bitstream for combinational
loops as in Amazon AWS [27]. However, we also demonstrate the
feasibility of a similar attack using a vendor-supplied clock gating
IP core that can circumvent conventional bitstream checkers. In
addition, they evaluate the integrity attack on a relatively old and
small Intel Cyclone V FPGA, while we demonstrate a similar
attack on the largest state-of-the-art Intel Stratix 10 device. Finally,
none of the previous studies evaluated such attacks in the context
of DL accelerators on FPGAs. The error resilience of DL models is
the main reason for adopting different optimizations such as model
pruning and weight quantization with no loss in accuracy [28],
[29]. Hence, we investigate the resilience of deployed DL models
against timing faults injected by an adversarial FPGA tenant.

B. Hardware-oriented DL Security Vulnerabilities

There is also previous work on hardware-oriented attacks
against DL models. A commodity DRAM hardware fault,
Rowhammer, along with memory deduplication (an operating sys-
tem optimization technique to reduce memory usage) are exploited
in [30] to conduct an integrity attack. It is shown that inducing bit
flips in memory causes severe accuracy degradation in many neural
network models. Surprisingly, across 19 different models, 50% of
the model parameters on average are vulnerable to single-bit flips
that cause an accuracy drop of more than 10%. Another example
for an extraction attack is [31] in which the authors successfully
extract different multi-layer perceptron and convolutional neural
network (CNN) models by measuring timing and electromagnetic
emanations from two different microprocessors. The authors show
a methodology for reverse engineering the number of layers, the
number of neurons in each layer, the type of activation functions,
and the values of model parameters. A recent denial-of-service
attack is demonstrated in [32] by crafting malicious DL model
inputs that increase energy consumption to drain batteries in IoT
devices, or increase the model decision latency to compromise
real-time systems. Similarly to our work, none of these attacks
requires physical access to the hardware or prior knowledge of the
DL models (i.e. black-box attacks). While we focus on FPGAs,
the first two attacks are carried out on CPUs and the latter is
performed on a CPU, a GPU and an ASIC simulator. The authors of

Voltage Regulator
Module (VRM)

FPGA
Die

Plane
Cap.

Decoupling
Capacitors

Board and Package PDN

Interconnection

On-chip PDN

Fig. 1: Simplified diagram of the PDN topology.

[33] demonstrate an extraction attack against an FPGA-accelerated
CNN. By monitoring the memory traffic through physical access
or another side-channel, this attack can extract information about
the layer structure and weights. In contrast, our work focuses
on integrity attacks and does not require physical access to the
hardware. In [34], the authors use voltage attacks in a multi-tenant
FPGA to corrupt the model parameters when transferring them
from off-chip memory to on-chip buffers. This approach would not
be effective against persistent-style accelerators that are commonly
used in network-connected cloud FPGAs [2], [35]. They also use
asynchronous RO attacker circuits which can be easily filtered
by conventional bitstream checkers. Our work does not assume
the need for transferring weights from off-chip memory and uses
combinational-loop-free attacker circuits that cannot be detected
by scanning the bitstream.

III. ATTACKER CIRCUITS

In this section, we first introduce the preliminaries of timing
violations, PDNs and voltage attacks on FPGAs that are necessary
to understand the rest of the paper. Then, we introduce the attacker
circuits used in our experiments.

A. Timing Violations
For correct operation, the clock period of a digital circuit must

ensure the delay between two clock edges is larger than the time
taken by a signal to travel the longest combinational path between
two flip-flops (FFs). We can formulate this relation using the
following inequality:

tclk ≥ tc2q + tcomb + tsetup + tskew (1)

where tclk is the clock period, tc2q is the the clock-to-output delay
of the source FF, tcomb is the longest combinational path delay
from source to destination, tsetup is the time the input to the
destination FF needs to be stable to be captured correctly, and
tskew is the largest difference in clock delay between the source
and destination FFs, including variability and jitter effects. A setup
timing violation happens if inequality (1) does not hold for any path
in a given circuit, and can result in a faulty output being captured
by the destination FF. For the rest of the paper, we simply refer to
these violations as timing violations, as we are not concerned with
hold timing violations in this work.

B. Attack Methodology
A simplified schematic showing the main components of the

FPGA’s PDN is shown in Fig. 1. An on-board voltage regulator
module (VRM) is used to convert the board voltage level down to
the die voltage level. After that, the on-board decoupling capacitors
and the parallel plane capacitance between the board power and
ground layers help filter out the voltage noise and respond to rapid

variations in load [36]. Finally, the connection to the FPGA die
is made through the ball grid array based package, and creates
a series-connected resistance and inductance. The on-chip FPGA
PDN itself can be viewed as distributed RC network or even
simplified as an equivalent RC circuit [37]. Consequently, the
voltage drop between the output of the VRM and any end point
on the FPGA fabric can be captured by equation (2).

Vdrop(s) = I(s)ZPDN (s) (2)

where ZPDN (s) is the frequency domain impedance resulting
from the combination of board, package and chip resistance and
inductance along with the various decoupling capacitances shown
in Fig. 1. For steady-state current, only the resistive component of
ZPDN is relevant and gives rise to a steady state drop, i.e. IR.
Changes in the load current give rise to a transient drop due to
the inductive component of ZPDN , i.e. L di

dt . This drop is partially
mitigated by the different capacitive components in the PDN that
can supply current for short times (i.e. at high frequencies). The
results in [37] also show that the Vdrop experienced at different
locations on the FPGA die can be different as a result of differ-
ent spatial distances from the decoupling capacitors (i.e. as the
distance increases, the decoupling capacitors are less effective in
mitigating voltage fluctuations). Therefore, an effective attacker
circuit would be one that draws a large amount of current, resulting
in a large IR drop, and at the same time experiences abrupt changes
in the amount of drawn current, resulting in a large transient drop.
As a result of the voltage drop created by the attacker circuit, the
signal propagation time through the combinational path (tcomb)
increases, breaking inequality (1) and inducing timing violations
in a neighboring victim circuit on the FPGA.

C. Attacker Circuit 1: Asynchronous ROs

An asynchronous RO can be implemented as a NAND gate
whose output is fed back into its input as in Fig. 2a. When the
enable and toggle signals are set to high, the output of the NAND
gate oscillates at a frequency determined by the interconnect delay
between the gate’s output and input. For a Stratix 10 FPGA, this
delay is in the order of hundreds of picoseconds, resulting in a very
high oscillation frequency on the order of several GHz. A large
number of these ROs implemented in the FPGA’s soft fabric is
capable of drawing a large amount of current due to their very fast
switching activity. In addition, when the toggle signal is switched
periodically with a specific frequency and duty cycle, it results in
an abrupt change in the amount of drawn current. For our adversary
role, we implement 20 RO grids, similar to that used in [20], such
that each grid is a 32×1024 array of ROs. Each grid also has a set
of three 32-bit control registers responsible for enabling/disabling
parts of the grid, as well as controlling the frequency and duty cycle
of the toggle signal.

Asynchronous ROs are typically used in most of the prior
work to carry out voltage attacks (e.g. [20], [24], [26]) however,
it is not a practical adversarial circuit since bitstream checkers
can detect such combinational loops and automatically reject the
malicious bitstream. This is a defense technique that is well-studied
in academia [24] and also commonly deployed in Amazon AWS
[27]. Therefore, we introduce the following two attacker circuits to
circumvent this defense technique.

(a) Asynchronous ROs.

(b) Clock-gated garbled XORs. (c) Clock-gated hybrid logic.

Fig. 2: Attacker circuits.

TABLE I: Resources dedicated to victim and attacker roles and
resource utilization for each attacker circuit (CG: clock-gated)

Resources dedicated to each role
Role ALMs DSPs BRAMs

Victim 395,040 (43%) 2,488 (44%) 5,142 (44%)
Adversary 406,560 (44%) 2,632 (46%) 5,407 (47%)

Resources utilized by each attacker circuit
Attacker ALMs DSPs BRAMs

ROs 330,220 (36%) 0 (0%) 0 (0%)
CG XORs 344,064 (37%) 0 (0%) 0 (0%)
CG Hybrid 304,589 (33%) 2,400 (42%) 4,768 (41%)

D. Attacker Circuit 2: Clock-gated Garbled XORs

The basic building block of the second attacker circuit (shown
in Fig. 2b) was previously used in [38] to study transient effects
on FPGAs, but was never evaluated in the context of voltage
attacks before. It consists of four 4-input XOR gates, whose inputs
are chosen from four toggle registers and one delayed output.
The toggle registers change state each cycle and the output of
the XOR gates change if any input changes, so this results in a
high switching activity. For our adversary role, we implement six
attacker grids of size 32,768 garbled XOR blocks each. We clock
the whole adversary role using a fast 750 MHz clock, as we are not
concerned with meeting timing in the attacker circuit anyway. As
mentioned in the Stratix 10 power management user guide, clock
gating a large portion of the FPGA could cause significant current
change over a short time period when the gated circuitry is enabled
or disabled [39]. Enabling a clock suddenly changes the toggle
rates of all the gated FFs. In addition, the clock networks in modern
FPGAs are composed of large wires in the higher metal layers, and
therefore have high capacitance. Hence, large transient events can
happen when the clock is started again after gating. These transient
effects have very sharp edges (i.e. high-frequency components)
which have to be handled by the more limited on-die decoupling
capacitances. Therefore, if the transient events are strong enough
(beyond what the on-die capacitances can fully handle), they can
cause voltage drops and thus induce timing faults in the victim
circuit. We use the Intel clock control IP core [40] to perform
root clock gating for the attacker circuits in the adversary role. The
clock gating signal is toggled periodically at a frequency and duty
cycle specified using control registers. Unlike asynchronous ROs,

(a)

(b)

Fig. 3: (a) Timing violation detection circuit, and (b) overall system
used for the integrity attack characterization (CL: chain length).

Fig. 4: Chip planner view for the non-floorplanned (upper) and
floorplanned (bottom) implementations of the FPGA design with the
clock-gated garbled XOR attacker. In the non-floorplanned imple-
mentation, the CAD tool decides to place the attacker circuit around
the victim arrays. In the floorplanned one, the same attacker circuit
is more densely-packed in an isolated role.

this attacker circuit uses a vendor-supplied IP core for clock gating
and does not contain any combinational loops. Thus, it poses as
an unsuspicious circuit and would pass any conventional bitstream
checker.

E. Attacker Circuit 3: Clock-gated Hybrid Toggling Logic

The first two attacker circuits are implemented exclusively using
the soft logic in the adversary role, leaving all block memories
(BRAMs) and digital signal processing (DSP) blocks not utilized.
The third attacker circuit aims to maximize the switching activity
in the adversary role by using all the DSP blocks and BRAMs
as shown in Fig. 2c. During the attack, alternating chessboard
patterns are sequentially written to every address of all BRAMs,
each multiplier in all the DSP blocks is seeded with random initial
inputs that are multiplied and fed-back as inputs to the DSP block,
and the remainder of the soft-logic is used to implement garbled
XOR blocks, shown in Fig. 2b. Similarly to the garbled XORs
attacker, this circuit is also clock gated periodically and does not

0
80

160
240
320

0
80

160
240
320

2
.5

2
.6

6
2
.8

2
2
.9

8
3
.1

4
3
.3

3
.4

6
3
.6

2
3
.7

8
3
.9

4
4
.1

4
.2

6
4
.4

2
4
.5

8
4
.7

4
4
.9

5
.0

6
5
.2

2
5
.3

8
5
.5

4

0
80

160
240
320

Clock Period (ns)

C
L

=
 5

C
L

=
 7

C
L

=
 9

N
o.

 o
f
Pa

th
s

V
io

la
ti
n
g
 T

im
in

g
Asynchronous ROs

0
80

160
240
320

0
80

160
240
320

2
.8

2
2
.9

8
3
.1

4
3
.3

3
.4

6
3
.6

2
3
.7

8
3
.9

4
4
.1

4
.2

6
4
.4

2
4
.5

8
4
.7

4
4
.9

5
.0

6
5
.2

2
5
.3

8
5
.5

4

0
80

160
240
320

Clock Period (ns)

C
L

=
 5

C
L

=
 7

C
L

=
 9

N
o.

 o
f
Pa

th
s

V
io

la
ti
n
g
 T

im
in

g

Hybrid Toggling LogicClock-gated

0
80

160
240
320

0
80

160
240
320

2
.8

2
2
.9

8
3
.1

4
3
.3

3
.4

6
3
.6

2
3
.7

8
3
.9

4
4
.1

4
.2

6
4
.4

2
4
.5

8
4
.7

4
4
.9

5
.0

6
5
.2

2
5
.3

8
5
.5

4

0
80

160
240
320

Clock Period (ns)

C
L

=
 5

C
L

=
 7

C
L

=
 9

N
o.

 o
f
Pa

th
s

V
io

la
ti
n
g
 T

im
in

g

Hard/Soft Hybrid Toggling Logic

0
80

160
240
320

0
80

160
240
320

2
.8

2
2
.9

8
3
.1

4
3
.3

3
.4

6
3
.6

2
3
.7

8
3
.9

4
4
.1

4
.2

6
4
.4

2
4
.5

8
4
.7

4
4
.9

5
.0

6
5
.2

2
5
.3

8
5
.5

4

0
80

160
240
320

Clock Period (ns)

C
L

=
 5

C
L

=
 7

C
L

=
 9

N
o.

 o
f
Pa

th
s

V
io

la
ti
n
g
 T

im
in

g

Clock-gated Garbled XORs

Fig. 5: The number of timing violation detection paths with flagged faults for the floorplanned implementations of the asynchronous RO (left),
clock-gated garbled XOR (middle), and clock-gated hybrid toggling logic (right) designs. The bars represent the number of paths violating
timing measured on hardware at different operating clock periods, compared to the lines that represent the numbers of paths expected to
violate timing based on Quartus timing reports. At points where the bar value is higher than the line, the attacker circuit successfully induced
timing faults in paths that Quartus reported were safe.

contain any suspicious logic that would be flagged by a typical
bitstream checker.

Table I lists the resources dedicated (available) to each of the
victim and attacker roles. We assume only two roles per device and
leave out ∼13% of the device to be used for the FPGA shell im-
plementation. The table also summarizes the resource utilization of
the attacker role using each of the three attacker circuits described
in this section.

IV. ATTACK CHARACTERIZATION

A. Timing Violation Detection Circuit
In order to demonstrate the ability of the attacker circuits to

induce timing violations in a given logically and physically isolated
victim circuit, we implement a simple timing violation detection
circuit, similar to that used in [41], as illustrated in Fig. 3a. In this
circuit, a signal is launched from the launch register at the rising
clock edge, passes through a set of CL inverter stages, and is finally
captured by the sampling register at the following falling clock
edge. We use Quartus synthesis pragmas to implement the CL

inverters in CL distinct look-up tables and prevent the compiler
from reducing them into a single equivalent logic element. At the
next rising clock edge, the value of the sampling register and the
output of the last inverter stage are compared, and the capture
register is set to high if they are different. The value of the capture
register is then latched such that if it is once set to high, it stays high
until the end of the experiment. Under normal operating conditions,
if the propagation delay through the CL inverter stages is less than
half the clock period, the output of the last inverter will always be
the same as that of the sampling register. Thus, the capture register
will never be set to high. However, if the adversary causes a voltage
drop significant enough to increase the inverter chain propagation
delay beyond half a clock period, a timing violation is flagged by
setting the capture register high.

B. Experimental Setup
Our experimental setup consists of a Terasic DE10-Pro board

[42] with the largest monolithic state-of-the-art Intel Stratix 10
2800 FPGA attached as a PCIe accelerator card to an Intel Xeon
E5-2650 server with 12 double-threaded cores and 94 GBs of

TABLE II: Safe operating frequency for timing violation detection
chain arrays with different CL values at the slow 100◦C corner.

Chain Length (CL) 5 6 7 8 9

Safe Freq. (MHz) 260.3 240.6 211.4 198.5 182.7

RAM. All the FPGA designs used in our experiments are syn-
thesized, placed and routed using Intel Quartus Prime Pro 19.3.
Fig. 3b shows a block diagram of the system we implement on the
FPGA. The victim role is occupied by five arrays, each of which
has 320 of the timing violation detection chains in Fig. 3a. The five
arrays have five different chain lengths (i.e. CL values) ranging
from 5 up to 9 inverter stages. The safe operating frequencies for
the timing violation detection arrays (i.e. frequencies in which the
capture registers are never set to high), as reported by Quartus
at the slow 100◦C corner and averaged over 6 compilations, are
listed in Table II. All the victim arrays, as well as the attacker
circuits, are wrapped as IP cores with an Avalon memory-mapped
slave interface [43] and connected to the PCIe controller over an
Avalon bus as illustrated in Fig. 3b. In addition, we instantiate a
reconfigurable phase-locked loop (PLL) to generate the clock for
all victim arrays. We implement a PLL controller that adjusts the
frequency of the clock generated by the reconfigurable PLL from
150 MHz to 400 MHz based on host commands sent over PCIe.

For each of our attacker circuits, we generate two different
bitstreams; a non-floorplanned implementation in which the CAD
tool decides how to place the victim and attacker circuits, and a
floorplanned one to isolate the victim and attacker circuits in two
different roles emulating a realistic multi-tenant FPGA. The chip
planner view of both implementations for the clock-gated garbled
XORs attacker is shown in Fig. 4. For the non-floorplanned imple-
mentation, the tool decides to place the attacker circuit surrounding
the victim arrays. In the floorplanned implementation, each role is
defined as a logic locked partition with routing constrained to the
partition area to mimic a dynamically reconfigurable partition in a
virtualized FPGA.

A C++ program running on the host CPU configures the victim
arrays’ operating frequency and the attackers’ control registers via
PCIe. Then, it enables the attacker circuits for 250 × 106 cycles,
before disabling them and then reading back the capture registers

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

0.0%
25.0%

50%
75.0%

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

CL = 5 CL = 6 CL = 7 CL = 8 CL = 9

N
on

-F
lo

o
rp

la
n
n
e
d

Fl
o
or

p
la

n
n
e
d

% of Enabled ROs

O
p
e
ra

ti
n
g
 F

re
q
u
e
n
cy

 (
M

H
z)

Asynchronous ROs

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

0.0%
25.0%

50%
75.0%

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

0.0%
25.0%

50%
75.0%

CL = 5 CL = 6 CL = 7 CL = 8 CL = 9

N
on

-F
lo

o
rp

la
n
n
e
d

Fl
o
or

p
la

n
n
e
d

Asynchronous ROs

0.0%
12.5%

25.0%

37.5%

50%
62.5%

75.0%

87.5%

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

0.0%
12.5%

25.0%

37.5%

50%
62.5%

75.0%

87.5%

0.0%
12.5%

25.0%

37.5%

50%
62.5%

75.0%

87.5%

0.0%
12.5%

25.0%

37.5%

50%
62.5%

75.0%

87.5%

0.0%
12.5%

25.0%

37.5%

50%
62.5%

75.0%

87.5%

CL = 5 CL = 6 CL = 7 CL = 8 CL = 9

N
o
n
-F

lo
o
rp

la
n
n
e
d

Fl
o
o
rp

la
n
n
e
d

Asynchronous ROs

(a)

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

OffOn Gated

OffOn Gated

OffOn Gated

CL = 5 CL = 6 CL = 7 CL = 8 CL = 9

C
lo

ck
-g

a
te

d
 G

a
rb

le
d
 X

O
R

C
lo

ck
-g

a
te

d
 H

yb
ri
d
 L

og
ic

Attacker Status

O
p
e
ra

ti
n
g
 F

re
q
u
e
n
cy

 (
M

H
z)

150

20

3

0

3

20

150

320

320
#

 V
iolation

s

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

OffOn Gated

OffOn Gated

OffOn Gated

−4

−2

0

2

4

6

CL = 5CL = 6CL = 7CL = 8CL = 9

C
lo

ck
-g

a
te

d
 G

ar
b
le

d
 X

O
R

C
lo

ck
-g

a
te

d
 H

yb
ri
d
 L

og
ic

Attacker Status

O
p
e
ra

ti
n
g
 F

re
q
u
e
n
cy

 (
M

H
z)

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

400.0
375.0
350.0
337.5
300.0
270.0
262.5
250.0
240.0
225.0
214.3
210.0
200.0
192.9
187.5
180.0
171.4
166.7

OffOn Gated

OffOn Gated

OffOn Gated

OffOn Gated

−4

−2

0

2

6

CL = 5CL = 6CL = 7CL = 8CL = 9

C
lo

ck
-g

a
te

d
 G

a
rb

le
d
 X

O
R

C
lo

ck
-g

a
te

d
 H

yb
ri
d
 L

og
ic

Attacker Status

O
p
e
ra

ti
n
g
 F

re
q
u
e
n
cy

 (
M

H
z)

%

−4

−2

0

2

4

6

(b)

Fig. 6: Heatmaps illustrating the number of paths violating timing for: (a) the non-floorplanned and floorplanned implementations of the
asynchronous RO attacker design, and (b) the floorplanned implementations of the clock-gated garbled XOR (top) and clock-gated hybrid
toggling logic (bottom) attacker designs. Black dashed lines represent the maximum safe operating frequency reported by Quartus.

of the timing violation detection circuits to determine the number
of faults induced by the attack.

C. Characterization Results

Attack Feasibility: The line graphs in Fig. 5 show the number
of paths expected to violate timing in the victim circuit at different
operating frequencies based on the timing report produced by
Quartus. The graphs are for violation detection circuits with CL

values 5, 7 and 9 in the floorplanned implementations. However,
other CL values and the non-floorplanned implementations show
similar trends and thus we omit them for brevity. For clock periods
larger than the longest path delay, none of the paths is expected to
violate timing. As the clock period decreases, more paths start to
violate timing until all of them have path delays that are larger than
the operating clock period.

In the same figures, these expected values are compared to
the stacked bars reporting the actual number of timing violations
measured on hardware at different frequencies of the clock pro-
duced by the reconfigurable PLL. When the attacker circuit is
disabled (indicated by 0% ROs or off in Fig. 5), the numbers of
measured violations (bars) are always lower, and in some cases by
a large gap, than that reported by Quartus (line). This establishes
that Quartus’ timing analysis introduces a considerable safety
margin to account for aging effects, process variations, etc. For
the asynchronous RO attacker, the number of measured violations
increases as we increase the percentage of enabled ROs in the
adversary roles. At every point the bar value is higher than the
line, it means that the attacker circuit managed to induce timing
faults in paths that Quartus reported were safe (i.e. have lower path
delay than the operating clock period). Enabling more than 87.5%
of the ROs in the adversary role, which is equivalent to ∼38% of
the FPGA resources, crashes the entire FPGA board and requires
power-cycling the whole server before re-programming the FPGA.

As discussed in Section II, this is considered a denial-of-service
attack. Since our main focus is on integrity attacks, we are most
interested in attacker circuits that draw as much current as possible
to increase the induced timing violations, but still do not result
in crashing the entire board. For the clock-gated garbled XORs
and hybrid toggling logic attackers, the number of paths violating
timing increases significantly by up to ∼200 additional failing
paths when the attacker circuit is enabled without periodic clock
gating (On), and increases further (∼45 more paths) as a result of
periodic clock gating (Gated). The results show that, in many cases,
the 3 attacker circuits were able to cause a higher number of paths
to violate timing than Quartus reported, and thus demonstrate the
feasibility of our integrity attack.

Floorplanning Effect: Fig. 6a presents a heatmap of the
number of paths violating timing at various operating frequencies
(vertical axis) and CL values for both the floorplanned (top)
and non-floorplanned (bottom) implementations with various per-
centages of enabled ROs (horizontal axis). Timing faults induced
at frequencies higher than the maximum operating frequencies
reported by Quartus (i.e. expected violations) are colored in green,
while those induced at presumably safe frequencies are colored in
red. The latter ones are the most interesting for our study as they
represent successful integrity attacks at operating conditions that
are supposed to be safe according to Quartus’ timing analysis.

Fig. 6a shows that we can induce timing faults at frequencies
Quartus considers safe with approximately 50% of ROs active
when the roles are not floorplanned, and with about 75% of ROs
active when the roles are physically isolated. The results show
that physically isolating the victim and the attacker circuits in
two distinct roles can help mitigate the severity of the attack
and considerably reduce the number of induced timing violations.
However, it is not sufficient to entirely protect the victim circuit

from its malicious neighboring roles. The comparison between
the non-floorplanned and floorplanned implementations of the
systems with the other two attacker circuits also corroborates the
same conclusion; however, we leave them out for brevity. This
observation advocates for the potential need for redesigning the on-
chip PDN with multiple separate voltage islands in future FPGA
architectures to enable secure multi-tenant FPGA virtualization. In
this case, voltage disruptions caused by an adversary would not
affect a victim circuit that belongs to a different voltage island.

Non-RO-based Attacker Circuits: In Fig. 6b, we show the
same heatmaps for the floorplanned implementation of the sys-
tems with the clock-gated garbled XORs and clock-gated hybrid
toggling logic attackers. The results show that the clock-gated
garbled XOR attacker circuit can be almost as effective as the
asynchronous ROs attacker circuit at its highest capacity (i.e. with
87.5% of the ROs enabled). It also has the additional advantage
of being undetectable by conventional bitstream checkers as a
potentially malicious circuit. Moreover, clock-gating is an increas-
ingly popular power saving technique in FPGA designs, raising
the possibility that even a benevolent circuit could unintentionally
inject timing faults in itself or in neighboring roles by aggressively
applying clock gating on a power-hungry computation. In addition,
as shown in Fig. 6b, utilizing the hard blocks (i.e. BRAMs and
DSPs) in the attacker role to create higher switching activity can
further enhance the severity of the attack compared to the garbled
XORs attacker that only utilizes soft logic resources.

Quartus Timing Safety Margins: We can also quantify the
safety margins added by the Quartus timing analyzer by measuring
the difference between the maximum safe operating frequency
reported by Quartus and the frequency at which we witness the first
timing violations with the attacker circuit disabled. These margins
are highlighted with the black arrows (safety margin) and dashed
lines (Quartus reported maximum frequency) in Fig. 6a and 6b.
Our hardware measurements show that, on average across multiple
compilations of our test designs with different attacker circuits and
floorplanning setups, Quartus adds to the reported clock period a
safety margin of 13% of the longest path delay, with a maximum
and minimum of 21% and 5%, respectively. Our experiments are
conducted on a new Stratix 10 card. Over time, we would expect
this measured safety margin to be reduced by transistor aging
effects, further escalating the severity of voltage attacks.

V. ATTACKING A DL ACCELERATOR

DL models are known for their error resilience, which enabled
the adoption of several optimization techniques for efficient DL
computation such as model compression [28] and weight quantiza-
tion [29]. Studies have shown that ∼90% of the model weights can
be pruned without affecting the model accuracy [44]. In addition, a
myriad of numerical precisions are used in DL inference, ranging
from single-precision floating point to 16-bit fixed point and down
to even ternary and binary precisions, often with negligible or no
accuracy degradation [45]. In this section, we study the resilience
of DL models against another source of error: timing faults in
the hardware circuit performing the DL model computations. We
measure the effect of voltage drops induced by an adversary FPGA
tenant on the prediction accuracy of a DL accelerator running
ImageNet classification, and introduce the accelerator’s operating

TABLE III: The victim HPIPE resources, performance & accuracy.

Model MobileNet-V1 (Dense)
Precision 16-bit fixed point

ALMs 210,698 (23%)
DSPs 1,501 (26%)

BRAMs 5,068 (44%)

Max. Frequency 540 MHz
Throughput (batch-1) 1,652 images/sec

Latency (batch-1) 1.99 ms
Top-1 Accuracy 71.7%
Top-5 Accuracy 90.16%

frequency as another knob that offers a performance/accuracy
tradeoff similar to sparsity and precision.

A. The Victim DL Accelerator: HPIPE

For our experiments, we use HPIPE, a state-of-the-art CNN
accelerator implemented and optimized specifically for FPGAs. It
comes with a complete flow that takes a TensorFlow description
of the CNN model along with a specification of available FPGA
resources, and produces an optimized FPGA-based hardware ac-
celerator for this model given the specified resource constraints.
The produced accelerator has a cross-layer pipelined spatial archi-
tecture that exploits both reduced precision and weight pruning
to fit the complete model in on-chip BRAMs. The HPIPE com-
piler maximizes the DSP block utilization and produces a highly-
pipelined, physically-aware accelerator architecture that can run
at very high clock frequencies. On the largest Intel Stratix 10
FPGA, HPIPE runs ResNet-50 batch-1 inference at almost 4× the
throughput of an Nvidia V100 GPU. We refer the reader to [35] for
a more detailed description the HPIPE architecture and compiler.

B. Experimental Setup

We use the same experimental setup as that explained in Section
IV. We replace the timing violation detection circuits with an
HPIPE instance in the victim role and attack it using our clock-
gated garbled XORs and hybrid toggling logic attacker circuits.
Both the HPIPE role and the attacker role are floorplanned to
be physically separate, which makes the attack more realistic.
The HPIPE instance we use runs the MobileNet-V1 model and is
restricted to the victim role resources in our multi-tenant FPGA
setup. Table III summarizes the FPGA resource utilization re-
sults, as well as the operating frequency and baseline perfor-
mance/accuracy of our victim HPIPE instance. The reconfigurable
PLL in our test system, shown in Fig. 3b, is set to produce
clock frequencies ranging from 500-750 MHz. At each operating
frequency during our experiments, we run inference over 50,000
images and record the prediction accuracy with the attacker circuit
disabled. Then, we enable the attacker circuit and run inference
over the same 50,000 images again to measure the accuracy under
the effect of induced voltage drops. To capture the numerical dif-
ferences in the model outputs, we also measure the angle between
the prediction vector (i.e. output vector of the last layer before
applying softmax) at a given operating frequency and that at the
540 MHz safe frequency, averaged across all 50,000 inputs, using
the following formula:

Angleavg =
1

N

N∑
i=0

Psi

||Psi ||
·

Pfi

||Pfi ||
(3)

4
9
0

5
0
0

5
1
0

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

6
1
0

6
2
0

6
3
0

6
4
0

6
5
0

6
6
0

6
7
0

6
8
0

6
9
0

7
0
0

7
1
0

7
2
0

7
3
0

7
4
0

7
5
0

7
6
0

0

22.5

45

67.5

90

0

0.25

0.5

0.75

1

Avg. Angle (Baseline)
Avg. Angle (Attack)
Top-1 (Baseline)
Top-5 (Baseline)
Top-1 (Attack)
Top-5 (Attack)

Operating Frequncy (MHz)

A
n
g
le

 (
d
e
g
re

e
s)

Pre
d
ictio

n
 A

ccu
ra

cy

(a)

4
9
0

5
0
0

5
1
0

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

6
1
0

6
2
0

6
3
0

6
4
0

6
5
0

6
6
0

6
7
0

6
8
0

6
9
0

7
0
0

7
1
0

7
2
0

7
3
0

7
4
0

7
5
0

7
6
0

0

22.5

45

67.5

90

0

0.25

0.5

0.75

1

Operating Frequncy (MHz)

A
n
g
le

 (
d
e
g
re

e
s)

Pre
d
ictio

n
 A

ccu
ra

cy

(b)
Fig. 7: The effect of voltage attacks on the victim HPIPE accelerator in a physically isolated role on a multi-tenant FPGA when using: (a)
clock-gated garbled XORs, and (b) clock-gated hybrid toggling logic attackers. The lines represent top-1 and top-5 prediction accuracy and
the bars represent the angle between the prediction vector at a given operating frequency and that at the 540 MHz safe frequency. The green
and red traces show results with attacker circuits disabled and enabled, respectively.

where N is the total count of test inputs, ||.|| is the L2-norm, Psi

and Pfi are the prediction vectors at the safe frequency and the
operating frequency of the ith input, respectively. A non-zero angle
value with no degradation in accuracy means that the model is
resilient to the timing faults induced in its computations at a given
operating frequency.

C. Attack Results
Safe Overclocking: Fig. 7a and 7b show the results of our ex-

periments for the two systems with the clock-gated garbled XORs
and hybrid toggling logic attackers, respectively. With the attacker
circuits disabled, the hardware measurements show that we can
overclock the DL accelerator to a 27%-31% higher clock frequency
without affecting the prediction accuracy. This margin for safe
overclocking is considerably bigger than the timing safety margin
introduced by the Quartus timing analyzer which we quantified in
Section IV. The reason for this is the resilience of DL models that,
even with induced computational errors, can still predict the correct
image classification. If we increase the clock frequency beyond
that, the prediction accuracy degrades rapidly and the average
angle values increases to values close to 90 degrees (i.e. completely
orthogonal prediction vectors).

Even under extreme operating conditions with voltage integrity
attacks carried out using our strongest attacker circuit from Section
IV, we can still achieve 18% higher inference performance with
no effect on the prediction accuracy by overclocking the DL
accelerator. If we increase the clock frequency beyond 680 MHz
and 650 MHz in the case of the clock-gated garbled XORs and
clock-gated hybrid logic attackers respectively, the accelerator is
not able to finish the classification of all 50,000 inputs as some
paths in the control logic start to fail timing. To decide the degree
of safe overclocking at runtime, a few timing violation detection
circuits (shown in Fig. 3a) can be sprinkled at different locations
of the FPGA role to detect voltage drops and dynamically adjust
the operating frequency of the DL accelerator. This approach
would result in unaltered predictions in addition to a 1.18-1.3×
performance boost at the cost of less than 1% more resources.

Model Resilience: The plots in Fig. 7 also highlight the inher-
ent resilience of the DL model against induced timing faults. For
instance, at 690 MHz and 680-710 MHz frequencies in Fig. 7a and
7b respectively, although the prediction vectors produced by the
DL accelerator are different as indicated by the non-zero average

angle values, the overall prediction accuracy remains unaffected.
Therefore, the accelerator’s operating frequency can be viewed as
an additional knob that offers a performance/accuracy tradeoff. All
our experiments in this study are conducted on a dense model using
16-bit fixed point precision. However, we believe that studying the
models’ resilience to timing faults at different numerical precisions
and degrees of sparsity is an interesting future work.

VI. CONCLUSION

FPGAs are being widely deployed in datacenters and are en-
visioned to become a virtualized multi-tenant compute platform
in the near future. However, this comes with potential security
threats arising from the reconfigurable nature of FPGAs. In this
study, we focus on integrity attacks in a multi-tenant FPGA sce-
nario. An adversary can cause voltage drops by implementing a
malicious circuit in her role, inducing timing violations in the
victim role, even when physically isolated. We demonstrate the
feasibility of such integrity attacks with three different adversarial
circuits, two of which utilize a vendor-supplied clock-gating IP
core. An attacker that combines hard and soft logic with clock
gating is as effective as a traditional RO attacker, but will not be
detected by bitstream verifiers. We show that while floorplanning
the attacker and victim circuits to physically separated roles has
some positive effect, the integrity attacks still succeed. Finally, we
carry out an integrity attack on a DL accelerator running ImageNet
classification in the victim role to study the resilience of DL models
against induced timing faults. We show that, due to this inherent
resilience, safe overclocking of the DL accelerator can result
in 1.3× and 1.18× higher performance under normal operating
conditions and extreme voltage attacks, respectively. These results
indicate that current FPGAs are vulnerable to voltage integrity
attacks, creating a barrier to multi-tenant applications and raising
the possibility of inadvertent failures within a single design due to
aggressive clock gating. On the positive side, DL inference shows
significant resilience to timing faults, giving additional resistance
to voltage integrity attacks and allowing performance increase via
safe overclocking.

ACKNOWLEDGEMENTS

The authors would like to thank Ibrahim Ahmed for the insight-
ful discussions, and the NSERC/Intel industrial research chair in
programmable silicon and the Vector institute for funding support.

REFERENCES

[1] A. Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 3, pp. 13–24, 2014.

[2] A. Caulfield et al., “A Cloud-Scale Acceleration Architecture,” in
International Symposium on Microarchitecture (MICRO), 2016.

[3] Amazon Web Services, “Amazon EC2 F1 Instances,”
https://aws.amazon.com/ec2/instance-types/f1/.

[4] S. Yazdanshenas and V. Betz, “Interconnect Solutions for Virtualized
Field-Programmable Gate Arrays,” IEEE Access, vol. 6, pp. 10 497–
10 507, 2018.

[5] N. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor
Processing Unit,” in International Symposium on Computer Architecture
(ISCA), 2017.

[6] J. Fowers et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in International Symposium on Computer Architecture (ISCA),
2018.

[7] E. Nurvitadhi et al., “Why Compete When You Can Work Together:
FPGA-ASIC Integration for Persistent RNNs,” in International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM),
2019.

[8] N. Papernot et al., “Practical Black-Box Attacks Against Machine Learn-
ing,” in Asia Conference on Computer and Communications Security
(ASIACCS), 2017.

[9] ——, “Scalable Private Learning with PATE,” arXiv preprint
arXiv:1802.08908, 2018.

[10] G. Elsayed et al., “Adversarial Examples That Fool Both Computer
Vision and Time-Limited Humans,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[11] J. Weerasinghe et al., “Network-Attached FPGAs for Data Center
Applications,” in International Conference on Field Programmable
Technology (FPT), 2016.

[12] N. Tarafdar et al., “Enabling Flexible Network FPGA Clusters in a
Heterogeneous Cloud Data Center,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2017.

[13] S. Byma et al., “FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack,” in International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2014.

[14] A. Vaishnav et al., “A Survey on FPGA Virtualization,” in International
Conference on Field-Programmable Logic and Applications (FPL),
2018.

[15] C. Jin et al., “Security of Cloud FPGAs: A Survey,” arXiv preprint
arXiv:2005.04867, 2020.

[16] C. Ramesh et al., “FPGA Side Channel Attacks Without Physical
Access,” in International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2018.

[17] G. Provelengios et al., “Characterization of Long Wire Data Leakage
in Deep Submicron FPGAs,” in International Symposium on Field-
Programmable Gate Arrays (FPGA), 2019.

[18] M. Zhao and G. Suh, “FPGA-Based Remote Power Side-Channel
Attacks,” in Symposium on Security and Privacy (SP), 2018.

[19] S. Yazdanshenas and V. Betz, “The Costs of Confidentiality in Vir-
tualized FPGAs,” IEEE Transactions on Very Large Scale Integration
Systems (TVLSI), vol. 27, no. 10, pp. 2272–2283, 2019.

[20] J. Krautter et al., “FPGAhammer: Remote Voltage Fault Attacks on
Shared FPGAs, Suitable for DFA on AES,” in Transactions on Crypto-
graphic Hardware and Embedded Systems, 2018, pp. 44–68.

[21] C. Beckhoff et al., “Short-Circuits on FPGAs Caused by Partial Runtime
Reconfiguration,” in International Conference on Field Programmable
Logic and Applications (FPL), 2010.

[22] I. Giechaskiel et al., “Measuring Long Wire Leakage with Ring
Oscillators in Cloud FPGAs,” in International Conference on Field
Programmable Logic and Applications (FPL), 2019.

[23] D. Gnad et al., “Voltage Drop-Based Fault Attacks on FPGAs using
Valid Bitstreams,” in International Conference on Field-Programmable
Logic and Applications (FPL), 2017.

[24] K. Matas et al., “Invited Tutorial: FPGA Hardware Security for Datacen-
ters and Beyond,” in International Symposium on Field-Programmable
Gate Arrays (FPGA), 2020.

[25] ——, “Power-Hammering Through Glitch Amplification Attacks and
Mitigation,” in International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), 2020.

[26] G. Provelengios et al., “Characterizing Power Distribution Attacks in
Multi-User FPGA Environments,” in International Conference on Field-
Programmable Logic and Applications (FPL), 2019.

[27] Amazon AWS Developer Forums, “Combinatorial Loops in F1 FPGA,”
https://forums.aws.amazon.com/thread.jspa?messageID=935972.

[28] S. H. et al., “Deep Compression: Compressing Deep Neural Net-
works with Pruning, Trained Quantization and Huffman Coding,” arXiv
preprint:1510.00149, 2015.

[29] A. Mishra et al., “WRPN: Wide Reduced-Precision Networks,” arXiv
preprint:1709.01134, 2017.

[30] S. Hong et al., “Terminal Brain Damage: Exposing the Graceless
Degradation in Deep Neural Networks Under Hardware Fault Attacks,”
arXiv preprint arXiv:1906.01017, 2019.

[31] L. Batina et al., “CSI NN: Reverse Engineering of Neural Network
Architectures Through Electromagnetic Side Channel,” in USENIX,
2019.

[32] I. Shumailov et al., “Sponge Examples: Energy-Latency Attacks on
Neural Networks,” arXiv preprint arXiv:2006.03463, 2020.

[33] W. Hua et al., “Reverse Engineering Convolutional Neural Networks
Through Side-Channel Information Leaks,” in Design Automation Con-
ference (DAC), 2018.

[34] A. S. Rakin et al., “Deep-Dup: An Adversarial Weight Duplication
Attack Framework to Crush Deep Neural Network in Multi-Tenant
FPGA,” arXiv preprint arXiv:2011.03006, 2020.

[35] M. Hall and V. Betz, “From TensorFlow Graphs to LUTs and Wires:
Automated Sparse and Physically Aware CNN Hardware Generation,”
in International Conference on Field Programmable Technology (FPT),
2020.

[36] Intel Corp., “Using the Altera PDN Tool to Optimize Your Power
Delivery Network Design (AN750),” 2015.

[37] D. Klokotov et al., “Distributed Modeling and Characterization of On
Chip/System Level PDN and Jitter Impact,” in DesignCon, 2014.

[38] L. Shen et al., “Fast Voltage Transients on FPGAs: Impact and Miti-
gation Strategies,” in International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2019.

[39] Intel Corp., “Intel Stratix 10 Power Management User Guide (UG-
S10PWR),” 2020.

[40] ——, “Intel Stratix 10 Clocking and PLL User Guide (UG-
S10CLKPLL),” 2020.

[41] B. Gojman et al., “GROK-LAB: Generating Real On-Chip Knowledge
for Intra-Cluster Delays Using Timing Extraction,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 7, no. 4, pp.
1–23, 2014.

[42] Terasic Inc., “DE10-Pro User Manual (GH1E1) v1.8,” 2019.
[43] Intel Corp., “Avalon® Interface Specifications,” 2019.
[44] S. Han et al., “Learning Both Weights and Connections for Efficient

Neural Network,” in Advances in Neural Information Processing Systems
(NeurIPS), 2015.

[45] A. Boutros et al., “Embracing Diversity: Enhanced DSP Blocks for Low-
Precision Deep Learning on FPGAs,” in International Conference on
Field Programmable Logic and Applications (FPL), 2018.

