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Abstract—We present a CPU server with multiple FPGAs that
is purely software-programmable by a unified framework to
enable flexible implementation of modern real-life complex Al that
scales to large model size (100M+ parameters), while delivering
real-time inference latency (~ms). Using multiple FPGAs, we scale
by keeping a large model persistent in on-chip memories across
FPGAs to avoid costly off-chip accesses. We study systems with 1
to 8 FPGAs for different devices: Intel® Arria® 10, Stratix® 10,
and a research Stratix 10 with an AI chiplet. We present the first
multi-FPGA evaluation of a complex NMT with bi-directional
LSTMs, attention, and beam search. Our system scales well. Going
from 1 to 8 FPGAs allows hosting ~8x larger model with only ~2x
latency increase. A batch-1 inference for a 100M-parameter NMT
on 8 Stratix 10 FPGAs takes only ~10 ms. This system offers 110x
better latency than the only prior NMT work on FPGAs, which
uses a high-end FPGA and stores the model off-chip.
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I. INTRODUCTION

Artificial intelligence (AI) is becoming pervasive. Cloud
service providers now offer real-time intelligent services, such
as natural language processing (NLP) services (e.g., Amazon
Alexa, Apple Siri). Neural Machine Translation (NMT) is a
popular deep learning (DL) approach for NLP. The ever-
increasing demands of NMT in particular, and DL algorithms in
general, pose a number of challenges for our current compute
platforms on three main aspects: scalability, complexity and
performance, as illustrated in Fig. 1a.

Firstly, as DL accuracy improves, the computational and
memory demands increase substantially (e.g., modern NMT can
have ~300M parameters). Moreover, many DL algorithms used
in real-time Al applications — such as recurrent neural networks
(RNNSs), long short-term memories (LSTMs), and NMT — are
memory-bound with very limited data reuse and low compute-
to-memory ratio [2]. Therefore, this requires a scalable compute
solution to host larger models, ideally in on-chip memories that
are close to compute units to avoid expensive off-chip transfers.

Secondly, real-life Al applications are very complex, with a
myriad of operations and irregular data movements. They go
beyond the simpler RNN kernels, which are used as subroutines.
Unfortunately, prior work mainly study only such kernels (e.g.,
[5]). This paper studies NMT, which uses an encoder and a
decoder of stacked multi-layer bi-directional RNN/LSTM
kernels along with additional atfention mechanisms to learn
alignments between speech frames [4] and beam search to keep
track of multiple candidate translation sequences [3].
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Fig. 1. (a) Challenges in real-time Al inference. This paper focus on highly
complex NMT (b) Modern Al models beyond ~32M parameters cannot meet
real-time target. (c) This work evaluates NMT on CPU+FPGAs framework.

Finally, inference using such complex and large DL still has
to be performed under strict real-time latency constraints. As an
example, Microsoft’s Brainwave real-time Al inference strive
for batch-1 to minimize latency [1], while Google TPU [2]
targeted 7 ms maximum latency. Fig. 1b shows the estimated
latency of running a 50-step LSTM with varying model size on
Stratix 10 FPGAs with DDR4 and HBM memories, as well as a
Titan V GPU. As models can no longer fit in on-chip memory,
latency increases substantially due to off-chip memory transfers.
This highlights that current single-node solutions cannot meet
the 7 ms target latency for model sizes beyond 32M parameters.

To address the aforementioned complexity, scalability, and
performance challenges of real-time AI, we propose an Al
inference system combining a server CPU host with multiple
FPGA cards that are software programmable through a unified
software framework as shown in Fig. 1c. We evaluate systems
with three FPGA devices (Arria 10, Stratix 10, experimental
Stratix 10 with Al chiplet [6]), and scaling from 1 to 8 FPGAs.
We show the effectiveness of our system on a real-life large and
complex NMT applications. Our evaluation shows that this
approach enables better scalability and easier software-
programmability to handle complex NMT algorithm, while still
offering extremely low latency (e.g., 10 ms for 100M parameters
NMT with attention on a CPU server with 8 Stratix 10 FPGAs).
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II. BACKGROUND ON NEURAL MACHINE TRANSLATION (NMT)

Neural Machine Translation (NMT) is a widely used DL
model for language translation, which often uses RNN/LSTM
as its building blocks. NMT takes an input sentence of a source
language and produce a translated sentence sequence in another
target language. The architecture of an RNN-based NMT with
attention [4] and its pseudo-code is shown in Fig. 2.
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Fig. 2. NMT architecture illustration (a) and pseudo-code (b).

The encoder processes the input sequence and the decoder
generate the output sequence. They are typically based on multi-
layer RNN (or LSTM) and can use bi-directional cells to analyze
the input sequence and its reverse to capture the relation between
a word and its previous and subsequent words. Attention
correlates historical step-by-step results from encoding the input
sequence with each of the results of the output, which incurs a
non-trivial amount of computation. Qutput projection takes the
result of attention and apply further transformations, such as
softmax and embedding, to output the final translation. More
details of NMT can be found in [4]. A popular NMT variant
uses beam search which calls the decoder multiple times to track
the top k candidate output and choose the best one, where £ is
the beam search width. We study both NMT variants in this
paper. NMT-Luong is a popular variant from [4], while NMT-
Li is used in a prior NMT study on FPGA [3]. We show in our
study that our system can flexibly support both.

III. CPU+ MULTI-FPGA SYSTEM FOR Al INFERENCE

Our system is shown in Fig. 1c. Combining CPU with
FPGAs allows taming the complexity challenge by offloading
only FPGA-friendly functions (e.g., matrix ops) to FPGA, while
relying on general-purpose CPU for any algorithmic
irregularities. To scale, we distribute a large Al model in on-chip
memories across FPGAs (e.g., 224MBs in 8§ Stratix 10s). This
allows scaling up within a server, to complement scaling out
across servers over Ethernet [1]. Finally, FPGA compute is
placed right next to on-chip weight matrices to utilize the high
on-chip memory bandwidth and deliver low matrix operation
latency. Only vectors are transferred via PCle between the CPU
and FPGAs, which can be done in a few microseconds achieving
low overall latency even as the system processes larger models.

We utilize PCle slots in a CPU server within a rack to deploy
multiple Intel FPGA Programmable acceleration cards (PACs)
implementing a software-programmable overlay. We develop a
unified software framework to program the CPU and FPGAs in
C/C++, containing CPU and FPGA APIs for compute as well as
communication and control routines. Any Al application can be
implemented using a composition of these API calls, offering an
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agile Al inference framework and fast experimentation for
application development and partitioning across the CPU and
FPGAs. We also build a modeling tool to estimate the
performance of an Al application written using these API calls.
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Fig. 3. The programming flow for our system: (a) RNN dataflow graph. (b)
RNN overlay program. (¢) FPGA software APIs. Each FPGA implemnets an
overlay architecture (d). This study used NPU Al overlay in [1][6].

FPGA Overlay. The FPGAs in our system implement a
software-programmable Al overlay. We used a faithfully
replicated state-of-the-art overlay: Microsoft’s Brainwave NPU
[1] (Fig. 3d). The reader is referred to [1] and [6] for details of
the NPU implementation. We used the NPU from [6], which has
been shown to be comparable (and better in some workload
scenarios) to the Brainwave NPU in [1]. Although this paper
uses NPU, our approach is general to any FPGA overlay that
offers software APIs for the target application domain.

TABLE 1. SOFTWARE APIS FOR CPU, FPGA, AND COMMUNICATION

CPU APIs
elementwise addition of two vectors
elementwise multiplication of two vectors
cpu_reduce (V) reduces the elements of a vector into a scalar
cpu_dot (vl,v2) dot product of two vectors
cpu_axpy (a, vl, v2)vector scale and add avq + v2
cpu_tanh (v) vector elementwise hyperbolic tangent
cpu_exp (v) vector elementwise natural exponential function
cpu_softmax (v)  vector softmax function y = exp(v)/ Zf:o v;
cpu_matvec (v, m) vector-matrix multiplication
cpu_pickTop (v, n) finds the largest n elements in a vector
FPGA APIs
fpga_matvec (v, m) vector-matrix multiplication
fpga_add (vl,v2) elementwise addition of two vectors
fpga_mul (vl,v2) elementwise multiplication of two vectors
fpga_tanh(v) vector elementwise hyperbolic tangent
fpga_sigmoid(v) vector elementwise sigmoid
fpga_relu(v) vector elementwise rectified linear unit
Communication and Control APIs
loads an overlay program to a specified FPGA
transfers data from CPU to overlay input buffer
initializes weights in the overlay MRFs
triggers overlay execution
transfers data from overlay output buffer to CPU

cpu_add(vl,vZ2)
cpu_mul (vl,v2)

fpga_pgm()
fpga_1d_input ()
fpga_ld mrfs{()
fpga_execute ()
fpga_get_out ()

Software APIs. We implement software APIs listed in
Table I, for CPU and FPGA compute as well as
communications. For CPU APIs, we utilize the best known
methods (e.g., using AVX-512) to implement CPU compute
kernels. We use Open Programmable Acceleration Engine
(OPAE) (opae.github.io) framework to access the Intel FPGAs.
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To program the NPU overlay, we first compile any given
NPU program into a binary. Then, we use our software API
fpga_pgm() to load the compiled binary to the NPU. We also
implement other APIs to load states into the overlay, such as
fpga_ld_mrf() and fpga_1ld_input() to load weight matrices
and input vectors to the NPU register files (MRF, VRF). These
API calls are used to implement Al applications in our system.
Fig. 3 illustrates the programming flow. An example RNN graph
(Fig. 3a) is written as an overlay program (Fig. 3b), that is
compiled to the overlay. We use other API calls to load vector
X, trigger FPGA execution, and get output vector H (Fig. 3c).

Our APIs are extensible. We can create new APIs as long as
they are expressible in the overlay ISA. Furthermore, as these
APIs are written in C/C++, we can easily construct higher-level
applications that incorporate other CPU API calls for operations
that are not supported on or optimized for FPGAs.

System-level Performance Modeling Tool. Given an
application described using a composition of the supported
APIs, the modeling tool associates each API call with its
argument and a previously measured or simulated proxy of a
similar API call (e.g., previously measured data transfer time
between CPU and FPGA or cycle-accurate RTL simulation of
NPU compute time). From such piecewise information, the tool
produces an aggregate performance estimate and highlights
potential bottlenecks. The tool is useful to rapidly estimate the
performance of a given target system, and for system-level
exploration to find the optimal server configuration (i.e. number
and type of FPGASs) to meet given performance constraints.

Problem partitioning across CPU and FPGAs. Problem
partitioning is very important and affects operations distribution
between the CPU and FPGAs, and thus achieved performance.
Our software-programmable approach makes it easier to
experiment with various partitioning schemes. In this paper, we
manually experiment with different schemes to choose the best
mapping for the NMT application server configurations studied.

IV. EVALUATION

We study several generations of FPGAs: Arria 10 (A10), the
latest Stratix 10 (S10), and an experimental Stratix 10 FPGA
with a small Al ASIC chiplet (SI0+TR) from Intel [6]. For the
A10 and S10 NPU overlays, they run at 200 MHz with around
80% of the available DSP blocks and M20Ks utilized. When not
explicitly stated, results are from the performance modeling
tool. We validated multiple data points from our model against
real hardware measurements on a prototype instance of our
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system, based on a modern Intel Xeon server with 4xA10 Intel
FPGA PAC:s. Table II summarizes our experimental setup.

TABLE II SUMMARY OF EXPERIMENTAL SETUP
Server Dell PowerEdge R740 Server, 2 sockets
CPU Intel Xeon Gold 6132 2.6GHz CPU, TDP: 140W/socket
Arria 10 1150 (6MB on-chip, 20nm, TDP: 60W)
PACs Stratix 10 2800 (28MB on-chip, 14nm, TDP: 225W)
Stratix 10 2100 + Al chiplet (74MB on-chip, 14/10nm)
Intel ICC (icpc) compiler version 19.0.2.187 T
Tools Intel Quartus Prime Pro 18.0
OPAE software for FPGA on Xeon
Precisions et )

INT8 (FPGA MatMul), INT27 (FPGA vector ops)
Benchmarks Matrix-vector multiply, LSTM, NMT with Attention

API primitives. We characterized the CPU and
communication APIs on our server. Fig. 4a shows the runtimes
for the CPU vector operations. Even for 8K-element vectors, all
operations can be done within microseconds. Fig. 4b shows the
latency of data transfers between the CPU and N FPGAs for
varying payload size. Transfers involving 1, 2, and 4 FPGAs
take roughly the same latency, since each FPGA card has its own
physical PCle link and the transfers to multiple FPGAs can
happen concurrently. For smaller payload sizes less than 32 KB,
which are common for our vector transfers, sending/receiving
data to/from four FPGAs takes only 1.2—1.4x higher latency
than to/from a single FPGA, and can all be done in less than 8
us. The biggest overlay program within our benchmarks is 2.9
KB and thus, our overlay can be programmed in less than 8 ps.

Scaling FPGA compute to multiple FPGAs. /) Matrix-
Vector Multiplication: We studied largest square matrices that
can be persistent across 1-8 FPGAs. Input vectors are sent to the
FPGAs from CPU through PCle. We studied these partitioning
schemes: (a) split matrix by row blocks and concatenate the
partial results, (b) split matrix by column blocks and reduce
partial results, or (c) a combination of both. For R row blocks
and C column blocks, an R x 1 configuration does not require
any CPU reduction of partial vectors, while a 1xC configuration
employs column-block scheme and hence requires (C — 1) CPU
reductions . As shown in Fig. 4c, FPGA matrix operation is very
efficient and accounts for only a small fraction of the runtime.
Data transfers and CPU compute times dominate. Row-blocking
performs better since it does not require CPU reductions.
However, column-blocking may be needed to exploit compute
parallelism for skewed matrices (i.e. short and wide matrices).
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Fig. 4. Runtime results for: (a) CPU vector operations, (b) Data transfers between the CPU and 1 to 4 FPGAs, and (c¢) Matrix-vector kernels scaled across 1, 2, 4

and 8 FPGAs using different problem partitioning schemes.
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Even with dominating transfer time, our system performance
scales well, since transfer time scales sub-linearly with
quadratically growing problem sizes and increasing number of
FPGAs. Even at 11.9K matrix size with 136M elements, latency
is less than 0.02 ms using the 8x1 S10 configuration.

2) LSTM: LSTM consists of 8 matrix-vector multiplications
followed by several dependent vector operations. We study a
partitioning scheme where each FPGA works on a complete
LSTM subset with the CPU combining the results at the end of
each iteration. (We also experimented with other partitioning
schemes, but we will not discuss here for brevity). Fig. 5a shows
the results scaling LSTM across multiple FPGASs in our system.
We experiment with the largest LSTM we can keep persistent
on 1, 2, 4 and 8 FPGAs. The figure shows that our system still
scales well with multiple FPGAs even for LSTM. All studied
LSTMs achieve below 2 ms latency, even when scaling to a
128M-parameter model on eight S10 FPGAs.

NMT Evaluation. We evaluate the popular NMT-Luong [4]
and NMT-Li used in the only prior NMT on FPGA work [3].

1) Scaling Study: The NMT-Luong uses a 2-layer LSTM
encoder with a bi-directional cell in its first layer, attention
mechanism with general formulation for the score function, and
a 2-layer LSTM decoder. We map both LSTM and matrix-
vector kernels to FPGA while the other operations, including
softmax, vector scaling, vector add, high-precision tanh
activation and input/output embedding, are performed on CPU.
We evaluate scaling of NMT-Luong on 1, 2, 4 and 8 FPGAs
using the biggest model size we can keep persistent. Fig. 5b
shows the results. Although this workload contains complicated
communication patterns between CPU and FPGAs as well as a
wide variety of CPU compute kernels, our system still achieves
below 10 ms latency for NMT models with ~100M parameters
processing 50-step input sequences on eight S10 cards.

Overall, latency increases slower than model size. We get
only 2% higher latency when processing 8x bigger models
scaling from one to eight FPGAs. This is because FPGA
execution time scales constantly and communication scales sub-
linearly, while CPU operations runtime scales linearly. Fig. 5c
shows runtime breakdown for CPU, FPGA, and communication
for the data points in Fig. 5b to further illustrate such behavior.
As we move to a newer FPGA from A10 to S10 and S10+TR,
NMT portions running on the FPGA become more efficient,
while the CPU and communication become more dominant.

2) Comparison to Prior FPGA NMT Implementation [3]:
Unlike NMT-Luong, NMT-Li [3] uses beam search with width
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5, a single layer encoder and an attention with concatenation
score function [4]. In [3], they use high-level synthesis (HLS)
on a single Xilinx Ultrascale+ FPGA targeting FP32 precision.
Despite that we use a mix of INT8 and FP32 precisions (shown
to work well for NMT), the algorithm and the composition of
operations are the same and comparable (we have verified it
with the authors of [3]). We implement two variations of the
NMT-Li model on a single S10 FPGA using the non-persistent
approach similar to [3] in which we load the weight matrices
through the host over PCle or through the DDR4 external
memory interface. Then, we scale to keep the whole model
persistent with eight S10 PACs. Fig. 5d shows 1.2x better
latency even with PCle, which goes up to 7.4x when using
DDR4 for the non-persistent single-FPGA implementation. For
the persistent implementation on our system with eight S10
PACs, we achieve two orders of magnitude improvement
compared to the 24 seconds latency in [3]. This experiment
highlights the power of our agile software framework that allows
us to rapidly experiment with different algorithmic variations by
changing the sequence and composition of our API calls.

V. CONCLUSION

This paper proposes a CPU server with multiple FPGAs to
provide low-latency Al inference scalable to larger models. The
system is software programmable via a unified framework. We
evaluate our system on modern complex NMT workload. The
system scales well with increasing model sizes, where scaling
from 1 to 8 FPGAs allows hosting 8% larger model, while only
increasing latency by 2x. Further, software programmability
allows rapidly implementing multiple NMT variants.
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