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Abstract—Interactive intelligent services, such as smart web
search, are important datacenter workloads. They rely on data-
intensive deep learning (DL) algorithms with strict latency
constraints and thus require balancing both data movement and
compute capabilities. As such, a persistent approach that keeps
the entire DL model on-chip is becoming the new norm for real-
time services to avoid the expensive off-chip memory accesses.
This approach is adopted in Microsoft’s Brainwave and is also
provided by Nvidia’s cuDNN libraries. This paper presents a
comparative study of FPGA, GPU, and FPGA+ASIC in-package
solutions for persistent DL. Unlike prior work, we offer a fair
and direct comparison targeting common numerical precisions
(FP32, INT8) and modern high-end FPGA (Intel® Stratix®10),
GPU (Nvidia Volta), and ASIC (10 nm process), all using the
persistent approach. We show that Stratix 10 FPGAs offer 2.7×
(FP32) to 8.6× (INT8) lower latency than Volta GPUs across
RNN, GRU, and LSTM workloads from DeepBench. The GPU
can only utilize ∼6% of its peak TOPS, while the FPGA with a
more balanced on-chip memory and compute can achieve much
higher utilization (∼57%). We also study integrating an ASIC
chiplet, TensorRAM, with an FPGA as system-in-package to
enhance on-chip memory capacity and bandwidth, and provide
compute throughput matching the required bandwidth. We show
that a small 32 mm2 TensorRAM 10nm chiplet can offer 64 MB
memory, 32 TB/s on-chiplet bandwidth, and 64 TOPS (INT8). A
small Stratix 10 FPGA with a TensorRAM (INT8) offers 15.9×
better latency than GPU (FP32) and 34× higher energy efficiency.
It has 2× aggregate on-chip memory capacity compared to a
large FPGA or GPU. Overall, our study shows that the FPGA
is better than the GPU for persistent DL, and when integrated
with an ASIC chiplet, it can offer a more compelling solution.

I. INTRODUCTION

With deep learning (DL) algorithms becoming the back-
bone of various real-time datacenter services, there is a huge
demand for acceleration solutions that can meet the strict
latency constraints and limited power budget of such services.
Despite their large peak throughput numbers, GPUs cannot
utilize such compute throughput when there is limited compute
intensity (low ops/byte), such as in the case of real-time low-
batch low-latency DL applications. ASICs can deliver the
highest energy efficiency at the cost of fixed functionality
and high non-recurring engineering (NRE) cost, which poses a
huge challenge in the DL domain with continuously changing
algorithms and precisions. On the other hand, FPGAs offer the
advantages of reconfigurability, flexible memory hierarchy, and
less NRE cost and time-to-market, at the cost of 9× bigger
and 3-6× slower DL accelerators compared to ASIC ones [1].

Although most of the recent work on hardware acceleration
of DL focuses on convolutional neural networks (CNNs),
it was shown that CNNs represent only 5% of datacenter
DL workloads [2]. Trending datacenter services rely on data-

intensive models such as recurrent neural networks (RNNs),
gated recurrent units (GRUs), long short-term memories
(LSTMs), and multi-layer perceptrons (MLPs). These models
suffer from memory bottlenecks due to their low compute-
to-data ratio, unlike the extensively studied compute-bound
CNNs. For these workloads, performance depends not only on
the computational throughput, but also on efficiently moving
data through the memory system to/from the compute units.

Since accessing off-chip memory is an order of magnitude
more expensive than on-chip accesses [3], a new persistent
approach that keeps the entire model on-chip is becoming
the new norm for real-time DL acceleration. For instance,
Microsoft’s Brainwave (BW) stores the model parameters in
the on-chip BRAMs of one or more FPGAs. Also, the latest
Nvidia cuDNN library supports persistent mode that stores the
model in the GPU’s register files and caches. Both a high-end
Intel Stratix 10 FPGA and an Nvidia Titan V GPU contain
∼30 MBs of on-chip memory, which is likely to grow in the
future providing a stronger case for persistent DL processing.

Given similar on-chip memory capabilities and support for
persistent approaches in the latest high-end FPGAs and GPUs,
it is critical to evaluate which platform can perform better on
persistent DL. To our knowledge, such direct benchmarking
has not been done before. Prior work [4] reported persistent
FPGA results, but in comparison to non-persistent results of a
GPU that is one generation older and uses a different precision.
Other prior work report results only for persistent DL on GPUs
[5], [6] or FPGAs [7]. In this paper, we present a fair and direct
comparison of the latest Stratix 10 FPGAs and Volta GPUs in
the context of real-time persistent DL sequence models such as
RNNs, GRUs and LSTMs. We then make a case for FPGA-
ASIC integration by leveraging the system-in-package (SiP)
nature of Intel Stratix 10 FPGAs. Recent work has shown that
FPGA-ASIC integration is promising for compute-intensive
DL algorithms such as CNNs [8]. However, in this work, we
focus on a different, and arguably more prevalent, class of
data-intensive applications with considerably lower compute-
to-data ratio. Our contributions are the following:
• We implement an optimized BW-like neural processing unit

(NPU) in RTL and a complete NPU development stack, to
serve as a state-of-the-art benchmark for our study.

• We present a direct comparison of our NPU on a high-end
Stratix 10 FPGA and an equivalent high-end Volta GPU
running persistent kernels using common precisions (FP32,
INT8/4) across a wide variety of workloads.

• We propose TensorRAM, a new 32-mm2 10nm Stratix 10
chiplet for persistent data-intensive DL sequence models that
offers 64 MB of on-chiplet SRAMs with matching near-
memory variable-precision compute throughput.
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II. BACKGROUND

A. Trends in Real-Time Intelligent Datacenter Services
In recent years, major advances in DL, along with the rapid

growth of cloud computing and smart devices, have led to
the proliferation of large-scale real-time intelligent services.
For example, modern web search engines allow users to pose
a question rather than provide simple keywords. Intelligent
personal assistants are another example where real-time DL is
used to process user speech and give smart responses.

Such services are latency critical because its response time
directly relates to user experience. In 2014, Google reported
that the latency requirement for their AI cloud-based inference
was 10 ms, which decreased to 7 ms in 2016 [2]. While one
common technique to improve compute efficiency is grouping
multiple inputs together (i.e. batching), waiting for enough
inputs to batch does not usually meet latency constraints.
Microsoft reported that their BW AI cloud targets the lowest
possible latency, processing a single input at a time [4].

B. Trends in DL Hardware Acceleration
The focus of to-date DL hardware accelerators, from

general-purpose GPUs to specialized accelerators, has been
offering peak compute throughput. This is because, not until
recently, their main focus has been CNN workloads that
have a high comptue intensity and rely on matrix-matrix
multiplication operations. In addition, reporting impressive
peak TOPS is a great marketing message for DL acceleration
solutions.

However, real-world inference workloads with their low
computational intensity and their strict latency demands are
a mismatch to the claimed efficiency of these accelerators,
which often utilize <10% of their peak TOPS. In this paper,
we show that high-performance acceleration of real-time DL
requires balancing memory bandwidth, storage, compute, and
data movement at a different optimization point.

C. DL Sequence Models: RNNs, GRUs and LSTMs
RNNs are a class of neural networks that contain recurrent

connections in the network. They achieve unprecedented accu-
racy in many sequence-based problems such as text analytics.
There are many RNN variants, but the most popular ones are
GRUs and LSTMs. LSTMs are composed of a number of
memory cells, each of which is composed of three multiplica-
tive gating connections called input, forget, and output gates.
LSTMs use the following equations to compute the gates and
produce the results for the next time step.

it = σ(xtWi + ht−1Ui + bi) ft = σ(xtWf + ht−1Uf + bf )

ot = σ(xtWo + ht−1Uo + bo) gt = tanh(xtWc + ht−1Uc + bc)

ct = ft · ct−1 + it · gt ht = ot · tanh(ct)
Here, it, ft, ot, ct, ht are the input gate, forget gate,

output gate, cell state, and cell output at time step t. The ·
and + operators denote an element-wise multiplication and
an element-wise addition. σ and tanh are the sigmoid and
hyperbolic tangent activation functions. W and U denote
weight matrices, and the b terms denote bias vectors.

MLPs, which represent another class of common DL data-
center workloads [2], consist of back-to-back fully connected
layers that can be formulated as matrix-vector multiplications.
In this work, we decide to focus on the more complicated
RNNs, GRUs and LSTMs. These models consist of multiple
matrix-vector multiplications in addition to vector operations
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Fig. 1. BW-NPU, MVU, and MVU tile block diagrams.

and recurrent connections. Thus, they represent a superset of
the operations in the relatively simpler MLPs.

III. THE BRAINWAVE NPU ARCHITECTURE

There are various FPGA-based DL accelerators presented
in literature such as [9], [7] and [10]. However, we chose
Microsoft’s Brainwave NPU (BW-NPU) as a benchmark for
our study since it is commercially deployed and was designed
specifically for persistent RNN, GRU, and LSTM workloads.
We implement the BW-NPU from scratch in SystemVerilog
based on the publicly available information [4] because we do
not have access to the BW implementation from Microsoft.

A. Overview of the Brainwave NPU
The BW-NPU is a software-programmable FPGA overlay

for persistent neural network inference. The NPU instruction
set architecture (ISA) consists of compute instructions, such
as matrix-vector multiplication and element-wise vector acti-
vations, addition, and multiplication, as well as instructions for
data movement from and to matrix register files (MRFs) and
vector register files (VRFs). Fig. 1a shows the block diagram
of the BW-NPU architecture. It consists of a matrix-vector
unit (MVU), two multifunction units (MFUs), in addition to
interconnect and control (I&C). For brevity, we will include
only the details that are necessary for understanding the rest
of this paper. We recommend reviewing the details in [4] for
a deeper understanding of the NPU architecture and ISA.

1) Matrix-Vector Unit (MVU): BW’s MVU performs wide
dot product operations between a shared input vector broad-
casted from the VRFs and different matrix rows coming from
the distributed MRFs in parallel. As depicted in Fig. 1b, the
MVU consists of multiple tiles, connected to central reduction
logic, which reduces partially computed vectors produced by
the tiles into a final vector output of the MVU. An MVU
tile contains a single VRF and D L-wide dot product engines
(DPEs), each of which is coupled with an MRF. The DPEs
perform the dot-product in low precision, then accumulate to
a higher precision as indicated by the precision adjustment
blocks (H2L and L2H) in Fig. 1c.

Fig. 2 illustrates the mapping of a matrix-vector multiplica-
tion operation to the MVU block for a matrix M of size 4×16
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Fig. 2. An Example of mapping matrix-vector multiplication to MVU with
2 tiles, 2 DPEs and 4 lanes (i.e. 2T-2D-4L).

and a 16-element input vector Vi producing a 4-element output
vector Vo. In this example, the MVU block has 2 tiles, 2 DPEs
and 4 lanes. We denote such configuration as 2T-2D-4L and
we will use the same notation for NPU configurations for the
rest of this paper. The MVU takes advantage of all possible
parallelism dimensions in a matrix-vector multiplication, by
computing on multiple row blocks and column blocks in
parallel. Each tile is responsible for a major column block
of the matrix. Within the tile, each DPE operates on a distinct
matrix row, while each lane in the DPE operates on a distinct
element in that row. Reduction across lanes is performed inside
the DPE to produce a partial result, which is then reduced
across tiles to produce the final result.

2) Multi-Function Unit (MFU): The MFU block con-
tains elementwise activation, high-precision multiplication,
and add/subtract units. The activation unit implements differ-
ent activation functions that are widely used in DNNs: tanh,
sigmoid, and ReLU. We implemented the tanh and sigmoid
cores using lookup tables of size 2048 similar to [11] while
exploiting some of the properties of these functions such as
symmetry and range-of-interest [12]. We verified that our
approximate activation functions have a maximum error of
only 9 × 10−4 and 5 × 10−4 compared to a full-precision
software reference which is sufficient for our use case.

3) Interconnect & Control (I&C): The NPU is controlled
using VLIW instructions. A top-level decoder translates each
VLIW instruction into macro-operations (mOPs) that are dis-
patched to their respective modules. Each NPU module has
a low-level decoder that produces a set of micro-operations
(μOPs) to execute a single mOP. For example, an MVU mOP
is a matrix-vector multiplication between a vector from a VRF
address and a matrix from an MRF address. Such a mOP is
translated into a sequence of μOPs to perform dot products,
update accumulators, and write results to the output FIFO.

B. Hazard Detection & Resolution Mechanism

Data hazards in our NPU can happen when an instruction
reads a vector operand that is produced by a previous instruc-
tion, resulting in a classic read-after-write hazard. Handling
hazards is not discussed in [4], so we implemented our own
hazard detection and resolution mechanism. In particular, since
our instruction operates at a large granularity of operands and
computations (i.e. vectors), we chose to implement hazards
resolution by stalling.

A naı̈ve stalling-based hazard resolution approach would be
to stall the issue of an instruction, until the execution of all

TABLE I
PERFORMANCE COMPARISON OF BW-NPU [4] VS. OUR NPU AFTER

APPLYING A MORE FINE-GRAINED ZERO PADDING SCHEME.

Latency (ms)
Speedup

Our NPU BW-NPU
LSTM h=256 t=150 0.107 0.425 3.9
LSTM h=512 t=25 0.029 0.077 2.7
LSTM h=1024 t=25 0.040 0.074 1.8
LSTM h=1536 t=50 0.104 0.145 1.4
GRU h=1024 t=1500 2.337 3.792 1.6
GRU h=1536 t=375 0.734 0.951 1.3

older instructions is complete. However, in our NPU programs,
we found that this could lead to noticeable performance
degradation. It is possible that the MVU already completes
its mOP, but unnecessarily stalls as it cannot dispatch the next
instruction’s MVU mOP until the current instruction’s MFU
mOPs are finished. In our NPU, we chose a more optimized
approach, where the NPU stalls only if it specifically detects
a hazard between the mOPs of an instruction to be dispatched
and those of an older instruction that has yet to be completed.
This is done by checking the target VRF operand source and
destination of the younger and older mOPs, respectively.

To run a benchmark on our NPU, we write an NPU program
describing the benchmark as a sequence of matrix-vector and
elementwise vector operations using the NPU ISA. This NPU
program is then compiled using a compiler/assembler that we
develop to automatically detect hazards between instructions
and generate a binary that can be executed on the NPU. For
the NPU programs implementing our benchmark workloads in
this paper, the compilation time is less than 2 ms.

C. Comparison Against BW-NPU
We developed our NPU such that it faithfully resembles

the BW-NPU according to our interpretation of the publicly
disclosed information in [4] except for two minor differences:
• We focus on common numerical precisions such as FP32

and INT8/4 instead of Microsoft’s non-standard floating
point formats (FP8/11). Using such precisions enables a con-
servative comparison to GPUs. If FPGAs already offer better
performance than GPUs at these GPU-friendly precisoins,
then there are more custom precisions that can be used by
FPGAs (e.g. MS-FP8) to provide even better performance.
We also use INT27 for accumulation and vector operations,
since it is more friendly to the FPGA’s hard DSP blocks.

• In the MFU, we choose to connect the activation, multiply,
and add/subtract compute units in series instead of having a
full crossbar as in BW. This is more resource-efficient and
routing-friendly, but less flexible since certain combinations
of operations become not possible. However, we did not
measure a substantial impact for excluding it and were
able to accommodate all compositions needed for our RNN,
GRU, and LSTM benchmarks.
In order to make sure that our NPU architecture is compa-

rable to BW-NPU, we ran RTL simulation with BW-NPU’s
HW configuration (i.e. 6T-400D-40L) for several GRU/LSTM
benchmarks. The results showed that our NPU performs
within 10% of BW-NPU results reported in [4]. We then
optimized beyond BW-NPU by allowing a more fine-grained
zero-padding scheme that depends on the number of lanes (L)
instead of the number of DPEs (D). This optimization resulted
in an average of 90% additional performance improvement
for small and medium size workloads running on large NPU
configurations such as 6T-400D-40L as shown in Table I.
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Fig. 4. Example simulation traces for our NPU with two different configu-
rations for a single-step RNN workload.

IV. OUR NPU FRAMEWORK & FPGA IMPLEMENTATION

A. NPU Development Flow

We implemented a complete NPU development flow as
shown in Fig. 3. First, we built an ISA-level NPU functional
simulator (FSim) to run NPU programs. This is useful for
validating an NPU program by comparing its functionality
against a software reference. The FSim is usable by any DL
application developer, without any expertise in FPGA design
or hardware acceleration. The FSim also allowed us to ex-
periment with traditional compiler optimizations, such as loop
unrolling and instruction re-ordering to avoid dependencies.
Second, to evaluate cycle-level performance, we built an NPU
architecture performance simulator (PSim) in C++. Links,
interfaces, memory/compute structures are parameterizable for
rapid design space exploration of NPU architectures. For more
precise cycle-level modeling, we also built parameterizable
Verilog RTL testbenches. RTL simulation is much slower than
PSim but more accurate. Nevertheless, we found that the PSim
predicts runtime cycles within ∼10% accuracy of the RTL
simulation. Finally, we apply FPGA-specific optimizations in
the compute units and data distribution for higher performance.
We built our performance simulators (PSim and RTL) to model
both FPGA only and FPGA integrated with ASIC chiplets as
SiP as we discuss in Section V.

B. Design Space Exploration

An NPU architecture has many design points with the same
peak throughput. The effective performance, however, varies
with the number of tiles, DPEs, and lanes. To select an optimal
NPU configuration for our in-depth study, we use our PSim
to conduct design space exploration. Our PSim results show a
large gap (up to 1.5×) in cycle count between the best and the
worst performing configurations at a given peak throughput.

Fig. 4 illustrates the pipeline traces in two different NPU
configurations, which explains why some design points pro-
vide better performance than others. For example, with a

2T-960D-10L configuration, each tile needs to compute 960
columns, and it takes more than 96 cycles for the accumulators
in MVU to output the final reduction value. Note that the first
MFU computation can only start after that. In contrast, with a
4T-120D-40L configuration, each tile computes 480 columns,
and the first MFU computation can start after 12 cycles only.

C. Optimizing NPU for Stratix 10 FPGAs
Based on the design space exploration, we chose the

highest performing NPU configuration given the available
FPGA resources for three different precisions: INT8, INT4
and FP32. We optimized our RTL to make the best use of
FPGA resources and achieve a similar frequency to [4]. In
this subsection, we will briefly describe some of our FPGA-
specific NPU optimizations.

1) Arithmetic Units: For INT8 and INT4 precisions, we
use sign-magnitude number representation to perform the
multiplications. This enables us to pack four and six mul-
tiplications per DSP block for INT8 and INT4 precisions,
respectively. The conversion of the input vector elements from
two’s complement to sign-magnitude is done on-chip before
storing the values to VRFs while the model weight matrices
are already stored in sign-magnitude representation in the
MRFs. We then convert the results of the DPEs back to two’s
complement format for further processing. We also implement
an FP32 NPU using DSP vector structures [13] to study how
FPGAs perform even when using a GPU-friendly precision.

2) Data Movement: Each MVU tile in the NPU has a
VRF that broadcasts the input vector elements to all its DPEs.
In addition, although each DPE has its own MRF, a single
address needs to be broadcasted to all MRFs due to their
lock-step operation mode. This large fan-out is very unfriendly
to the FPGA routing. To mitigate that, we implement a tree-
shaped interconnect that reduces the fan-out of each node and
introduces pipeline stages between the source and destination.
We also implement a star-shaped interconnect for the paths
from the central MVU logic to multiple MVU tiles and from
the last MFU to multiple VRFs across the NPU, such that
a distinct pipelined path is dedicated for each destination.
We carefully wrote our RTL to enable the use of Stratix 10
HyperFlex registers to achieve higher operating frequency.

V. TENSORRAM SYSTEM-IN-PACKAGE CHIPLET

A. Chiplets for Stratix 10 System-in-Package
Intel Stratix 10 FPGAs leverage SiP solutions to integrate

multiple ASIC components with an FPGA fabric in a single
package. Stratix 10 SiP solutions utilize an embedded multi-
die interconnect bridge (EMIB) and provide an efficient link
between two chips, with <1 pJ/b energy consumption and
∼1 Tbps data streaming bandwidth [14]. Moreover, multi-
ple EMIBs can be used to connect multiple heterogeneous
components. Current products integrate an FPGA fabric with
transceiver chips and HBM memory. These interconnected
chips are often referred to as chiplets [14]. Such an architec-
tural paradigm combines flexibility of FPGAs with efficiency
of custom ASICs. Furthermore, it also offers other benefits that
can be summarized as follows. First, it can re-use collaterals
from the Stratix FPGA ecosystem (e.g. chips, packaging,
boards, software) saving tremendous NRE cost and time-to-
market. For instance, a new chiplet can be exposed to the
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FPGA in the same way as any existing hard block (e.g.
DSP block) through Intel Quartus® IP wizard. Second, SiP
is scalable and customizable. A large Stratix 10 FPGA can be
combined with up to 6 chiplets manufactured in different pro-
cess technologies, allowing different levels of customizations.

B. TensorRAM Architecture

A TensorRAM chiplet is optimized to offer low-latency,
energy-efficient, and high-bandwidth memory with near-
memory compute units (CUs). Unlike the prior work proposing
a compute-intensive DL chiplet called TensorTile [8], our Ten-
sorRAM chiplet complements the prior work by proposing a
new data-oriented chiplet architecture that utilizes low-latency
energy-efficient SRAMs. As shown in Fig. 5a, our TensorRAM
chiplet contains low-latency register files (RFs) and SRAMs as
well as a number of near-memory CUs matching the memory
bandwidth. Each cluster consists of an RF and several nodes,
each of which comprises an SRAM bank tightly coupled to a
CU. For our study, CUs were chosen to be 64-wide INT8 DPEs
that can be configured as 128-wide INT4, 256-wide ternary or
512-wide binary DPEs. The TensorRAM chiplet is designed
with a form factor and interface that is compatible as a drop-in
replacement for existing Stratix 10 SiP transceiver tiles. Thus,
we target a TensorRAM configuration with 8 clusters and 64
nodes per cluster to meet our area and power constraints.

Our TensorRAM chiplet architecture can operate in a mem-
ory mode, acting like a typical RAM with deterministic read
and write latency, or in a compute mode where computation is
done near the SRAMs. An example operation of both modes is
illustrated in Fig. 5b and 5c. In memory mode, the TensorRAM
acts like a typical random access memory. Based on the read
address that specifies which cluster and node to target, a
particular SRAM bank is selected and data is read out from
that bank using the bypass logic highlighted in light blue in
Fig. 5. Similarly, to perform a write, it accepts write data and
uses the write address to move the provided data to the target
SRAM bank. In compute mode, each CU operates on a set of
operands from the cluster-level RF and another set of operands
from the coupled SRAM bank as shown in Fig. 5c.

The TensorRAM chiplet was designed to have a fairly sim-
ple interface and control mechanism. It contains a lightweight
decoder which receives a command specifying either a mem-
ory read/write or a matrix-vector multiplication and translates
it into a sequence of low level control signals to execute the
specified operation. This is analogous to the concept of mOPs
and μOPs discussed in Section III.

TABLE II
SUMMARY OF OUR EXPERIMENTAL SETUP

GPU Nvidia Titan V GV100 (12nm)

FPGA-only Intel Stratix 10 GX 2800 (14nm)

FPGA+ASIC Intel Stratix 10 GX 1100 (14nm) + TensorRAM (10nm)

GPU Tools CUDA Toolkit 10.0 + cuDNN 7.3

FPGA Tools Intel Quartus Prime Pro 18.0

ASIC Tools Synopsys Design Compiler 2018 + IC Compiler II 2017

Std. Cells 10nm FinFET CMOS characterized at 0.65V,100ºC [15]

Precisions FP32 - INT8 - INT4

Benchmarks DeepBench + Nvidia persistent RNNs [5]

C. Using TensorRAM with our NPU
Since the TensorRAM chiplet implements near-memory

dot products, the NPU can offload its MVU functionality to
the TensorRAM. The NPU sends/receives data to/from the
TensorRAM-based MVU through the EMIB link which is
exposed to the FPGA as a FIFO-based streaming interface,
similar to what we already use to implement the original
FPGA-based MVU. Hence, there is no need to re-architect
the rest of the NPU to utilize TensorRAM as its MVU. As
we offload matrix-vector multiplication on TensorRAM, we
can achieve both better performance and area efficiency. First,
since the ASIC chiplet operates at a faster clock frequency and
has more memory and CUs, it can deliver higher performance
for the MVU functionality. Second, since the MVU account for
the majority of FPGA resources, offloading it to TensorRAM
frees up resources to implement end-to-end AI applications
on the FPGA as will be discussed in Section VII. Another
alternative is to use a smaller FPGA combined with a chiplet
to offer competitive performance with better efficiency and
smaller form factor, which we evaluate in Section VI.

VI. EXPERIMENTAL RESULTS

A. Methodology
For our study, we evaluate and compare the performance

of a large GPU, our NPU on a large FPGA as well as on
our FPGA-ASIC integrated solution using the TensorRAM
SiP chiplet, all running persistent sequence models inference
workloads. We choose our benchmark workloads from the
DeepBench suite, used in [4], in addition to those used in the
recent Nvidia persistent RNN paper [5] for a fair and direct
comparison. Table II summarizes our experimental setup.

For GPU workloads, we use RNN, GRU and LSTM imple-
mentation from Nvidia cuDNN samples v7, which provides
a variety of options that includes enabling persistency. RNN,
GRU, and LSTM sizes are set according to the benchmark
workloads in Table II. We sanity checked our persistent mode
setup by replicating RNN experiments from the Nvidia paper
[5]. The experiments in the Nvidia paper used a Tesla V100
GPU, which may have slightly different configurations for
core and memory frequencies compared to Titan V, but we
observe that our replicated results on Titan V are reasonably
close to the ones reported in [5]. We were only able to collect
FP32 results, since using INT8 precision resulted in a cuDNN
internal error. We verified with the Nvidia authors from [5]
that persistent INT8 is not supported by cuDNN to date.

To evaluate the performance of our FPGA-ASIC integrated
solution, we implement all of the NPU blocks on the FPGA
fabric except for the MVU block and its instruction decoder,
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(a) 4-tile INT8 (b) 8-tile INT4 (c) 2-tile FP32
Fig. 6. NPU implementations on a Stratix 10 2800 FPGA.

TABLE III
IMPLEMENTATION RESULTS OF OUR NPU ON A STRATIX 10 2800 FPGA.

NPU
ALMs M20Ks DSPs

Freq. Peak
Configuration (MHz) TOPS

INT8
4T-120D-40L

567,982
(61%)

9,018
(77%)

4,880
(85%)

275 10.6

INT4
8T-120D-40L

786,295
(84%)

5,508
(47%)

5,600
(97%)

255 19.6

FP32
2T-64D-32L

286,024
(31%)

4,441
(38%)

4,768
(83%)

200 2.5

which are offloaded to the TensorRAM chiplet. In order to
capture the routing effects on the FPGA side, we specify
an empty logic-locked region partition for the MVU tile and
decoder. We then place this logic-locked region close to the
interface of the transceiver tile where the TensorRAM would
be placed. This setup would create routing congestion that is
similar to when routing signals from and to the chiplet.

B. FPGA-only Implementation Results
Fig. 6 shows our NPU implementations in chip planner for

INT8, INT4, and FP32 precisions. The colors show different
MVU tiles depending on the configuration we decided to
implement in each of the three cases based on our design
space exploration discussed in Section IV. Table III summa-
rizes the configurations and FPGA implementation results for
our different NPU versions. Although we achieve a similar
frequency to that reported in the original BW paper [4] for the
INT8 and INT4 variations, we believe that further low-level
optimizations can be applied to our NPU implementation to
achieve even higher operating frequencies. However, we leave
that for future work since it has very limited impact on the
conclusions we draw from our study in this paper.

C. TensorRAM ASIC Chiplet Results
Fig. 7 shows the layout of our TensorRAM ASIC chiplet de-

tailed in Section V. Both SRAMs and RFs in TensorRAM used
10nm IPs [16]. The 31.8 mm2 chiplet has a total RAM capacity
of 64 MB consuming ∼80% of its area and delivers a peak
performance of 64 INT8 TOPS at 1 GHz frequency. Since the
CUs in TensorRAM can be configured to operate in different
precisions, it has 128, 256 and 512 TOPS peak performance
for INT4, ternary and binary precisions, respectively. Power
consumption is estimated at maximum throughput for full
chip utilization, with average switching activity in logic and
memory cells. Synthesis and automated place & route were
performed for the TensorRAM using libraries characterized at
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Fig. 7. Layout for the TensorRAM ASIC chiplet.

TABLE IV
COMPARISON BETWEEN TENSORRAM AND HBM2.

Parameter TensorRAM HBM2

Latency < 8 ns 16 ns - 32 ns *

Access Energy < 1 pJ/bit 2.24 pJ/bit - 3.45 pJ/bit *

Capacity 64 MB 4 GB - 8 GB (per stack)

Peak Bandwidth 256 GB/s 256 GB/s

* Numbers are reported for both row buffer hit and miss cases

0.65V, 100ºC [15]. Mixed-Vt libraries are used for optimum
clock frequency and power trade-off. TensorRAM consumes
28.3 W resulting in energy efficiency of 2.3 TOPS/W for the
INT8 and 18.1 TOPS/W for the binary modes.

To highlight the value of TensorRAM memory mode, we
compare it with alternative SiP memory solutions. Stratix
10 MX devices include High Bandwidth Memory (HBM)
connected via EMIB. Table IV summarizes pertinent memory
parameters of both TensorRAM and HBM2 chiplets. Overall,
TensorRAM provides over 2− 4× and 2− 3× better latency
and energy efficiency than HBM2 respectively, at the cost
of much smaller memory capacity. The read/write latency of
HBM2 is approximately 16 ns in the case of row buffer hits
[17], while that of TensorRAM is less than 8 ns. In terms of
energy, HBM2 typically consumes a few pico joules to access
a bit. For example, the HBM memory in GPUs consumes 2.24
pJ/bit to move data from the row buffer to the I/O pins, with an
additional 1.21 pJ/bit for activation when the data is not in the
row buffer [17]. In contrast, the energy to move data from an
SRAM bank to the I/O pin in our TensorRAM, including wire
interconnects and buffers in addition to SRAM access energy,
is in the range of hundreds of femto joules. For bandwidth,
both offer the same 256 GB/s bi-direction bandwidth limited
by EMIB links. Thus, HBM2 is more suitable for workloads
with large memory footprint, such as large graph analytics,
while TensorRAM can be beneficial for latency-critical low-
energy ones, such as network packet processing.

D. Comparative Analysis
Table V shows the latency comparison of our benchmarks

on the GPU, FPGA, and FPGA+TensorRAM SiP along with
the speedup relative to the GPU FP32 performance. The FPGA
performance is consistently higher than that of the GPU. Even
when using the GPU-friendly FP32 precision and operating at
only 200 MHz, the FPGA achieves 2.7× lower latency than
the GPU on average. This gap further increases to 8.6× and
11.2× when the FPGA uses INT8 and INT4 precisions at 250
MHz. These speedups are due to the low utilization of the GPU
compared to that of the FPGA as shown in Fig. 8. The GPU is
extremely underutilized, using only 6% of its peak TOPS on
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TABLE V
RESULTS FOR THE GPU, FPGA AND FPGA+TENSORRAM SIP

Workload Platform Latency (ms) Speedup
RNN FP32 GPU 1 -
h=1152 FP32 FPGA 0.742 1.3
t=256 INT8 FPGA 0.210 4.8

INT8 TensorRAM 0.109 9.2
RNN FP32 GPU 1.38 -
h=1792 FP32 FPGA 1.749 0.8
t=256 INT8 FPGA 0.433 3.2

INT8 TensorRAM 0.141 9.8

LSTM FP32 GPU 0.44 -
h=256 FP32 FPGA 0.164 2.7
t=150 INT8 FPGA 0.110 4.0

INT8 TensorRAM 0.082 5.4
LSTM FP32 GPU 0.15 -
h=512 FP32 FPGA 0.079 1.9
t=25 INT8 FPGA 0.027 5.6

INT8 TensorRAM 0.021 7.1
LSTM FP32 GPU 0.44 -
h=1024 FP32 FPGA 0.254 1.7
t=25 INT8 FPGA 0.064 6.9

INT8 TensorRAM 0.036 12.2
LSTM FP32 GPU 5.7 -
h=1536 FP32 FPGA 1.062 5.4
t=50 INT8 FPGA 0.246 23.2

INT8 TensorRAM 0.102 55.9

GRU FP32 GPU 0.085 -
h=512 FP32 FPGA 0.003 28.3
t=1 INT8 FPGA 0.00145 58.6

INT8 TensorRAM 0.00098 86.7
GRU FP32 GPU 12.5 -
h=1024 FP32 FPGA 11.774 1.1
t=1500 INT8 FPGA 3.139 4.0

INT8 TensorRAM 1.828 6.8
GRU FP32 GPU 29.94 -
h=1536 FP32 FPGA 6.063 4.9
t=375 INT8 FPGA 1.454 20.6

INT8 TensorRAM 0.633 47.3

TABLE VI
PERFORMANCE OF FPGA SIP ON LARGER WORKLOADS

Workload Latency (ms)
RNN h=4608 t=256 0.399
RNN h=5632 t=256 0.580
LSTM h=2048 t=25 0.066
GRU h=2048 t=375 0.810
GRU h=2560 t=375 0.621
GRU h=2816 t=750 2.156

average. Consequently, the FPGA also achieves higher energy
efficiency compared to the GPU.

On the other hand, our FPGA-ASIC integrated solution
using a small Stratix 10 device and the TensorRAM chiplet
offers substantially better performance. The INT8 performance
is on average 15.9× and 1.9× better than the GPU and FPGA-
only solutions, respectively. Moreover, as shown in Table VI
and Fig. 8, TensorRAM allows executing larger workloads
at INT8 precision that do not fit into the on-chip memory
of both the GPU and FPGA. In BW, executing such large
workloads requires narrower block FP8 precision (INT3 with
shared exponent) or scaling out to multiple FPGAs. Overall,
the utilization of TensorRAM increases with larger problems
in which more parallelism can be extracted to keep all CUs
busy, achieving 50−80% utilization as shown in Fig. 8.
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Fig. 8. Hardware utilization and energy efficiency of GPU, FPGA, and
FPGA+TensorRAM SiP for different benchmark types and sizes.

TABLE VII
COMPARISON OF PLATFORM SPECIFICATIONS AND UTILIZATION.

WORKLOADS ARE FROM SECTION VI, TR IS TENSORRAM, S10+ AND

S10- ARE LARGE (GX2800) AND SMALL (GX1100) STRATIX 10.

Spec.
High-Performance Energy-Efficient

TitanV
GPU

S10+
S10+

w/ 6TR
T4
GPU

S10-
S10-
w/

1TR
Memory (MB) 34.5 28 412 10.9 10 74
Power (W) 250 120 290 75 24 54
INT8 Peak TOPS 60 28 393 130 10 64
Utilization 6% 57% - - - 36%

VII. DISCUSSION
A. The Big Picture

A comparison between the specs of all three platforms
for both high-performance as well as energy-efficient deploy-
ment targets is summarized in Table VII. For data-oriented
workloads such as persistent DL processing, existing FPGAs
are competitive to GPUs, offering similar on-chip memory
capacity at lower power consumption. The proposed FPGA-
ASIC integration with our TensorRAM chiplet offers not only
higher performance but also better scalability. A large Stratix
10 FPGA can be integrated with up to 6 TensorRAM chiplets,
offering 10× more on-chip RAM capacity than Titan V GPU,
and 6.5× more peak INT8 TOPS, at only 1.16× the power
consumption. For energy-efficient targets, a small Stratix 10
with one TensorRAM can offer 7× more on-chip RAM and
1.4× higher energy-efficiency compared the next-generation
Nvidia T4 GPU, at 50% of its peak TOPS. However, our
evaluation shows that the FPGA SiP can get reasonable 36%
average utilization, while the Titan V GPU, with less INT8
peak TOPS than T4, is only getting 6% utilization.

B. Different Roles of the FPGA fabric and TensorRAM chiplet
By offloading the core NPU block to the TensorRAM

chiplet, one might wonder whether the FPGA fabric would still
be of any value. The key advantage offered by the FPGA fabric
is flexibility through its fine-grained spatial programmability
on the bit, cycle and dataflow levels. This motivates hardening
the heavily-used operations in key application domains in
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TABLE VIII
SUMMARY OF PRIOR WORK IN LITERATURE ON FPGA-BASED LSTM ACCELERATION

Work [18] [19] [11] [20] [4] This work This work

Platform SV GSMD5 Zynq Z7045 Kintex KU060 Zynq ZU7EV S10 GX2800 S10 GX2800
S10 GX1100
with TR SiP

Model storage Off-chip On-chip Off-chip On-chip On-chip On-chip On-chip
Model type Dense Dense Sparse Dense Dense Dense Dense
Total params (M) - - 0.73 - 4.2 2.36 2.36
Precision (Bits) 16 fixed 5 fixed 12 fixed 8 / 1 fixed BFP8 8 / 4 fixed 8 / 4 fixed
Frequency (MHz) 150 142 200 266 250 260 / 255 250+ 1000
Perf. (GOPS) 316 693 282 661 / 3725 22620 7980 / 14112 18481 / 18406
Efficiency (GOPS/W) 12.63 55.88 6.9 - 180 118 / 216 356 / 355

order to free up the precious FPGA fabric for other non-
standard functionalities. Thus, we propose the TensorRAM
chiplet which hardens the core operation of almost all DL
algorithms (i.e. dot product) as we envision data-intensive DL
algorithms to be a crucial portion of numerous end-to-end
applications in wireless communications, finance, etc.

Recently, we are witnessing the emergence of more exotic
AI models and applications such as neural machine translation
(NMT) [21]. These applications include sequence models
(i.e. RNNs or LSTMs) as a subroutine combined with other
components such as word embedding, attention layers and dif-
ferent vector operations. In such case, our FPGA+TensorRAM
proposal can be of substantial importance. Word embedding,
which consists of dictionary lookups, can use the memory
mode of our TensorRAM at much less energy and latency
cost compared to DDR or HBM. Besides that, the TensorRAM
compute mode with its high memory capacity and CU density
can handle the matrix-vector operations in NMT’s multi-
layered LSTMs. Finally, the FPGA fabric can be used to
implement the rapidly changing attention layers and vector
operations. This is just an example for a recent AI application
that can make use of the different capabilities of our FPGA-
ASIC integrated solution, and we expect more to appear in the
near future if the current trend continues.

VIII. RELATED WORK

Table VIII presents a brief summary of the prior work that
focused on FPGA-based acceleration of LSTM workloads. For
the commonly-used INT8 precision, we achieve a throughput
of 7980 GOPS, which is 12× higher than the best prior INT8
FPGA work that we are aware of [20]. Also at INT4, we
offer a throughput higher than most prior work, even when
compared to the work that uses binary precision [20]. The only
prior work that provides a higher throughput is [4] which uses
block FP8 precision. For our FPGA-ASIC integrated solution,
the TensorRAM increases performance significantly compared
to prior work and also achieves the best energy efficiency.

Persistent DL processing has been proposed for both GPU
and FPGA. Prior GPU studies evaluated dense [6] and
sparse [5] persistent RNN, with recent Nvidia cuDNN support-
ing dense RNN, GRU, and LSTM. For FPGA, commercially
deployed Microsoft Brainwave [4] relies on the persistent
approach to fit the entire model into one or multiple ethernet-
connected FPGAs. [7] is the earliest FPGA work that we are
aware of that studied GRUs with all weights on-chip, but
did not coin the term persistence. This paper complements
these prior work by offering evaluation of the latest Stratix 10
FPGA, on known precisions, in comparison to the latest GPU

also with cuDNN persistent kernels enabled. We also propose
a novel TensorRAM chiplet for persistent sequence models.

FPGA EMIB-based SiP has been discussed in [14], but not
in the context of DL. Stratix 10 SiP is commercially available
integrating transceiver chiplets and HBM, but not DL-targeted
chiplets. A recent paper [8] proposed a TensorTile chiplet
for Stratix 10. However, it focuses only on compute-intensive
CNNs, while the TensorRAM chiplet proposed in this work
targets data-intensive and persistent sequence models such as
RNNs, LSTMs, GRUs, and potentially more exotic workloads
such as NMT and transformer networks [22]. To our knowl-
edge, except for [8], this paper is the only other work on
FPGA integration with ASIC chiplets in SiP, and the only one
targeting data-intensive DL sequence models.

In general, several studies focused on compute in/near mem-
ory [23], [24]. This approach was adopted for DL acceleration
outside the context of FPGAs. Neural Cache [25] proposes a
new CPU cache for bit-serial DL processing in memory. For
FPGAs, [26] proposed the 3D-stacking of a DRAM tier and
two FPGA tiers with special compute blocks. It showed that
applications like fast Fourier transforms and quick sort benefit
from the additional memory close to compute units. However,
this was not evaluated for modern DL applications.

IX. CONCLUSION

In this paper, we make a case for FPGA-ASIC integration
in the context of real-time persistent data-intensive DL work-
loads such as RNNs, GRUs and LSTMs. As a benchmark
for our study, we implement a Brainwave-like NPU along
with a complete development flow for functional and cycle-
accurate simulation as well as design space exploration. We
also implement TensorRAM, a new 10nm ASIC chiplet for
persistent sequence models to be integrated with a Stratix 10
FPGA as system-in-package. Our 32 mm2 TensorRAM chiplet
offers 64 MB memory capacity, 32 TB/s on-chiplet memory
bandwidth with 64 TOPS for INT8 and 2×, 4× and 8× higher
TOPS for INT4, ternary and binary precisions, respectively.

We present a detailed comparison between the performance
of the latest and largest Nvidia GPU, a large Stratix 10
FPGA and a small Stratix 10 FPGA coupled with a Ten-
sorRAM chiplet across a wide variety of benchmarks from
the DeepBench suite. Our study shows that current Stratix
10 outperforms the GPU running FP32 persistent kernels
by factors of 2.7× and 8.6× when using FP32 and INT8,
respectively. Our proposed FPGA-ASIC integrated solution
increases this gap to 15.9× for INT8 and achieves higher
energy efficiency while freeing up a large portion of the FPGA
fabric for implementing end-to-end applications that include
DL sequence models as a subroutine such as NMTs.
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