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ABSTRACT
Recent work has shown that using low-precision arithmetic in
Deep Neural Network (DNN) inference acceleration can yield large
efficiency gains with little or no accuracy degradation compared
to half or single precision floating-point by enabling more MAC
operations per unit area. The most efficient precision is a complex
function of the DNN application, structure and required accuracy,
which makes the variable precision capabilities of FPGAs very
valuable. We propose three logic block architecture enhancements
to increase the density and reduce the delay of multiply-accumulate
(MAC) operations implemented in the soft fabric. Adding another
level of carry chain to the ALM (extra carry chain architecture)
leads to a 1.5× increase in MAC density, while ensuring a small
impact on general designs as it adds only 2.6% FPGA tile area and
a representative critical path delay increase of 0.8%. On the other
hand, our highest impact option, which combines our 4-bit Adder
architecture with a 9-bit Shadow Multiplier, increases MAC density
by 6.1×, at the cost of larger tile area and representative critical
path delay overheads of 16.7% and 9.8%, respectively.
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1 INTRODUCTION
Since the demonstration of their huge potential in the 2012 Ima-
geNet large-scale visual recognition challenge [13], deep neural
networks (DNNs) have resulted in numerous breakthroughs in
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the machine intelligence field. They have rapidly replaced classi-
cal machine learning approaches that are based on hand-crafted
domain-specific features in various areas such as computer vision
and natural language processing. However, the state-of-the-art
accuracy achieved by DNNs comes at the cost of increased compu-
tational complexity as DNN models become bigger and deeper to
achieve higher accuracy. As a result, high-performance and energy-
efficient hardware acceleration is necessary to deploy DNN models
both in mobile devices and large-scale datacenter services that have
tight power budget and latency constraints. From this perspective,
FPGAs offer an attractive solution for accelerating DNNs due to
their higher energy efficiency and lower latency compared to GPUs,
as well as their flexibility and lower NRE cost compared to ASICs.

Two of the main classes of DNNs are convolutional neural net-
works (CNNs) and long short-term memories (LSTMs) which are
considered the state-of-the-art models for visual recognition and
natural language processing, respectively. CNNs are typically com-
posed of several convolution layers in which an input feature tensor
is convolved with a set of kernels to produce the output feature
tensor consumed by the subsequent layer [13]. Recent CNN models
consist of up to a thousand convolutional layers, followed by at least
one fully-connected layer [22]. On the other hand, LSTMs consist of
a series of matrix-vector multiplications followed by non-linear ac-
tivation functions to compute the values of input, output and forget
gates over several time steps [10]. Thus, the fundamental operation
in both CNNs and LSTMs is multiply-accumulate (MAC) of weights
and input features. With the introduction of high-bandwidth mem-
ory [24] and persistent DNNs that can store all model parameters
in on-chip memory [9], off-chip communication has become less
problematic and the primary bottleneck is the number of MACs
that can be performed on-chip per cycle.

Recently, research efforts have shown that huge gains can be
achieved by using low-precision arithmetic in DNN inference ac-
celeration with little or no accuracy degradation compared to half
or single precision floating-point [19]. The flexibility of FPGAs in
implementing custom bitwidth datapaths gives them an additional
advantage compared to GPUs in accelerating low-precision DNNs,
particularly as there is no one precision that is always optimal.
Mishra et al showed that a wide range of fixed-point precisions
occur on the pareto optimal curve of CNN inference accuracy vs.
hardware cost, with precisions from 2- to 8-bits all having a role to
play [19]. Rybalkin et al showed similar promise for low-precision
fixed point LSTM inference, with pareto-optimal points for high
accuracy networks ranging from 3 to 8 bits of precision [21]. Mi-
crosoft’s Project BrainWave achieves very high performance on
LSTMs and gated recurrent units (GRUs) using non-standard block
floating-point representations with mantissa precisions as low as
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2 to 5 bits (implying 3 to 6 bit multiplies) mapped to soft logic
multipliers and adders [9].

The desire for even higher performance low-precision multiply-
accumulate on FPGAs motivated recent work to enhance FPGA
DSP blocks to natively support low-precision 9-bit and 4-bit multi-
plication and MAC operations at minimal block area overhead [4].
However, DSP blocks represent only 5% of the FPGA core area in
DSP-rich devices [15] which significantly dilutes the overall gains
of these enhancements. Logic blocks are the most abundant re-
source in an FPGA, typically constituting about two thirds of its
core area [6], and thus efficiently exploiting them can have more
impact on the overall performance of an application than DSP block
enhancements. In this work, we investigate architectural changes to
the FPGA logic blocks that can significantly increase the density of
on-chip low-precision MAC operations at minimal area and delay
cost. Our contributions in this paper are the following:

• We propose three different architectural enhancements to
the logic fabric of current commercial FPGAs to improve the
density of on-chip MAC operations.

• We extend the COFFE automatic transistor sizing tool [25] to
support more sophisticated logic block architectures similar
to those in Intel Stratix-10 FPGAs, as well as our proposed
enhancements.

• We evaluate the density and speed gains of these enhance-
ments when implementing 4- to 9-bit multiply and MAC
operations.

• We quantify the impact of our proposed changes on logic
block area and on the delay of key paths that impact the
speed of the FPGA logic for general use.

2 BACKGROUND
2.1 The Evolution of the FPGA Soft Logic
While various basic building blocks have been used for FPGA logic
[20], current commercial FPGAs all use various forms of look-up
tables (LUTs) as the basis of their logic elements [23]. A K-LUT can
implement any K-input logic function by storing its truth table in
SRAM cells and using the K inputs as multiplexer selection lines
to choose between the stored values. Classical FPGA architecture
exploration studies showed that LUTs with 4 to 6 inputs provide
the best area-delay product for a wide range of benchmark circuits
[2], with 6 LUTs being faster but less area-efficient than 4-LUTs.

The Stratix II architecture [16] introduced fracturable LUTs; these
LUTs add a small amount of circuitry so that they can not only
implement a single K-input function, but can alternately also imple-
ment two K − 1-input functions by dividing the K-LUTs’ truth table
and output selection multiplexer. Fracturable LUTs can implement
circuit critical paths with large LUTs to reduce the number of LUTs
in series and help speed, while still packing two smaller logic func-
tions into a single fracturable LUT when it is more area-efficient.

The latest FPGAs from both Xilinx and Intel use fracturable
6-LUT logic fabrics, but make different design choices on how
flexible the fracturing is. The Stratix-10 Adapative Logic Module
(ALM) [17] is a 6-LUT that can be fractured to implement any two
5-input functions that use no more than 8 distinct inputs, while
the Virtex Ultrascale+ 6-LUT can be fractured to implement two
5-input functions with no more than 5 distinct inputs [7]. Both of

Figure 1: ALM architecture of Stratix-10 with the proposed
Extra Carry Chain architecture modifications (highlighted
in red).

these architectures also have dedicated structures to implement
arithmetic (sum and carry) functions; in Stratix-10 a fracturable
6-LUT is paired with two bits of hard arithmetic, while Xilinx
Ultrascale+ pairs each 6-LUT with one bit of arithmetic.

2.2 Stratix-10 ALM Architecture
In later portions of this paper we will show that a key factor in the
efficiency of a logic block’s implementation of a multiply operation
is how many arithmetic functions it can perform per LUT/logic
element. This leads us to choose Stratix-10, which has 2-bits of
hardened arithmetic per ALM, as the baseline against which we
will compare our enhancements. Fig. 1 shows the ALM architecture
in Intel Stratix-10 FPGAs [11]. Each ALM is a 6-LUT that can be
fractured into two 5-LUTs. It has 2 bits of arithmetic (i.e. two full
adders) with dedicated routing wires for the carries, 8 distinct inputs
(A-H), and 4 outputs (O1-O4). An ALM can operate in two major
different modes as follows:

(1) The normal mode in which the ALM can implement either a
6-input logic function, or two 5-input or smaller functions
that together use no more than 8 distinct inputs. This allows
implementation of two independent 4-LUTs, or two 5-LUTs
that share two inputs and so on.

(2) The arithmetic mode in which four 4-LUTs feed the four
inputs of the two full adders. In this mode, the 4-LUTs can
implement identity functions to simply pass inputs to the
adders or they can implement simple pre-addition logic if all
four 4-LUTs use six or fewer distinct inputs.

A logic array block (LAB) contains 10 ALMs along with a local
routing crossbar that allows connections from ALM outputs to
inputs within the LAB and connections from the general (inter-
logic-block) routing wires to the ALM inputs. There are also direct-
connect wires which let ALM outputs in one LAB directly drive
the local interconnect in the LABs to its immediate left and right,
thereby allowing high speed nearest neighbor connections without
use of the general routing. Each ALM can drive four outputs to
the general routing, for a total of 40 outputs per LAB. Dedicated
carry chain routing wires run between the ALMs of the same LAB
to form multi-bit adders, and dedicated routing between vertically
adjacent LABs allows wider adders to be efficiently constructed.
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Figure 2: The mapping of a 4-bit unsigned multiplier to the current Stratix-10 ALM architecture.

2.3 Low-Precision Multipliers on FPGAs
Recent work has proposed DSP block architectural changes to sup-
port 9-bit and 4-bit multiplication and MAC operations for low-
precision deep learning on FPGAs [4]. Despite doubling and qua-
drupling the capacity of DSP blocks in implementing 9-bit and 4-bit
multipliers respectively, the overall performance of CNN inference
improved by only a factor of 1.3× and 1.6×. The reason is twofold;
Firstly, DSP blocks consume only 5% of the FPGA core area in cur-
rent DSP-rich architectures which significantly dilutes the gain
from making them capable of performing more low-precision mul-
tiplications. Secondly, as the multiplication bitwidth decreases, the
multiplier array size shrinks quadratically and thus implementing
small multiplications in the abundantly available logic blocks be-
comes a viable option. These reasons motivate the investigation of
architectural changes at both the ALM and LAB levels to increase
the efficiency of the FPGA’s soft fabric in implementing multipliers
in general, and more specifically smaller ones of size 4- to 9-bits.

In order to understand howmultipliers are mapped to the Stratix-
10 ALM architecture, we experimented with different sizes of mul-
tipliers ranging from 4-bit up to 9-bit on Quartus Prime Pro 17.1.
For simplicity, we will explain the mapping of an unsigned 4-bit
multiplier but we also found in our experiments that a signed or
unsigned multiplier of any size from 4-bit to 9-bit is mapped using
the same approach. In Fig. 2, the two multiplicands are represented
by either patterned or coloured circles. The combination of a colour
and a pattern represent an AND operation between the two corre-
sponding bits while the reduction of two patterned coloured circles
(i.e. two partial product bits) results in other shapes.

Most of the ALMs are used in the arithmetic mode such that the
4-LUTs implement the AND gates to produce the partial product
bits which are then added using the hard carry chains. In a 4-bit
multiplier, three and a half ALMs are needed to generate and add
each of the two pairs of partial products in the first reduction stage
as shown in Fig. 2. Then the second stage of reduction requires
three additional ALMs to produce the final result. This results in a
total of 10 ALMs for a 4-bit multiplier.

To validate our choice of the Stratix-10 ALM as a baseline, we
also performed similar experiments in mapping 4- to 9-bit multiply-
accumulate units to a Virtex Ultrascale+ device using Vivado 2018.1.

On average 70% more fracturable LUTs were required than when
targeting Stratix-10 ALMs. For both the Virtex Ultrascale+ and
Stratix-10 architectures we iteratively shrank the floorplan until
compilation failed in order to ensure we had found the densest
mapping possible in each device.

2.4 CAD for FPGA Circuit Design
To evaluate our proposed architectures, we must determine their
impact on the logic tile (logic block plus its associated routing)
area, as well as the delay of many paths within the tile. We use the
COFFE FPGA transistor sizing and modeling tool for this purpose
[8]. Given a description of the tile architecture, COFFE builds the
relevant subcircuits for SPICE simulation, estimates layout area,
adds wire loads, and iteratively optimizes the sizing of each type
of transistor. By directly using SPICE for delay estimation, COFFE
can accurately model delay in recent process nodes, and its full
custom circuitry and transistor sizing approach matches the design
style of commercial FPGA logic tiles. We use the latest release
of COFFE, which more accurately models wire loads by creating
and optimizing a floorplan of the logic tile, and whose area and
delay estimates have been shown to correlate well with published
commercial FPGA values [25]. This version of COFFE can also
implement logic in standard cells for heterogeneous blocks, which
allows us to incorporate standard cell logic within the logic tile for
one of our architecture variants (shadow multipliers in Section 3.3).

The latest release of COFFE can model fracturable LUTs and
either one or two bits of arithmetic per fracturable LUT [25]. How-
ever, it still requires considerable modifications to enable modeling
more sophisticated ALM architectures similar to those of state-of-
the-art commercial FPGAs as shown in Fig. 1. Our enhancements
to COFFE will be discussed later in Section 4.2.

3 LOGIC ARCHITECTURE ENHANCEMENTS
In this section, we present three different architectural enhance-
ments to FPGA logic blocks, two of which are on the ALM level
while the third is on the logic cluster (i.e. LAB) level. For each archi-
tectural enhancement, we describe the circuitry added to the ALM
or the LAB and show, as a simple example, how a 4-bit unsigned
multiplier would map to the soft logic of the enhanced FPGA.
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Figure 3: Mapping a 4-bit unsigned multiplier to the Extra
Carry Chain architecture.

3.1 Extra Carry Chain
When examining the mapping of multipliers to the Stratix-10 soft
logic as described in Section 2.3, we can observe that the LUTs inside
the ALMs are used to implement the partial product generation
2-input AND gates in the first reduction stage. After that, only
the carry chains are used to implement the subsequent reduction
stages while the LUTs are used as identity functions to feed the
hard adders with inputs as shown in the rightmost ALM column in
Fig. 2. This results in an inefficient ALM utilization and emphasizes
the need to implement more efficient adder reduction trees in order
to increase the on-chip MAC density.

To address this, we propose adding another carry chain to the
ALM such that the two new adders get their inputs from the two
sum outputs of the first carry chain and the two ALM inputs (E
and F) that are left unused in the arithmetic ALM mode as shown
in Fig. 1. By doing this, we can use the second level of adders to
perform another stage of reduction within the same ALMs instead
of using the adders of another set of ALMs and leaving their LUTs
unusable, as is the case in the current Stratix-10 architecture. Fig.
3 shows the mapping of a 4-bit multiplier to the proposed ALM
architecture with an additional carry chain. The first pair of partial
products are generated and added in 3 ALMs and then reduced with
the second pair in another 3 ALMs using the added carry chain.
This results in a mapping that consumes only 7 ALMs instead of
the 10 ALMs required in the baseline Stratix-10 ALM architecture.
This architectural enhancement does not require additional inputs
or outputs to or from the ALM and thus the area overhead of the
two adders and the 2:1 multiplexers allowing them to be bypassed
(highlighted in red in Fig. 1) is minimal. The additional carry chain
decreases the number of ALM levels not only for multipliers but
also for adder reduction trees in general. For example, a 3-to-1
adder would require only one ALM level in the Extra Carry Chain
architecture compared to two levels with the current Stratix-10
architecture.

Figure 4: Proposed 4-bit Adder architecture with additional
full adders and multiplexing (highlighted in red).

3.2 Deeper Fracturability: 4-bit Adder
Another approach to increase the density of MAC operations is to
harden more adders per ALM to create a single but wider carry
chain. Since multipliers use the 4-LUTs before adders to imple-
ment only two-input AND gates as shown in Fig. 2, the 4-LUTs
are extremely underutilized. Therefore, we propose going one level
deeper with ALM fracturability by splitting each 4-LUT into two
3-LUTs, followed by four bits of arithmetic instead of two as shown
in Fig. 4. To compute and sum eight partial products in this ALM
we must configure each of the eight 3-LUTs as a 2-input AND gate.
This requires a total of 16 inputs. However, since there are many
shared signals, the number of distinct inputs is only eight matching
the ALM’s input ports count. The reason is the input sharing nature
of multiplier arrays which produce N 2 partial product bits from
only 2N input bits for any multiplier bitwidth N . Fig. 5 shows the
mapping of an unsigned 4-bit multiplier to ALMs with 4 bits of
arithmetic. It shows that none of the used ALMs has more than
8 distinct inputs. This observation holds for signed and unsigned
multipliers of all sizes.

Although we do not need additional input ports, we need to
ensure that we can deliver the correct inputs to the 3-LUTs both
to implement multiplier arrays and also to use the adders to imple-
ment a standalone 4-bit adder per ALM for general design use. For
this reason, we add the small 2:1 multiplexers (highlighted in red in
Fig. 4) in front of four out of the eight 3-LUTs. These multiplexers
provide us with enough flexibility to deliver the 8 ALM inputs to
the 3-LUTs to implement equations (1) and (2) in case of multiplier
arrays and standalone adders respectively. Table 1 shows the as-
signment of ALM inputs (A-H in Fig. 4) as well as the function that
each of the eight 3-LUTs implements for both scenarios. Also, to be
able to output the result of all four adders, we add two 2:1 output
select multiplexers before the FFs for outputs O2 and O4 as shown
in Fig. 4.

a0b4 a0b3 a0b2 a0b1

a1b3 a1b2 a1b1 a1b0 + (1)

a3 a2 a1 a0

b3 b2 b1 b0 + (2)
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Table 1: ALM input assignment and LUT masks for implementing multiplier arrays and standalone adders (Eq. (1) and (2),
receptively) using the 4-bit Adder architecture.

Input L1 L2 L3 L4 L5 L6 L7 L8
Mult (Eq. 1) B&D (a1b0) A&C (a0b1) B&C (a1b1) A&E (a0b2) B&F (a1b2) A&G (a0b3) B&G (a1b3) A&H (a0b4)
Add (Eq. 2) D (a0) C (b0) A (b1) E (a1) F (a2) B (b2) G (a3) H (b3)

Figure 5: Mapping a 4-bit unsigned multiplier to the 4-bit
Adder architecture.

3.3 Shadow Multipliers
In [12], Jamieson and Rose proposed shadow clusters. These are
normal FPGA logic clusters added to hard blocks such as BRAMs or
DSP blocks which can be used only when the hard blocks are not
used. The motive was to increase the area efficiency for applications
that do not fully utilize the hard blocks on an FPGA. However, for
DL applications, DSP blocks are more valuable and are usually the
bottleneck when implementing DL accelerators on current FPGAs
[5]. Therefore, a more effective way to increase the density of on-
chip MAC operations is to add a shadow hard multiplier within each
logic cluster. In order to avoid adding any extra local or inter-tile
routing area, this shadow multiplier borrows the input and output
ports of some of the ALMs in the cluster; no extra ALM input muxes
are built and no cluster inputs or outputs are added. As shown in Fig.
6a this makes some ALMs unusable when the shadow multiplier is
in use.

We evaluate hardening various shadow multiplier sizes. As the
hard multiplier bitwidth increases, the logic cluster area overhead
increases and it leaves more ALMs unusable since it needs more
input and output ports. On the other hand, a larger hard multiplier
results in more efficient implementations of larger multiplies in the
soft logic. Therefore, this design choice relies heavily on the multi-
plication bitwidths used by the target application. We experiment
with shadow multiplier sizes ranging from 4- to 9-bits and show
the trade-off between ALM savings and cluster area overhead in
the results section of this paper.

FPGA applications have diverse needs for multiplication: there
will be a variety of multiplication precisions, and a mix of signed
and unsigned multiplication. To ensure our shadow multiplier is as
flexible as possible, we design a special multiplier array, shown in
Fig. 6b, that enables efficient implementation of two’s complement

signed multiplications of bigger sizes. The invertible cells (Fig. 6d)
and the signed/unsigned cells are added to implement a Baugh-
Wooley signed multiplication [3], and are marked with crossed
circles and ’S’ symbols respectively. The ’S’ bits are 1 for a signed
multiply and 0 otherwise, and the invertible cells are controlled
using three different sign control signals (C1,C2 and C3) in our
multiplier array instead of a single control signal in conventional
ones.

Fig. 6e illustrates how a 6-bit signed multiplier can be imple-
mented using a 4-bit shadow multiplier built using a conventional
multiplier array. The hard multiplier is forced to implement the
lower left corner of the multiplier array to align the invertible cells
in the hard multiplier with the positions where they are needed in
a 6-bit multiplier. This results in 5 partial results to be reduced in
the soft logic in addition to extra logic to correct the contamination
of the misplaced ’S’ bit from the hard multiplier.

However, when using a multiplier array with three distinct sign
control signals, we can invert the corner cell, disable the inversion of
the bottom boundary cells and set the green S to 0, as shown in Fig.
6f. This enables the hard multiplier to implement the top left corner
of the multiplier array resulting in no contamination bits and only
3 partial results to reduce in the soft logic. Larger multiplications
can also be mapped to this architecture by combining several hard
multipliers. For instance, an 8-bit multiplication can be implemented
using four 4-bit multipliers and one level of carry chain to combine
their outputs.

4 EVALUATION
4.1 ALM Savings for Multiplies and MACs
To quantify the increase in multiply and MAC operation density
achieved by each of the three architectural changes presented in
Section 3, we hand-map multipliers and MAC units of sizes ranging
from 4- to 9-bit to the logic blocks of a Stratix-10-like architecture
as well as the three proposed ones. We verify our mapping for
the baseline architecture with synthesis results from Quartus 17.1.
For MAC units, Quartus does not perform any cross-boundary
optimizations between the multiplier array and the accumulator
and therefore we follow the same approach in our hand-mapping to
maintain a fair comparison across architectures. We present results
where the accumulator is the same width as the multiplier output;
however any other assumption leads to the same trend in results.

Fig. 7 shows the ALMs required for 4- to 9-bit multiplier andMAC
units with a baseline ALM, as well as our Extra Carry Chain and 4-
bit Adder architectures. Both proposed architectures outperform the
baseline across all multiplier and MAC precisions. For standalone
multipliers, the Extra Carry Chain and the 4-bit Adder architectures
reduce ALM usage by 29% and 36% on average across this range of
multiplier sizes, respectively. For MAC operations both proposed
architectures perform similarly, with the Extra Carry Chain and 4-
bit Adder architectures reducing average ALMs per MAC operation
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(a)
(b)

(c)

(d)

(e) (f)

Figure 6: Shadow multiplier: (a) Hard multiplier placement in logic block, (b) Hard multiplier design, (c) Normal multiplier
cell, (d) Invertible multiplier cell, and 6-bit multiplication mapped to 4-bit hard multiplier (e) using conventional multiplier
array and (f) using enhanced multiplier array with three distinct sign control signals.
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Figure 7: ALM utilization for 4- to 9-bit multipliers and
MACs on Stratix-10, Extra Carry Chain and 4-bit Adder ar-
chitectures.

vs. the baseline by 36% and 38%, respectively. The Extra Carry
Chain architecture can implement the accumulation adder in the
second carry chain of the last reduction stage of the multiplier array
so its advantage over the baseline architecture is larger on MAC
operations than on multiplies.

We map multipliers and MACs to the Shadow Multiplier archi-
tecture discussed in Section 3.3 to achieve the highest reduction in
ALM count rather than the shortest critical path delay. The average
ALM savings increase with the hard multiplier size; for instance,
when implementing a 9-bit multiplier using the 9-bit Shadow Multi-
plier architecture only 5 ALMs are consumed since they were made
unusable by selecting the output of the multiplier (see Fig. 6a). On
average for 4-bit to 9-bit MAC operations, the reduction in ALMs
used or unusable vs. the baseline varies from 46% for a 4-bit Shadow
Multiplier to 88% for a 9-bit Shadow Multiplier architectures. These
are larger reductions than those achieved by the Extra Carry Chain
or 4-bit Adder architectures, but the ShadowMultiplier architecture
also adds more area to the FPGA tile.

In Section 3 we ensured that our logic enhancements respect
the architectural constraint that each ALM can use no more than

8 inputs. There is also a constraint on the number of inputs to a
logic block – in Stratix-10 the number of LAB local routing wires is
60, and therefore the sum of the number of distinct input signals
to all ALMs within a LAB must be at most 60 [17]. While our
architecture enhancements increase MAC density, all the LABs
produced for all 3 enhanced architectures for MAC units from 4- to
9-bits still fit comfortably within this local routing limit. The 4-bit
Adder architecture has the highest LAB local routing demand, but
even in this case, the MAC mappings we choose balance partial
product (low-input-demand) and adder tree (higher-input-demand)
operations in LABs and the worst-case LAB local routing demand
is only 46 (out of 60) wires.

4.2 COFFE Flow: Extensions and Technology
Section 4.1 showed that the three proposed architectural changes
will lead to considerable savings in the total number of ALMs
needed to implement multipliers on the soft fabric. However, the
architecture changes will also increase the size of the logic block
and will impact the delay of some paths within the logic block as
well; for a complete evaluation we need to compute these overheads.
As mentioned previously, we extend the COFFE CAD tool in several
ways so that it canmodel and evaluate these new architectures. First,
we add flexible control over the way inputs connect to fracturable
LUTs; this enables us to better capture the functionality of a Stratix-
10 ALM which is our baseline architecture. Second, we add new
options for carry chain architectures. COFFE could model 1-bit and
2-bits of carry chain per ALM/fracturable LUT; we added support
for 4 bits of arithmetic per fracturable LUT.We also extended COFFE
to support two cascaded carry chains per ALM. Next, we modified
COFFE to support deeper fracturing of LUTs; this was particularly
important to enable efficient use of the large number of arithmetic
bits per fracturable LUT in some of our proposed architectures.
COFFE previously supported fracturing a 6-LUT into two 5-LUTs;
we extended COFFE so it can now also fracture a 6-LUT into four 4-
LUTs or eight 3-LUTs. These deeper levels of fracturing are needed
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Figure 8: Critical path of a 5-bit multiplier mapped to the 4-bit Adder architecture.

Table 2: Routing and tile architecture parameters.

Parameter Value Parameter Value
N (ALMs/LAB) 10 Fs 3
W (Channel width) 320 Fcin 0.2
L (Wire segment length) 4 Fcout 0.025
I (Inputs/LAB) 40 Fclocal 0.5

to model the LUTs feeding the carry chain in Stratix-10 and in
one of our proposed architectures, respectively. We also added
finer control over COFFE’s intra-ALM routing so we could add
multiplexers where necessary to make these new features as useful
as possible. Since wire load affects both transistor sizing and delay
significantly, we also created a floorplan for the proposed ALM that
is used within COFFE to estimate all the intra-ALM wire lengths.

With thesemodifications, COFFE nowhas three additionalmodes
of operation which allow us to perform area and delay measure-
ments for three new architectures: the Stratix-10-like architecture,
Stratix-10 with a second level of carry chain adders (both shown
in Fig. 1) and finally the deeper fracturability design with 4-adders
per ALM (Fig. 4). We believe these new features open up new ar-
eas for exploration and will be helpful to future FPGA logic block
architecture research as well1.

To evaluate the area and delay impact of shadow multipliers we
created a structural system verilog implementation of our enhanced
multiplier array with 3 distinct sign controls and parameterized
precision. DSP block multiplies in FPGAs are typically implemented
with standard cells, and accordingly we used a standard cell flow
for the shadow multiplier: Synopsys Design Compiler 2013.03 for
synthesis, Cadence Innovus for place and route, and 28 nm ST Mi-
croelectronics standard cell libraries. We used COFFE’s full custom
flow with 22 nm HP predictive technology model SPICE decks [1],
so we scale the area of the resulting standard cell block to 22 nm
and input it to COFFE, along with the area of the input drivers and
output select multiplexers (see Fig. 6a). This allows COFFE to model
the increased wire length due to the extra tile area, and to resize
buffers where appropriate to cope with the larger loads.
1This enhanced version of COFFE is available at:
https://github.com/vaughnbetz/COFFE/tree/lbChanges
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Figure 9: LUT input delays for the Stratix-10, Extra Carry
Chain and 4-bit Adder architectures.

4.3 Tile Area and Delay Cost
COFFE sizes transistors to optimize a user-specified cost function
of area and delay. For this study we have chosen a cost function of
area · delay2 as it reflects the greater emphasis on delay compared
to area typical in high-performance FPGAs like Stratix-10. The
routing architecture and logic cluster parameters are chosen to
match those in [8], as they are representative of recent Stratix
series architectures; these parameters are summarized in Table 2.

Fig. 10 shows the area breakdown of the baseline, Extra Carry
Chain, and 4-bit Adder architectures along with 4- and 9-bit Shadow
Multiplier architectures using the baseline ALM. The Extra Carry
Chain architecture and the 4-bit Adder architecture show small tile
area increases over the baseline, of 2.6% and 2.9%, respectively. The
major contributor to this increase is doubling the number of full
adders per ALM for both architectures, which led to an approxi-
mately 2% area increase. The remainder of the area increase is pri-
marily due to the extra multiplexing required by these architectures
– as Fig. 1 and 4 show there are also two and six 2:1 multiplexers
added in the Extra Carry Chain and 4-bit Adder architectures vs.
the baseline, respectively.
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Figure 10: Tile area breakdown for various architectures.

As shown in Fig. 10, the 4- and 9-bit shadow multipliers increase
the logic tile area more significantly, by 5.0% and 14.8% respectively.
The main contributor to this increase in area is the added shadow
multiplier which contributed a 2.9% and 12.8% area increase in case
of 4- and 9-bit shadow multipliers, respectively. The remaining
portion of the overall area increase is due to the increase in buffer
sizes to drive the intra- and inter-cluster wires which have become
longer due to the hard multiplier’s area. The tile area increase also
leads to some slowdown in the programmable routing due to longer
wire-lengths. For the 4-bit shadow multiplier case, the delay of a
direct (nearest neighbor) connection and a length 4 routing wire
have increased by 4.4% and 1%, respectively. A 9-bit shadow multi-
plier increases routing delay more: by 9.5% for a direct connection
and 6.5% a length 4 routing wire.

While the small area increases of the Extra Carry Chain and
4-bit Adder architectures mean that the routing wire delays are
not significantly impacted, some LUT delays are. The delay of each
LUT input from the local interconnect of the LAB to the 6-LUT
output is shown in Fig. 9 for each ALM architecture. This figure
shows the delays for the 8 inputs of the ALM; note that input C
has exactly the same delay as input G and similarly inputs D and H
have the same delay.

For the Extra Carry Chain architecture, inputs A, B, C, and D
have a slightly lower delay compared to the baseline architecture;
this is due to small variations in wire load and transistor sizing
decisions made by COFFE. Inputs E and F have experienced a 10.4%
and 4.2% increase in delay, respectively. In this architecture a con-
nection is added from both these inputs to the new full adders in the
ALM, increasing the capacitive loading of these inputs and hence
increasing their delay. Overall the Extra Carry Chain architecture
leads to very little change in the key delay paths in the tile.

The 4-bit Adder architecture has more impact on tile delay, and
shows an increase in delay for all of its inputs except D and H. As
Fig. 4 shows, this architecture contains eight 3-input LUTs feeding
four adders. For the Stratix-10 baseline and Extra Carry Chain ar-
chitectures there are instead four 4-LUTs in front of the adders, and
COFFE speeds up these 4-LUTs by inserting buffers after the first
two stages of pass transistors, evenly dividing the 4 cascaded pass
gates in the 4-LUTs. In the 3-LUTs of the 4-bit Adder architecture
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Figure 11: Multiplier and MAC critical path delays for
Stratix-10, Extra Carry Chain and 4-bit Adder architectures.

such even buffering is no longer an option, and instead COFFE im-
plements 3 stages of pass gate with no internal buffering to realize
the 3-LUTs with a buffer only at the LUT output. This leads to a 7%
delay increase for inputs A and B. Input C’s delay increases by 34%
as it is also impacted by the extra 2:1 multiplexers (see Fig. 4) added
to ensure all the necessary signals can reach the 3-LUTs when in
multiplier mode.

4.4 Overall MAC Area and Delay
As mentioned in Section 4.1, we hand map multipliers and MAC
units of 4-bit to 9-bit precisions for each architecture evaluated.
This allows us to calculate the number of ALMs used (or rendered
unusable) by the mapping and to determine the logic and routing
on the critical path. By combining these ALM counts and critical
paths with the tile areas, logic delays and routing component delays
computed by COFFE and summarized in Section 4.3, we can deter-
mine the overall multiplier and MAC speed and density achieved
by each architecture.

We implement all multipliers as AND gates (i.e a partial product
using LUTs) followed by a sequence of carry chains to sum the
partial products. Fig. 8 shows the critical path of a 5-bit multiplier
implemented using the 4-bit Adder architecture. The right hand-
side of the figure shows the partial products and how the addition
reductions are performed. The solid circles show the operands and
the partial products on the critical path. The rest of the figure
shows how this multiplier is mapped to the soft logic. The addition
operations occurring on the critical path need 6 ALMs which could
fit in one LAB; however, for clarity we map them to different LABs
in this figure. For the intra-ALM routing we assume that the critical
path signal will use the direct-connect between (or within) LABs
and have a delay of a directly-driven (no multiplexer) wire spanning
one LAB, plus the delay of a connection block and the local cluster
interconnect. This is not a best case placement and routing as the
local cluster routing is slightly faster than direct connect, but it
represents a high quality placement and routing and is applied
consistently for all architectures.

Fig. 11 shows the delay of 4- to 9-bit multiply and MAC opera-
tions mapped to the baseline, Extra Carry Chain and 4-bit Adder
architectures. The results show that for the multiply operations
over all the multiplier sizes chosen in this study, the 4-bit Adder
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Figure 12: MAC critical path delays for Stratix-10 architec-
tures with shadow multiplier sizes from 4- to 9-bit.

and the Extra Carry Chain architectures show an average reduc-
tion of 3.9% and 8.4% in the critical path delay respectively over
the baseline architecture. For MAC operations the delay reduction
increases to 7.2% and 20% in the case of the 4-bit Adder and Extra
Carry Chain architectures, respectively; the extra adders in these
architecture benefit MAC even more than multiply. The speed gains
are larger with the Extra Carry Chain architecture because it is able
to pack two levels of an adder reduction tree in one LAB, reducing
the number of (direct connect) routing hops.

For the Shadow Multiplier architecture, the way the multipliers
are implemented depends on the hard multiplier size available in
the logic block as well as the size of the multiplier to be synthesized.
If the size of the multiplier to be synthesized is smaller than or equal
to the size of the hard multiplier size, then the critical path delay
will simply be the LAB input to LUT input delay, hard multiplier
delay and the output select multiplexer delay. As discussed in Sec-
tion 3.3 larger multiplies can be implemented either by combining
a single shadow multiplier with ALM logic to complete the multi-
plier array, or by combining multiple shadow multipliers with ALM
carry chains to sum their outputs. We evaluate both options and
choose the one with smaller area (used plus unusable ALMs). The
critical path delays and the areas required to implement 4- to 9-bit
MACs using 4- to 9-bit Shadow Multiplier architectures are shown
in Fig. 12 and Fig. 13. The critical path delay of a MAC operation
increases with the multiplication size to the point were multiple
hard multipliers can be combined without significantly impacting
the area. For instance, Fig. 12 shows that the critical path delays
of 6-bit to 8-bit MACs are almost the same when implemented on
the 4-bit Shadow Multiplier architecture; this is because all 3 MAC
sizes map to four 4-bit hard multipliers. For the same reason, Fig.
13 shows that there is almost no change in area for this 6- to 8-bit
MAC precision range on a 4-bit Shadow Multiplier architecture.

Table 3 summarizes the performance of all the proposed architec-
tures, along with a fifth architecture which is a combination of the
Shadow Multiplier architecture and the 4-bit Adder architecture.
We show multiple variations of the Shadow Multiplier architec-
tures using three different hardened multiplier sizes (4, 6, and 9-bit).
We are interested both in what gains we can achieve when the
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Figure 13: MAC areas for Stratix-10 architectures with
shadow multiplier sizes from 4- to 9-bit.

architecture is used for MACs and what cost it entails in terms of
tile area and delay for other circuits. In order to evaluate the im-
pact of our proposed architectures on the delay of a typical design
which does not exploit our new features, we used the notion of
the representative critical path delay [14]. From our experience the
representative critical path delay is divided into 70% routing delay,
25% logic delay and 5% carry chain delay; using these ratios we can
combine the COFFE delay numbers for each architecture into the
single delay metric shown in the table. The average MAC critical
path delay and average MAC area numbers are geometric averages
over 4-bit to 9-bit MAC operations. The bold numbers in each row
in Table 3 show the best value for each category.

The Shadow Multiplier architectures achieve higher MAC area
reductions compared to the Extra Carry Chain and the 4-bit Adder
architectures. MAC area is further reduced by combining the 4-
bit Adder architecture with the Shadow Multiplier architecture –
this combination achieves an 83.6% average MAC area reduction
with a 9-bit shadow multiplier. Shadow multipliers of size 6-bit
and larger are faster than the Stratix-10 baseline and have MAC
delay reductions comparable to the Extra Carry Chain and the 4-bit
Adder architectures. The 4-bit Shadow Multiplier architecture is
the slowest architecture (8% slower than the baseline) so 6-bit or
larger shadow multipliers are more desirable. The high MAC area
reductions of 6-bit and larger shadow multipliers unfortunately
come with a considerable increase in the FPGA tile area and the
representative critical path delay, and this cost grows with shadow
multiplier size. Accordingly the 6-bit shadow multiplier seems like
the best size: it achieves a 68% MAC area reduction at a reasonable
cost of 2.3% representative critical path delay increase and 3.8% tile
area growth. Combining a 6-bit shadow multiplier with the 4-bit
Adder architecture reduces MAC area, but increases the area and
delay penalties for general logic.

On the other hand, the Extra Carry Chain architecture shows
the smallest increase in representative critical path delay (0.8%) and
the smallest tile area increase (2.6%) over the Stratix-10 baseline
so it is the least intrusive change in terms of its impact on general
applications. Despite its small cost, the Extra Carry Chain architec-
ture reduces the average MAC delay by 20.9% and the average MAC
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Table 3: Area and Delay summaries for Stratix-10 architecture, Extra Carry Chain architecture, 4-bit Adder architecture, 4-, 6-,
and 9-bit Shadow Multiplier architectures built on Stratix-10 and 4-bit Adder architectures.

Architectures Stratix-10 Extra
Carry Chain 4-bit Adder SM on Stratix-10 SM on 4-bit Adder

4-bit 6-bit 9-bit 4-bit 6-bit 9-bit

Rep. Crit. Path Delay (ps) 119.2 120.2
(+0.8%)

122.5
(+2.7%)

121.1
(+1.6%)

122.0
(+2.3%)

126.6
(+6.2%)

125.1
(+4.9%)

126.5
(+6.1%)

130.9
(+9.8%)

FPGA Tile Area (um2) 1565 1605
(+2.6%)

1610
(+2.9%)

1642
(+4.9%)

1624
(+3.8%)

1797
(+14.8%)

1629
(+4.1%)

1702
(+8.8%)

1826
(+16.7%)

Avg. MAC crit. Path Delay (ps) 2127 1682
(-20.9%)

1975
(-7.2%)

2304
(+8.3%)

1906
(-10.4%)

1502
(-29.4%)

2542
(+19.5%)

2042
(-4.0%)

1528
(-28.2%)

Avg. MAC Area (um2) 5097 3337
(-34.9%)

3205
(-36.8%)

2095
(-58.8%)

1621
(-68.1%)

1218
(-76.0%)

1166
(-77.1%)

996
(-80.4%)

835
(-83.6%)

area by 34.9%. As this architecture benefits not only multiply and
MAC operations but also any adder tree, it is also likely to result in
area and delay reductions in other arithmetic applications.

Finally, the 4-bit Adder architecture achieves a slightly higher
MAC area reduction (36.8%), with a slightly higher representative
critical path delay increase (2.7%) and tile area increase (2.9%) than
the Extra Carry Chain architecture; this makes it another fairly
low-risk ALM change. This architecture will also benefit not just
multiplication as it can implement all standalone adders and sub-
tractors in half as many ALMs as in the Stratix-10 baseline. Given
that arithmetic functions constitute over 20% of the logic primitives
in recent benchmark sets [18] and most map to standalone adders
or subtractors, this architecture is likely to yield significant ALM
count reductions for a wide range of designs.

5 CONCLUSION AND FUTUREWORK
In this paper we proposed three different architectures which in-
crease the MAC density in FPGAs, thereby improving FPGA per-
formance on deep learning applications. The Extra Carry Chain
architecture adds a second level of carry chains in the ALMs, mak-
ing the reduction trees of the multiply operation more efficient.
The 4-bit Adder architecture widens the carry chains in each ALM
and increases the level of fracturability of their LUTs. The Shadow
Multiplier architecture adds hard multipliers to the logic blocks
without adding programmable routing, thereby keeping its cost
lower.

We extended the COFFE transistor sizing and optimization tool
to support these new architectures, and used it to generate detailed
area and delay models. With a small impact on the tile area (+2.6%)
and the representative critical path delay (+0.8%), the Extra Carry
Chain architecture can achieve a 21% and a 35% reduction in average
MAC delays and areas, respectively. The 4-bit Adder architecture
achieves slightly better MAC area reductions, at the cost of slightly
more tile area and representative critical path delay impact. MAC
area reductions as high as 84% (representing a 6.1× increase in MAC
density) can be achieved by combining the Shadow Multiplier and
4-bit Adder architectures. However, this comes with higher costs
for general circuits: a tile area overhead of 16.7% and representative
critical path delay increase of 9.8%.
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