
20

You Cannot Improve What You Do not Measure:

FPGA vs. ASIC Efficiency Gaps for Convolutional

Neural Network Inference

ANDREW BOUTROS, SADEGH YAZDANSHENAS, and VAUGHN BETZ,

Department of Electrical and Computer Engineering, University of Toronto

Recently, deep learning (DL) has become best-in-class for numerous applications but at a high computational

cost that necessitates high-performance energy-efficient acceleration. The reconfigurability of FPGAs is ap-

pealing due to the rapid change in DL models but also causes lower performance and area-efficiency compared

to ASICs. In this article, we implement three state-of-the-art computing architectures (CAs) for convolutional

neural network (CNN) inference on FPGAs and ASICs. By comparing the FPGA and ASIC implementations,

we highlight the area and performance costs of programmability to pinpoint the inefficiencies in current

FPGA architectures. We perform our experiments using three variations of these CAs for AlexNet, VGG-16

and ResNet-50 to allow extensive comparisons. We find that the performance gap varies significantly from

2.8× to 6.3×, while the area gap is consistent across CAs with an 8.7 average FPGA-to-ASIC area ratio. Among

different blocks of the CAs, the convolution engine, constituting up to 60% of the total area, has a high area

ratio ranging from 13 to 31. Motivated by our FPGA vs. ASIC comparisons, we suggest FPGA architectural

changes such as increasing DSP block count, enhancing low-precision support in DSP blocks and rethinking

the on-chip memories to reduce the programmability gap for DL applications.

CCS Concepts: • Hardware → Reconfigurable logic and FPGAs; Hardware accelerators; Reconfigurable

logic applications;

Additional Key Words and Phrases: Deep learning, convolutional neural networks, FPGA, ASIC

ACM Reference format:

Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz. 2018. You Cannot Improve What You Do not Mea-

sure: FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference. ACM Trans. Reconfigurable

Technol. Syst. 11, 3, Article 20 (December 2018), 23 pages.

https://doi.org/10.1145/3242898

1 INTRODUCTION

Recent advances in deep learning (DL) have led to breakthroughs in a myriad of fields, achiev-
ing unprecedented accuracy in tasks that were thought to be inherently unsuitable for our com-
puting machines to perform. It has become, in a very short time span, the de-facto standard for
numerous applications ranging from simple image classification [36], machine translation [44],

Authors’ addresses: A. Boutros and V. Betz, Department of Electrical and Computer Engineering, University of Toronto,

10 King’s College Road, Toronto, Ontario M5S 3G4, Canada and Vector Institute, Toronto, ON, Canada; emails: andrew.

boutros@mail.utoronto.ca, vaughn@eecg.utoronto.ca; S. Yazdanshenas, Department of Electrical and Computer Engineer-

ing, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada; email: sadegh.yazdanshenas@

mail.utoronto.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1936-7406/2018/12-ART20 $15.00

https://doi.org/10.1145/3242898

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.

https://doi.org/10.1145/3242898
mailto:permissions@acm.org
https://doi.org/10.1145/3242898


20:2 A. Boutros et al.

and speech recognition [10] to generating artistic paintings [9], composing music [7], and beating
world champions in complex board games [41]. Interestingly, the basic foundations of DL and the
algorithm currently used to train deep neural networks (DNNs), known as back-propagation, were
established in the 1980s [35]. But it was not until recent years that it experienced a resurgence of
interest [20], powered by both the abundance of data required for training and the availability of
the tremendous compute-power necessary to train and deploy those models.

However, the main drawback of DNNs remains to be their high computational complexity when
compared to conventional detection and classification computer vision algorithms based on hand-
crafted features. For example, a relatively simple eight-layer convolutional neural network (CNN),
AlexNet [20], has a computational complexity of 25.8GOP/Mpixel for its convolutional layers,
which is 36.9× higher than that of a conventional histogram of oriented gradients feature extractor
[43]. This gap grows even wider as we seek to improve the accuracy of CNNs by building deeper,
bigger and more complex models that can surpass human-level performance on visual recogni-
tion tasks [14]. The ImageNet large-scale visual recognition challenge witnessed a 15× increase
in operations required per image inference in return for an 11.7% reduction in classification error
between 2012 and 2015 [15, 36]. This substantial increase in compute requirements motivates high-
performance and energy-efficient hardware accelerators to replace or co-exist with conventional
CPUs in executing both CNN training and inference tasks.

The training of CNN models is commonly performed in floating-point representation on graph-
ics processing units (GPUs) having thousands of cores and large external memory bandwidth. It
does not require much effort to deploy existing models or train new ones on GPUs using various
frameworks (e.g., Caffe [18] and TensorFlow [1]) that exploit highly optimized GPU libraries such
as Nvidia CuDNN [5] for dense and sparse matrix operations. Although GPUs can deliver high
performance by performing batch computations, they are extremely power-hungry. This is afford-
able for training, which has no constraints on output latency and is carried out a limited number
of times during the development phase. However, when it comes to inference, this is not ideal for
a wide class of applications that have limited power budget and tight latency constraints such as
mobile embedded platforms, self-driving cars or large-scale datacenter services.

To achieve the best performance and energy-efficiency, many researchers have focused on build-
ing custom application-specific integrated circuits (ASICs) for accelerating CNNs inference work-
loads. Some examples are DaDianNao [3] that accelerates different types of DNNs using a multi-
chip architecture and Eyeriss [4] that focuses on energy-efficient acceleration of convolutional
layers by maximizing data re-use, performing data compression and using a zero-skipping tech-
nique. Despite being an attractive solution, ASICs do not offer enough flexibility to accommodate
the rapid evolution of CNN models and the emergence of new types of layers used in them includ-
ing the branching, elementwise addition and batch normalization layers as in more recent models
(e.g., GoogLeNet [45] and ResNet [15]). As well, the high non-recurring engineering (NRE) cost
and time for design, verification and fabrication of a large ASIC chip makes it difficult to keep pace
with the rapid model improvements in this space.

As a trade-off between performance, power-efficiency, and flexibility, FPGAs offer an interest-
ing design point between GPUs and ASICs and recently have had much success in accelerating
datacenter workloads in general [32] and more specifically CNN inference tasks [30]. In contrast
to GPUs, FPGAs are generally more energy-efficient. A high-end Titan X Nvidia GPU can consume
up to 5×more power compared to a high-end Intel Arria 10 FPGA running AlexNet inference tasks
[2]. Several studies have also shown that CNN inference does not require high-precision floating-
point computations and can be carried out using fixed-point arithmetic for less than 1% accuracy
degradation [13]. This wide variety of precisions used in CNN inference matches well with FP-
GAs as they can execute non-standard custom bit-width datapaths with much higher efficiency

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:3

and flexibility than GPUs. However, they have a shorter turn-around time, less NRE cost, and can
be re-configured to support new models and layer types when compared to ASIC accelerators.
Another interesting advantage for FPGAs is that they offer a variety of I/Os that support different
communication protocols. This is useful when the CNN accelerator is a part of a larger system
and receives inputs from different types of digital and analog sensors as the case in automotive
applications. However, FPGAs run at significantly lower frequencies due to their reconfigurability
overhead and thus have lower raw performance compared to both GPUs and ASICs.

For this reason and despite their drawbacks, several companies have developed ASIC solutions
to meet the processing needs of high-performance DL applications. A recent example for that is
Google’s Tensor Processing Unit [19] that was deployed in datacenters to accelerate inference tasks
for various types of DNNs. It has almost 17× more multiply accumulate (MAC) units, 5.6× more
on-chip memory and runs at 3.5× higher frequency when compared to Microsoft’s Catapult V1
[32] that uses Intel Stratix V FPGAs. In this work, we study the area and performance gap between
FPGAs and ASICs in accelerating inference tasks using multiple CNN computing architectures
(CAs) to highlight the limitations of current FPGA architectures and how they affect the overall
performance of DL accelerators. The motive behind this study is twofold; First, it shows which
design practices are more suitable for FPGA platforms and make the best use of current FPGA
architectures. Second, it provides FPGA architects with data on where FPGAs have the largest
efficiency gap compared to ASICs, which can lead to insights on how current FPGA architectures
could be modified to shrink this gap and deliver higher performance in a domain with extremely
high demand such as DL.

In this article, we make the following contributions:

• We implement highly optimized RTL designs for three state-of-the-art CAs that use different
parallelization schemes to accelerate CNNs. We then extend each of these previously pub-
lished architectures to support all layer types required to implement three different CNN
models: AlexNet, VGG-16, and ResNet-50 to ensure our comparisons consider a broadly
representative set of CNN models and implementations.

• We present a quantitative comparison of area and performance results to measure the gap
between the same CAs implemented on a high-end Intel Arria 10 FPGA and a 28nm ASIC.

• We trace back the bottlenecks resulting in this gap and pinpoint the limitations of current
FPGA architectures in accelerating CNNs.

2 BACKGROUND

Deep Neural Networks are a class of machine-learning algorithms that were developed to mimic
the information-processing paradigm in biological nervous systems. The human brain as an ex-
ample has an average of around 86 billion neurons [16] connected in a complex network in which
each neuron receives inputs from its surrounding neurons and fires an activation if those inputs
are greater than a specific threshold. Inspired by this system, DNNs typically consist of several

layers each of which has d (l ) neurons where l is the layer number ranging from 1 to L. Each arti-
ficial neuron performs a biased weighted sum of all its inputs followed by a non-linear activation

function to produce its output as shown in Equation (1), where x (l )
i is the output of neuron i of

layer l , w (l )
i j is the weight parameter between the neuron j in layer l and neuron i in layer l − 1,

w (l )
0j is the bias term and θ is the non-linear activation function that can be a sigmoid, tanh, or

rectified linear unit (ReLU) function. This equation can be viewed as a series of MAC operations,
which form the majority of computations in DNNs:

x (l )
j = θ

��
�w

(l )
0j +

d (l−1)∑
i=1

x (l−1)
i w l

i j
��
� . (1)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:4 A. Boutros et al.

Fig. 1. Different layer types in an example CNN.

CNNs are a subset of DNNs in which the connections between neurons of successive layers
are sparse. Each neuron receives inputs only from neighboring neurons of the previous layer or
so-called its receptive field. This significantly reduces the number of weights and MAC operations
required and achieves high accuracy in applications with spacial or temporal correlation between
input samples such as image classification, gesture and speech recognition. Sections 2.1 and 2.2
describe the main layers of a CNN and present a summary of the previous related work on accel-
erating CNNs on FPGAs.

2.1 Overview of CNN Layers

CNN models typically consist of different layer types cascaded together such that the output of a
specific layer is consumed by the subsequent one in a feed-forward scheme during inference. In
Figure 1, we show an example CNN, and we illustrate the functionality of each of the layer types
subsequently explained in this section.

2.1.1 Convolutional (CONV) Layers. A CONV layer takes a set of NI M two-dimensional input
feature maps. It accumulates the results of 2D convolutions with stride S between each input fea-
ture map and its corresponding K × K kernel of learnable weights to produce a two-dimensional
output feature map. This is performed using NOM different sets of kernels to generate NOM output
feature maps that are consumed by the subsequent layer. CONV layers are very compute-intensive
and represent the majority of computation in a CNN, which motivated many designers to focus
on accelerating only the CONV and not all CNN layers [55]. We also notice that as CNN models
get deeper, the portion of CONV layers operations compared to the total number of operations
increases as they constitute 91.6%, 99.1%, and 99.8% of the total operations count for AlexNet,
VGG-16, and ResNet-50, respectively.

The computation of CONV layers can be summarized using the six nested loops in Algorithm 1;
they are highly parallelizable and can achieve high gains through hardware acceleration. However,
it is a non-trivial optimization problem to choose the tiling and unrolling factors of those loops
to achieve the best performance within the limited available hardware resources [27]. Typically, a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:5

ALGORITHM 1: Nested loops for CONV layers computation

Loop 1: for (j = 0; j < NOM ; j + +) do

Loop 2: for (x = 0; x < NOX ; x += S) do

Loop 3: for (y = 0; y < NOY ; y += S) do

Loop 4: for (i = 0; i < NI M ; i + +) do

Loop 5: for (kx = 0; kx < K ; kx + +) do

Loop 6: for (ky = 0; ky < K ; ky + +) do
out (j,x ,y) += in(i,x + kx ,y + ky ) ×weiдht (j, i,kx ,ky )

out (j,x ,y) += bias (j )

non-linear activation function such as the ReLU function θ (x ) =max (0,x ) is applied to the outputs
of a CONV layer before passing them to the next layers.

2.1.2 Local Response Normalization (LRN) and Batch Normalization (BNORM) Layers. LRN is a
heavily arithmetic layer that was used in the early CNN models such as AlexNet to normalize each
element in its input feature maps with respect to the elements at the same location in the adjacent
KN maps using the formula in Equation (2). The function of the LRN layer is to create lateral
inhibition for the output values especially when using ReLU as an unbounded activation function
[20]. However, this layer is removed in newer models and is sometimes replaced by BNORM layer
followed by scaling, as in ResNets, which cuts down the required training steps and achieves the
same accuracy. The computation for the BNORM layer is shown in Equation (3) where μ and σ 2

are statistically computed over the training data set and γ and β are learned during the training
phase of the CNN [17] but are all constants for inference:

out (j,x ,y) = in(j,x ,y) ×
���
�
1 +

α

KN

min(j+
KN

2 ,NO M )∑
i=max(0, j− KN

2 )

in2 (i,x ,y)
���
�

−β

, (2)

out (j,x ,y) = γ

(
in(j,x ,y) − μ
√
σ 2

)
+ β . (3)

2.1.3 Pooling (POOL) Layers. Another key layer in CNN is the POOL layer, which acts as a
down-sampling function such that its input feature maps of size NX × NY are reduced in size but
the number of input and output feature maps stays the same. There are different variations for
POOL layers such as Max-POOL and Average-POOL, where each element in the output feature
map represents the maximum or average value of a window of size KP × KP in the original input
feature map, respectively.

2.1.4 Element-Wise (ELTWISE) Layers. Recent CNNs have more complex models with branch-
ing layers and skipping connections forming a directed acyclic graph as shown in Figure 1 after
CONV2 layer. An ELTWISE layer combines two branches by performing an element-wise addi-
tion of the elements of a skipping branch and the results of a CONV layer. Reference [38] proposed
the use of weighted addition in ELTWISE layers for deeper networks with more than 100 layers;
however, we focus on the unweighted variation of ELTWISE layers in this work. For this layer, the
dimensions of the output feature maps match those of the input feature maps.

2.1.5 Fully Connected (FC) Layers. The last layers of CNNs are typically FC layers, which are
similar to those of conventional DNNs. The output of an FC layer is a one-dimensional vector
of size NFCout

. Each element in this vector is a weighted sum of all the outputs of the previous
layer, which were re-shaped into a one-dimensional vector of size NFCin

. As shown in Figure 1,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:6 A. Boutros et al.

it is characterized by the large number of weights involved in computation (NFCin
× NFCout

) that,
unlike the convolution kernels, cannot be re-used. Therefore, FC layers are usually memory-bound,
but more recent CNN models have a smaller number of FC layers with fewer weights making them
less problematic. For instance, ResNet-50 has only 1 FC layer that has about 8% of the total number
of weights in the network compared to three FC layers with 96% of the network weights in AlexNet,
which further prioritizes the acceleration of CONV layers over other types of layers.

2.2 Related Work

Research efforts to accelerate CNNs on FPGAs can be classified into two major categories. The
first category of work focuses on optimizing the mapping of CNN models to current FPGA archi-
tectures. For example, Reference [55] presents an analytical design methodology for design space
exploration using the roof-line model to find the optimal loop unrolling and tiling parameters for
the CONV loops shown in Algorithm 1. This work is extended in Reference [56] to a multi-FPGA
cluster using dynamic programming with the target of maximizing throughput or minimizing la-
tency. To overcome under-utilization of resources resulting from different sizes of CONV layers,
References [39] and [40] partition the available resources using a dynamic programming technique
into multiple convolutional layer processors, each of which is optimized for a subset of CONV lay-
ers. Another aspect of optimizing CNNs for FPGA acceleration is model compression by using
techniques such as Singular Value Decomposition for FC layers [33]. Another compression tech-
nique reduces precision down to ternary [31, 49] or binary [29, 47] networks that are inherently
more FPGA-friendly, and exhibit little or no accuracy degradation by increasing the size of the
network as in Reference [28]. The use of non-standard floating-point number representations has
also been proposed by Microsoft’s BrainWave project [6] that uses its custom 8-bit/9-bit floating-
point precision without suffering any accuracy loss. Recent work has also proposed the use of
mathematical optimizations such as Winograd and Fast Fourier Transformations to decrease the
number of MAC operations required in CONV layers as in References [2, 24, 57].

The second category seeks to ease development of DL accelerators on FPGAs such that it
requires minimal hardware design expertise. Some works have investigated the use of High-Level
Synthesis FPGA tools to implement CNNs in high-level programming languages that are synthe-
sized into hardware [42]. Another widely investigated approach is to build automatic compilers
to produce an end-to-end optimized accelerator for a specific CNN model and a specific FPGA
platform [23, 25, 26]. In Reference [48], the authors present a framework that takes a CNN model
described in a domain-specific language, converts it to a synchronous dataflow graph, optimizes
performance and resource utilization via algebraic transformations, and finally generates a Vivado
HLS hardware design. An open-source RTL template-based compiler that transforms a high-level
description of the CNN model in the same prototxt format used by Caffe into an FPGA accelerator
is also presented in Reference [37]. Similar frameworks were presented in References [51] and [11]
that use Caffe-described and TensorFlow-described models along with RTL and RTL-HLS hybrid
templates, respectively, to implement FPGA accelerators for not only CNN models but also Multi-
Layer Perceptrons and Recurrent Neural Networks. The authors of Reference [52] implement
an automated design flow that generates high-performance systolic array CNN architectures
and a two-phase design space exploration scheme using analytical models as well as on-board
implementations.

Our work is complementary to these studies and serves as the first step toward improving the
current FPGA architecture, which was considered a constant factor by all previous works, for
more efficient acceleration of emerging and highly motivated applications as DL. To the best of
our knowledge, this work is the first attempt to quantify the area and performance gap between
FPGA and ASIC implementations of state-of-the-art CNN CAs, highlight the architectural features

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:7

Table 1. Main Differences between the Three CAs

Comparison Aspect ASU-like Intel-DLA-like Chain-NN-like

MAC Units Array Three-dimensional Two-dimensional One-dimensional

Convolution Method
Conventional

sliding-window
Winograd Transform
for 3×3 convolutions

Conventional
sliding-window

Weight Buffers
A centralized buffer
for a group of PEs

A centralized buffer for
a group of PEs

A small distributed
buffer for each PE

Double Buffering

Double buffers for
weights in FC

Interchangeable double
buffers for features in

CONV

No double buffering

of current FPGA architectures causing it, and present suggested architectural solutions that can
reduce this gap.

3 COMPUTING ARCHITECTURES

We implement three different highly optimized state-of-the-art CAs for accelerating CNN infer-
ence tasks in RTL using parameterizable SystemVerilog HDL. We refer to the three CAs as ASU-like
[26, 27], Intel-DLA-like [2], and Chain-NN-like [50]. We implement all the hardware computational
blocks required to execute all the layers described in Section 2.1 for three different CNN models:
AlexNet, VGG-16, and ResNet-50. We also implement the control logic required to run the CAs
starting from reading the input features and weights from on-chip buffers, transferring them to
the computational blocks, and writing the final results in the output feature buffers. The on-chip
buffer sizes and the parallelization factors for each of the nested CONV loops are fixed in both
the FPGA and ASIC implementations for each of these CAs according to the optimal design point
originally reported in References [2, 27, 50]. For consistency and to enable fair comparisons, we
also use a fixed-point data representation for all three CAs with 16-bit features and 8-bit weights
as in Reference [27], which causes less than 2% accuracy degradation. We consider the external
memory interface and direct memory access engines to be out of the scope of this work, as they
do not affect the conclusions we seek to draw about the performance and area gaps or the bot-
tlenecks of current FPGA architectures in accelerating CNNs. However, our performance models
put off-chip data transfer into consideration according to any external memory interface that we
specify. In our experiments, we report two sets of results: one assuming infinite bandwidth and the
other assuming one bank of DDR4 memory at 1200MHz with a total bandwidth of 17GB/s similar
to that used in Reference [2].

We carefully chose those three CAs out of numerous architectures proposed in the literature
to be diverse; the wide variations between them help ensure our analysis of FPGA vs. ASIC effi-
ciency has broad applicability. The main differences between the three CAs, summarized in Table 1,
are:

• All three CAs have different parallelization schemes. In other words, the array of MAC units
in each CA has a different number of dimensions leading to different execution orders, tiling
and unrolling factors for the CONV loops in Algorithm 1. Output tiles of size (POM × POX ×
POY ), (POM × POX × 1), and (POM × 1 × 1) are produced by the ASU-like, Intel-DLA-like,
and Chain-NN-like PE arrays, respectively.

• The Intel-DLA-like CA uses a mathematical optimization for CONV layers with kernels of
size 3 × 3 known as the Winograd Transform [22], which reduces the number of MAC op-
erations needed to compute convolutions. However, the ASU-like and Chain-NN-like CAs

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:8 A. Boutros et al.

Fig. 2. ASU-like CA tiling schemes and hardware architecture.

perform conventional sliding-window convolution operations. This enables us to explore
different convolution schemes with different degrees of control logic complexity and ob-
serve their effect on the area and performance gaps.

• The three CAs implement their weight buffers differently. The Chain-NN-like CA stores the
kernel weights in small distributed buffers such that every MAC unit has its local scratch-
pad for weights implemented in the FPGA’s soft logic (MLABs). In contrast, both the ASU-
like and Intel-DLA-like CAs have larger weight buffers implemented using on-chip memory
blocks (BRAMs) to feed a group of MAC units. In FC layers, the Intel-DLA-like CA also
interchanges the roles of weight and feature buffers.

• The CAs differ in whether and how they use double-buffering to hide memory transfer
time. The ASU-like CA uses double-buffering for weights to hide the computation time of
FC layers by filling one buffer from off-chip memory while using the weights in the other
buffer for computations. The Intel-DLA-like CA uses double-buffering by interchanging
input and output buffers after each layer to eliminate any external memory transfers if all
the output feature maps of a layer can fit in on-chip buffers. The Chain-NN-like CA does
not use any double-buffering techniques.

None of the three CAs is available as an open-source implementation, and hence we imple-
mented them from scratch to carry out the study presented in this article under controlled condi-
tions (e.g., RTL implementation, same FPGA platform, same weight and activation precisions, etc.)
to enable fair comparisons and focus only on the architectural aspects of these CAs. In Sections 3.1,
3.2, and 3.3, we describe the details of the three CAs we implemented and any extensions added
to them for the sake of our study.

3.1 ASU-like CA

This CA was proposed in Reference [27] by Ma et al. from Arizona State University (ASU) and
then expanded in Reference [26] to support the ELTWISE and BNORM layers used in recent CNN
models. The core of this CA, shown in Figure 2(c), is a three-dimensional MAC unit array of size
POM × POX × POY that can compute both CONV and FC layers.

Feature maps and weights are tiled to minimize external memory transfers by either buffering
all weights or all input feature maps in on-chip memory at any layer of the CNN model. In the
shallower layers of the network, all the weights but only N ′OY + K − 1 rows of the input feature
maps are buffered on-chip such that 0 < N ′OY ≤ NOY as shown in Figure 2(a). In the deeper layers

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:9

Fig. 3. Data re-use shift register network operation for ASU-like CA with POX = POY = K = 3 and POM = 1.

with smaller input and output feature maps and more weights, all features but only N ′OM sets
of weight kernels are buffered on-chip such that 0 < N ′OM ≤ NOM as shown in Figure 2(b). The
on-chip input and weight buffers, all implemented in BRAMs, are organized to supply the MAC
units in the convolution engine with enough inputs to keep them busy at every clock cycle. There
are POY input buffers, each of which supplies the MAC units with POX input features that get
multiplied by weights from POM different weight buffers as shown in Figure 2(c).

The convolution engine performs the computation of Loops 1, 2, and 3 in Algorithm 1 in parallel
using the three-dimensional array of MAC units. Each MAC unit sequentially accumulates the
results of one kernel (Loops 5 and 6) across all input feature maps (Loop 4) and stores the partial
sum locally in the accumulator. This means that after K × K × NI M cycles, each MAC unit outputs
its final result producing POM × POX × POY outputs at the same time. This parallelization scheme
has several advantages; it does not require any movement of partial sums as every MAC unit locally
accumulates the results across Loops 4, 5, and 6 without the need for communication between MAC
units or any intermediate on-chip storage. It also allows flexible implementation of convolutions
of any input feature map count and any kernel size as a result of sequentially executing Loops 4,
5, and 6. For example, for any input feature map count, convolutions of size 3 × 3 and 5 × 5
are executed in 9 and 25 cycles, respectively. The convolution engine is preceded by a complex
network of POY circular shift registers of size (POX + K − 1) each. Figure 3 shows how POX × POY

convolution results are computed using this shift register network over K × K time steps, where
colored boxes are input/output features, white numbered boxes are kernel weights and colored
numbered boxes indicate a multiplication operation between an input feature and a kernel weight.
At every time step, the multiplication result is accumulated inside the MAC unit and a shift left of
the input data is performed. Every K time steps a new row is loaded from the input buffers and
data is re-arranged and transfered between the circular shift registers as indicated by the dashed
arrows in the figure. After K × K time steps, this is repeated for NI M input maps before each MAC
unit produces its final result. The convolution engine is followed by an output serializer that takes
POM × POX × POY results and serializes them over POY cycles. After the output serializer, there
can be a normalization block that is either LRN or BNORM according to the implemented CNN
model, then max pooling block and finally the output buffers. An optional ELTWISE block is used
in the ResNet-50 model.

Extensions: Both References [27] and [26] originally implement this CA for several CNN mod-
els including ResNet-50 and VGG-16. Therefore, they implement all the hardware blocks shown

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:10 A. Boutros et al.

Fig. 4. Intel-DLA-like CA and the internal architecture of each processing element.

in Figure 2(c) except for the LRN block used in the AlexNet model. The LRN block is a heavily
arithmetic block as it contains squaring, addition, multiplication and exponentiation operations.
Since all the DSP blocks are consumed by the convolution engine, we implement all multiplication
operations in the LRN block using soft multipliers that are found to be not limiting the maxi-
mum operating frequency. We implement the exponentiation operation of Equation (2) using a
piecewise-linear function consisting of 20 points that we computed using the α and β values from
the AlexNet model similar to Reference [42].

3.2 Intel-DLA-like CA

In Reference [2], Intel presented the Deep Learning Accelerator (DLA), which is considered to be
the state-of-the-art FPGA accelerator for the AlexNet CNN model. The core of this CA is an array
of POM processing elements (PEs) connected in a daisy chain scheme where each PE receives input
features and passes them to the subsequent PE in the next clock cycle as shown in Figure 4.

This CA uses double-buffered stream buffers such that input features of a CONV layer are read
from one buffer and its outputs are stored in the other one, which then serves as the input buffer
for the next layer. The two buffers continue to interchange roles as input and output buffers after
every layer without the need to store any intermediate results in external memory. After the last
CONV layer, outputs are stored in off-chip memory before starting the computations of FC layers.
Each PE contains local weight buffers that feed its dot product units with inputs at every clock
cycle. For the FC layers, batch processing is used to allow weight re-use among multiple input
features. In contrast to the CONV layers, features of a batch of size B inputs are stored in “weight”
buffers inside the PEs while the weights are stored in the stream buffers and are passed between
the PEs using the daisy chain connection. For our study, we report the results for both B = 1 that
minimizes latency and can be compared to other CAs that do not support batch processing and
B = 96 that maximizes throughput and aligns with the reported results in Reference [2].

A major feature of this CA is its use of a mathematical optimization known as the Winograd
Transform to reduce the number of MAC operations required to compute a convolution [22]. In
Reference [2], an F (4 × 4, 3 × 3) transform is performed using a weight matrix of size 3 × 3 and an
input feature matrix of size 6 × 6 resulting in an output matrix of size 4 × 4. Equation (4) shows the
Winograd transform and inverse transform for these sizes where G and BT are used to transform
the weight matrixW and the input feature matrix X , respectively, � is the element-wise multipli-
cation operator and thenAT is used to perform the inverse transform and obtain the output matrix
Y . For this CA, the transform of the learned weights is done beforehand for the CONV layers of
kernel size 3 × 3, since they are fixed after training the model while the transform of input features
and inverse transform of the final result cannot be performed in advance and hence are performed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:11

on-chip:

Y = AT
[
[GWGT ] � [BTXB]

]
A,

AT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 0 0

− 1
6 − 1

6 − 1
6

− 1
6

1
6 − 1

6
1
24

1
12

1
6

1
24 − 1

12
1
6

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Each PE in the convolution engine of this CA consists of a buffer for the Winograd-transformed
weights, POX dot-product units and their corresponding circular shift registers for storing partial
sums. Each dot product unit is pipelined into L stages and uses the dedicated chain between DSP
blocks on the FPGA to multiply and accumulate PI M Winograd features and weights and then
store the partial result in a circular shift register (CSR) of size L as shown in Figure 4. Therefore,
each dot product unit can interleave the computation of L different MACs such that after L cycles,
it takes as an input the partial sum previously produced and adds to it the MAC result of the next
PI M features and weights. After all NI M features are processed, the final result is produced and
the circular shift register is reset to zeros before starting the processing of the next set of input
features. The convolution engine consists of POM PEs connected in a daisy chain scheme allowing
a better floorplan of the design on the FPGA with less fan-out from the input stream buffer to
the convolution engine, and thus enabling a higher operating frequency. The convolution engine
is followed by an inverse Winograd block that transforms POX × POM inputs into P ′OX × POM

outputs. This is followed by LRN and POOL blocks that process P ′OX × POM results in parallel
before storing them back into the output stream buffer. Both the POX and P ′OX parameters are
specified to be 6 and 4, respectively, according to the Winograd transform size used. Design space
exploration was carried out in Reference [2] to find the optimal values for PI M and POM and they
were chosen to be 8 and 48, respectively.

Extensions: This CA was originally implemented for the relatively small AlexNet CNN model
in which input and output feature maps can fit in on-chip buffers. This enables the use of inter-
changeable input and output buffers that eliminates the need to store any intermediate results in
external memory. However, this feature is inapplicable to at least the first layers of the other CNN
models used in our study as their feature maps exceed the capacity of on-chip buffers. For this
case, we use a scheme similar to that of the ASU-like CA to tile input and output feature maps and
store intermediate results in off-chip memory. For layers that have small enough feature maps,
we maintain the double buffering technique to eliminate data transfers from and to the external
memory. We also carried out an experiment in which we increased the size of stream buffers such
that more layers can make use of the double buffering technique. However, this resulted in de-
grading the maximum operating frequency of the design, leading to a net loss in performance, and
therefore we decided to keep the sizes of the stream buffers the same as that used for the AlexNet
model. In addition, we implemented BNORM and ELTWISE blocks for this CA that were not part
of the original implementation in Reference [2].

3.3 Chain-NN-like CA

This CA was proposed in Reference [50] by Wang et al. from Waseda University. It was imple-
mented as an ASIC (using TSMC 28nm process technology), specifically for accelerating the CONV
layers of AlexNet. It uses a dual-channel 1D systolic chain of Nchain PEs to flexibly compute 2D
convolutions of any kernel size. Each PE has a multiplier and a set of input multiplexers controlled

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:12 A. Boutros et al.

Fig. 5. Chain-NN CA with (Nchain = 16,K = 2,Nsub = 4) and the internal architecture of each PE.

by complex central control logic that splits the PE chain into Nsub smaller sub-chains according
to the size of the convolution kernel, where Nsub = Nchain/(K × K ), as shown in Figure 5. We
implemented this CA for our study, because, despite being originally proposed as an ASIC imple-
mentation, it has compelling resemblance to FPGA architectures that can efficiently implement 1D
systolic chains of multipliers using the on-chip hard DSP blocks.

This CA separates the input feature maps into odd and even columns and uses two separate
input buffers to store them. The two input buffers supply inputs to the first PE of every sub-chain
(i.e., the first of every 9, 25, and 121 PEs to implement convolutions of kernel size 3 × 3, 5 × 5,
and 11 × 11, respectively). There are Nsub−MAX output buffers, each of which stores the outputs
produced by a sub-chain where Nsub−MAX = Nchain/(3 × 3), since that 3 × 3 is the smallest kernel
size used in AlexNet CONV layers. Each PE in the chain contains both a multiplier and a small local
buffer of 512 words for storing the weights needed for the computations performed in this specific
PE. The largest Arria 10 FPGA contains 3,136 multipliers but only 2,713 BRAMs. We therefore
implement the local weight buffers in the soft logic (MLABs) and use the BRAMs to implement
input and output feature buffers.

Figure 5 shows the details of the dual-channel PE used in the 1D systolic chain of this CA. The
two input channels receive odd-column and even-column input features either from the odd and
even input buffers, respectively, if it is the first PE of a sub-chain, or from the channels of the
previous PE, otherwise through an input multiplexer. The odd-column and even-column inputs
propagate to the next PE after two cycles due to the systolic registers added to the chain. Another
odd/even multiplexer chooses the MAC unit input to be either the odd-column or even-column
input feature. The MAC unit multiplies the chosen input with the corresponding weight from the
local weight buffer and adds the output to the previous partial result from the output buffers if
it is the first PE of a sub-chain or to the output of the previous PE otherwise. For a CONV layer
with kernel size K , the convolution engine produces the partial results of a tile of size NOX × K
across Nsub output feature maps. Then this is repeated NI M times (Loop 4 in Algorithm 1) with
the partial results used as inputs to the MAC units of the first PE in each sub-chain to produce the
final results of this tile. The next tile of the same Nsub output feature maps is processed in the same
manner (Loop 3) until the whole NOX × NOY × Nsub are computed after which the computations
of the next Nsub output feature maps (Loop 1) starts.

The selection lines for the input multiplexer and output de-multiplexer of each PE are generated
by a central control unit and are dynamically changed after each CONV layer according to the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:13

Fig. 6. Odd-column and even-column input selection schemes for NOX = 3 and K = 3.

layer’s kernel size. The control logic to choose between odd-column and even-column inputs is
explained in Figure 6, which shows, as an example, a sub-chain of 9 PEs in the case of a CONV
layer with K = 3 and NOX = 3. To compute a tile of size NOX × K outputs, it requires an input tile
of size (NOX + K − 1) × (2K − 1). The figure shows the inputs streamed from the input buffers to
the sub-chain at every time step starting from time step 9 when the pipeline is filled. Input features
from the even-column buffer lag behind those from the odd-column buffer by K cycles as shown
in the first time step in Figure 6. After streaming a complete column of the input tile (2K − 1 input
features), no new inputs are fed into the pipeline for the next time step after which features from
the next column of same type (odd or even) are fed into the sub-chain. The thick boxes in Figure 6
show the odd/even selection for each PE in every time step. At any time step, the input selections
alternate between odd and even for every K PEs in the sub-chain. After every K time steps the
selections are toggled to form all the convolution windows required.

Extensions: Since it was originally proposed as an ASIC architecture only for CONV layers, we
migrated and optimized this CA for FPGAs and added POOL, LRN, BNORM and ELTWISE blocks
that were not part of the original implementation in Reference [50]. The POOL block buffers the
final results of the Nsub output feature maps until a pooling window is ready to be computed.
The LRN block operates on results of KN adjacent maps and the BNORM and ELTWISE blocks
operate on single results separately so their integration to this CA was straightforward. Since the
other two CAs compute both CONV and FC layers using the same hardware, to provide a fair
comparison, we extended this CA by mapping both the 1 × 1 CONV layers used in ResNet-50
and the FC layers to its convolution engine instead of implementing a dedicated engine for those
layers. Unlike the conventional CONV layers, each output feature in this layers is the result of a
dot-product of two vectors. Therefore, we use sub-chains of size 9 PEs as dot-product units that
multiply and accumulate an input feature vector with Nsub weight vectors to produce Nsub partial
results in parallel. The main drawbacks of this approach is that it does not exploit the dual-channel
architecture and the complex control logic, since there is no need to arrange data in convolutional
windows as previously explained. Also, the effective efficiency of the PEs is significantly degraded
when executing these layers due to wasting the majority of cycles filling and flushing the pipeline
of the systolic sub-chain to produce the result of one dot-product.

4 METHODOLOGY

We implement the three CAs described in Section 3 using parameterizable SystemVerilog, in which
we specify the CA variation to be BSC, LRN, or ELT, which is the notion we will use for the rest of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:14 A. Boutros et al.

Table 2. CA Parameters and Experimental Setup

Feature/Weight Precision 16-bit/8-bit fixed point
ASU-like Parameters POX = POY = 14, POM = 16
Intel-DLA-like Parameters PI M = 8, POX = 6, P ′OX = 4, POM = 48
Chain-NN-like Parameters Nchain = 2904 (LRN), Nchain = 2304 (BSC and ELT)

ASIC Process Technology 28 nm STMicroelectronics standard-cell libraries
ASIC Design Corner worst-case, 1.0V, 125°C
ASIC CAD Synopsys Design Compiler 2013.03 and Cadence Innovus 16
FPGA Device 20nm Intel Arria 10 GX 1150 (10AX115N2F45I1SG)
FPGA Design Corner slowest, 0.95V, 100°C
FPGA CAD Intel Quartus Prime 17.00

the article to refer to CAs that implement VGG-16, AlexNet, and ResNet-50 CNN models, respec-
tively. The variations of each CA contain only the blocks required for each of their corresponding
CNN models. For instance, the BSC variation will not contain LRN, BNORM, or ELTWISE blocks as
there are no normalization or elementwise layers in the VGG-16 model. For all the CAs, we use 16-
bit and 8-bit fixed-point features and weights, respectively. For the ASU-like and Intel-DLA-like
architectures, we use the same parameters reported in References [27] and [2]. For the Chain-
NN-like CA, since it was originally implemented as an ASIC, the parameters used in Reference
[50] will leave most of the FPGA’s DSP blocks unutilized. Therefore, we assigned the number of
PEs (Nchain ) to be the minimum value that achieves the highest performance given the available
DSP block count constraint. As an example, for an Arria 10 device with 3,036 hard multipliers,
in case of VGG-16 that has 3 × 3 CONV layers with 512 output channels, we can fit a maximum
of �3,036 ÷ (3 × 3)� = 337 sub-chains that occupy 3,033 multipliers and compute this CONV layer
in �512 ÷ 337	 = 2 rounds. However, we can use only 2,304 hard multipliers (i.e. 256 sub-chains)
instead, which computes the same layer also in 2 rounds but uses fewer DSP blocks and does not
affect the performance of other layers as well. Table 2 summarizes the experimental setup and the
parameters used in each CA.

We optimize the performance of the three CAs implemented on the FPGA to achieve the highest
possible operating frequency for each one. We then migrate the exact same RTL implementations
to ASICs using the same architecture parameters indicated in Table 2. One might argue that an
optimized ASIC design can achieve higher performance by, for example, building custom highly
efficient inter-PE network-on-chip such as in Reference [4] or fitting significantly more MACs on-
chip [19]. However, the purpose of this study is not to benchmark FPGAs vs. ASICs in accelerating
CNN inference, but rather highlight the bottlenecks of current FPGA architectures when imple-
menting those CAs. Therefore, the ASIC implementations in this study serve as an upper-bound
on the performance and area-efficiency of FPGA-optimized CNN accelerators where all the FPGA
programmability has been removed. Comparing the same CAs on FPGAs and ASICs enables us
to quantify the effect of FPGA programmability on the performance and area of those CAs and
pinpoint the causes of this gap in current FPGA architectures; this would not be possible if we
instead compared existing ASIC implementations to totally different state-of-the-art FPGA ones.

4.1 Performance Modeling

To obtain the performance results of the three CAs, we build analytical performance models based
on our RTL simulations that calculate the number of cycles required for the computation of each
layer as well as the time required for any necessary memory transfers of weights and features.
We assume that the layout of the features and weights in the external memory is optimized for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:15

Fig. 7. Processing time breakdown of one image for the LRN variation of the three CAs.

the parallelization schemes of each CA, which allows us to utilize the burst capabilities and all
the external memory bandwidth available. Given a high-level description of the CNN model, the
operating frequency of the accelerator, the bit-widths of weights/features, and the available exter-
nal memory bandwidth, our performance models produce the computation and memory transfer
time required for each layer of the CNN. Our performance models assume either a single bank of
DDR4x64 memory at 1,200MHz (for a total bandwidth of 17GB/s) or unlimited bandwidth to obtain
effective performance and computational performance results, respectively. As an example, Figure 7
shows the performance model output for AlexNet on the three CAs. We then use this output to
calculate the throughput in GOPS counting each MAC as two operations (i.e., a multiplication and
an addition). We verified our performance models against the results reported in References [27]
and [2], and we found that our models align well with the published results.

4.2 ASIC Flow

For the ASIC implementations, we use Synopsys Design Compiler 2013.03 to synthesize the CAs
using 28nm STMicroelectronics standard-cell libraries; we target an unachievable clock period
of 0ns to achieve the highest possible frequency and then perform area recovery by setting the
maximum area to 0 and carrying out an incremental compilation. The standard-cell library comes
with a wide variety of variations for different processes, voltages and operating temperatures, from
which we choose the 1.0V, 125°C, and worst-case process corner for our experiments.

Memory Compiler: We use COFFE’s memory compiler [46] to generate on-chip memories for
our ASIC implementations. Although this memory compiler was previously used to design FPGA
BRAM blocks, it is capable of designing custom memory blocks for ASICs with any required word
size and depth, without any FPGA-specific circuitry. The memory cell layout as well as the veri-
fication of its area and timing results against state-of-the-art industrial and academic designs are
detailed in Reference [46]. Our experiments also show that the area of memory blocks generated
by COFFE’s memory compiler align well with that generated by the OpenRAM [12] memory com-
piler for memories having different word sizes and depths. The ASIC CAs have the flexibility to
implement on-chip memories of the required size and type (i.e., simple or dual port) unlike the
FPGA implementations, which are constrained by the fixed size of BRAM blocks.

Place and Route Correction Factors: Using synthesis-only results for ASIC designs can over-
estimate frequency and underestimate area as it only predicts routing effects. However, pushing all
nine designs that we implemented through multiple iterations of the place-and-route flow proved
computationally infeasible due to the very high runtime of such large designs and the limited tool
licenses available. However, we exploit the modular nature of the three architectures and place
and route smaller instances of the CAs with fewer PEs (1/8 to 1/4 of the full size designs) to obtain
correction factors for our synthesis-only results of the full-size CAs. We use Cadence Innovus 16
to place and route our designs. Our experiments show that the frequency achieved in synthesis is
degraded after placement and routing by factors of 0.65, 0.74, and 0.73 for the ASU-like, Intel-DLA-
like, and Chain-NN-like CAs, respectively. We observed that the area of the CAs scale linearly and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:16 A. Boutros et al.

Table 3. Frequency, Effective Performance, and Image Processing for the

FPGA Implementations of Different CAs

CA ASU-like Intel-DLA-like Chain-NN-like
Variation BSC LRN ELT BSC LRN ELT BSC LRN ELT

Frequency (MHz) 266 216 258 339 336 345 186 197 188
Eff. Perf. (GOPS) 1,077 303 580 1,660 307 620 423 128 54
Processing Time (ms) 27.2 4.8 13.3 16.1 4.5 10.5 73.1 11.4 143.5

BSC, LRN, and ELT CA variations implement the VGG-16, AlexNet, and ResNet-50, respectively. The Intel-DLA-like results

are with batch size 1.

that the correction factors are consistent across different sizes of the CAs, as we expected given
the modular nature of these architectures, and this increases our confidence in the correction fac-
tors. We also needed to bloat the area of the ASIC implementations by 5% for ASU-like and 11%
for both Intel-DLA-like and Chain-NN-like architectures to achieve a successful routing that met
timing. We apply those correction factors to our synthesis-only results to obtain more accurate
and realistic area and performance numbers for the placed and routed ASIC implementations.

4.3 FPGA Flow

For the FPGA implementations, we use Intel Quartus Prime 17.0 to synthesize, place and route the
three variations of each CA for the largest and fastest speed-grade Arria 10 device. The function-
ality of all the designs is verified using ModelSim Intel FPGA Starter Edition 10.5b. To estimate
the area occupied by the CAs on the FPGA, we first convert all the utilized resources to equivalent
ALMs (eALMs). It is reported in Reference [34] that the costs of an M20K block and a DSP block
in Stratix V architecture are 40 and 30 eALMs, respectively. For the Arria 10 architecture, which
uses the same M20K blocks as Stratix V, we use the same cost for BRAMs; however, we account for
the 10% increase in DSP block area compared to Stratix V due to adding support for floating-point
arithmetic [21] leading to a DSP block cost of 33 eALMs. After that, we use the publicly available
area of the 65 nm Stratix III ALM [53] and scale it down to 28nm to get an area estimate in squared
millimeters that is comparable to the area of the ASIC implementations. Although the ALM ar-
chitecture has only minor changes from Stratix III to Arria 10, we believe that the area results of
the FPGA implementations in squared millimeters can still be optimistic, since we assume ideal
scaling from 65 to 28nm. However, we are most interested in relative trends in our area gap anal-
ysis, which can help us identify the blocks that have relatively higher gap than others, rather than
finding the absolute area results in squared millimeters with high accuracy.

5 RESULTS

In this section, we first compare the FPGA implementations of the different variations of the three
CAs in terms of performance, resource utilization, and area breakdown. Then, we study the per-
formance and area gap compared to the ASIC implementations. Finally, we analyze these results
and suggest FPGA architectural changes to achieve more efficient CNN inference acceleration.

5.1 FPGA Results

Table 3 summarizes the maximum frequency and the processing time of one image and Figure 8(a)
shows the performance results in TOPS for all variations of the three CAs. We show the perfor-
mance results of the Intel-DLA-like CA in case of both processing a batch of size B = 96 images,
similar to what was reported in Reference [2], and B = 1 similar to the other CAs. Besides using
the Winograd transform that significantly reduces the amount of required operations and reduc-
ing external memory transfers by using double-buffered stream buffers, the Intel-DLA-like CA also

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:17

Fig. 8. FPGA Results: (a) Performance in TOPS. (b) Resource utilization. (c) Area breakdown.

achieves the highest frequency because of its pipelined daisy-chain architecture that allows an op-
timized placement of the PEs with less fan-out from the feature/weight buffers to the PEs when
compared to the other CAs. Therefore, the Intel-DLA-like CA achieves the highest performance
with 1.54× and 1.07× more TOPS than that achieved by the ASU-like CA (which uses more PEs)
for the BSC and ELT and LRN variations, respectively, in case of a single image inference.

The Intel-DLA-like CA has the highest advantage over the ASU-like-CA in the BSC variation,
since all the CONV layers of VGG-16 are of size 3 × 3 that benefit the most from the Winograd
transform. This advantage decreases in the ELT variation as the ratio of 3 × 3 CONV layers to all
layers decreases in ResNet-50, and we cannot fully make use of the double-buffering technique due
to the ELTWISE layers that require storing intermediate results to the external memory. However,
despite the significantly higher performance reported in Reference [2] in case of batch processing
of FC layers, it achieves slightly more TOPS when compared to the ASU-like CA in case of single
image inference using AlexNet. Figure 8(a) also shows that the gains from batch processing (4.2×
and 1.8× more TOPS in the LRN and BSC variations, respectively) almost vanishes in ELT, since
the ResNet-50 model has only one small FC layer compared to three larger FC layers in AlexNet
and VGG-16.

The Chain-NN-like CA has the lowest performance results in all variations, since it runs at a sig-
nificantly lower frequency than the other CAs. We believe that this is due to the high utilization of
the FPGA’s soft fabric (between 74%–77% as shown in Figure 8(b)), leading to physically stretched
critical paths. The large fan-out from the odd/even input buffers to the first PE of all sub-chains
and the large multiplexers used for selecting the outputs of sub-chains for different convolution
sizes (i.e., selecting between every 9th, 25th, 49th, or 121st PE for CONV layers of size K = 3, 5, 7,
or 11, respectively) also negatively affect the frequency. Finally, the performance of this CA is sig-
nificantly degraded in FC layers and 1 × 1 CONV layers, since it was originally implemented for
accelerating only the CONV layers as explained in Section 3.3.

Figure 8(b) shows the percentage utilization of ALMs, M20K BRAM blocks, and DSP blocks for
each CA variation. The highest utilization percentage in most cases is for the DSP blocks, which
are the core of the convolution engine in all CAs. The ASU-like CA uses all the 1,518 DSP blocks
(3,036 18-bit multipliers) to implement the three-dimensional array of MAC units in its convolution
engine and off-loads 100 MAC units to the FPGA’s soft fabric. The BSC and ELT variations of the
Intel-DLA-like CA use 91% of the DSP blocks, 224 of which are used for the Winograd transform
and inverse transform, while 1,152 blocks are used to implement the dot product units in its PEs. In
addition, its LRN variation uses the remaining DSP blocks to implement some of the multiplication
operations of the LRN layers. The Chain-NN CA uses significantly more soft logic, because it

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:18 A. Boutros et al.

Fig. 9. Area and performance gaps.

Table 4. Summary of Area and

Performance Ratios

Var CA AR1 CPR2 EPR3

BSC

ASU 9.38 4.44 2.09

Intel-DLA 7.87 2.83 1.26

Chain-NN 8.16 6.33 3.63

LRN

ASU 11.02 4.63 1.25

Intel-DLA 8.48 2.91 1.15

Chain-NN 8.38 5.98 2.29

ELT

ASU 9.48 4.58 2.08

Intel-DLA 7.93 2.82 1.5

Chain-NN 8.27 6.26 5.35

Geomean 8.73 4.31 2.01

1Area Ratio (FPGA/ASIC).
2Computational Performance Ratio (ASIC/FPGA).
3Effective Performance Ratio (ASIC/FPGA).

implements the weight buffers as distributed memories in MLABs. In Figure 8(c), we show the
area in squared millimeters estimated according the methodology of Section 4.3 and its breakdown
for all the CAs. With the exception of the Chain-NN-like CA that uses a significant amount of
the soft fabric to implement weight buffers, the area of the two other CAs is dominated by the
computational blocks such as the convolution, pooling and normalization blocks. In the Intel-
DLA-like CA, the Winograd transform and inverse transform blocks contribute to the total area
by 29–33%, which is almost as expensive as the convolution engine, which consumes 32–37% of
the total area.

5.2 Performance Gap

Figure 9 illustrates the area and computational performance gap between the FPGA and ASIC
implementations of the three variations of each CA. The FPGA implementations are represented
as triangles while the ASIC implementations are represented as squares. The colors and patterns of
the data points represent the variation and the CA, respectively, and the dotted lines connect each
FPGA implementation to its ASIC counterpart. The closer the data point is to the upper left corner
of the graph, the better it is as it will have smaller area and higher performance. Table 4 summarizes
the FPGA-to-ASIC area ratios as well as the computational performance and effective performance
ASIC-to-FPGA ratio for each CA variation. The computational performance ratio (CPR) represents
the performance gap between the FPGA and ASIC implementations assuming infinite external
memory bandwidth. However, the effective performance ratio (EPR) represents the performance
gap assuming a single-bank external memory interface as specified previously. We believe that
the computational performance ratio better captures the cost of FPGA programmability and its
effect on the computational core performance of the three CAs as it is not limited by a relatively
low-performance external memory interface. The values of EPR are less than those of the CPR as
shown in Table 4 due to the external memory bandwidth constraints. As the performance of the
computational engine increases, the CAs can use multiple DDR memory banks or high-bandwidth
memory to enhance the overall performance. Therefore, EPR and CPR represent lower and upper
bounds for design points using different external memory systems. Since the main focus of this
work is studying the computational gap caused by the FPGA programmability, we believe that the
CPR is the more important metric.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:19

Fig. 10. Area gap between FPGA and ASIC implementations for different blocks of: (a) BSC, (b) LRN, and

(c) ELT. The percentages represent the contribution of each component to the total area of the FPGA

implementation.

Interestingly, the computational performance gap is not consistent among different CAs; how-
ever different variations of the same CA have similar gap results. The Intel-DLA-like CA has
the smallest ASIC-to-FPGA computational performance ratio (≈2.9) compared to the ASU-like
and Chain-NN-like CAs (≈4.6 and 6.2, respectively). We believe that the reason is that the Intel-
DLA-like CA has a modular daisy-chain architecture, which is more routing-friendly and bene-
fits the FPGA implementation more than the ASIC one due to the relatively slow speed of FPGA
routing.

5.3 Area Gap

On average, the FPGA implementations have 8.7× larger area than their ASIC counterparts and
the gap is, in contrast to the performance gap, fairly similar across different variations of the three
CAs. To understand the reasons for this gap, Figures 10(a), 10(b), and 10(c) illustrate the area ratio
of different components in the FPGA implementations to those in the ASIC implementations for
the BSC, LRN, and ELT variations, respectively. The percentages written above the bars represent
the area breakdown of each FPGA implementation into different components and hence indicate
the contribution of each component to the overall area gap. We notice that the convolution engine,
which has the largest contribution to total area (up to 60% in some cases) and thus the strongest
impact on the total area gap, has an FPGA-to-ASIC area area ratio ranging from 13 to 31 for different
variations of the three CAs. The Intel-DLA-like uses Winograd transform to significantly reduce
MAC operations in convolution, which costs almost the same area as the convolution engine in the
FPGA implementation. However, the Winograd transform and inverse transform blocks in this CA
have FPGA-to-ASIC area ratios of 28 and 26, respectively, which are almost twice the area gap for
the convolution engine, since they contain a large number of multi-input adders implemented in
the FPGA’s soft fabric compared to the convolution engine, which is mostly implemented in hard
DSP blocks. The smallest area gap is in the feature and weight buffers, since the RAMs in the FPGA
and the ASIC implementations are both custom SRAM blocks. However, the buffers area ratios are
still significant (≈3–5) because of the area overhead of the programmable routing in BRAM tiles
as well as the underutilization of some of the M20K blocks on the FPGA, whereas in the ASIC
implementations, we use memories with the exact required sizes. The NORM block has an area
ratio of 32 and 28 and consumes 22% and 14% of the total area in ASU-like and Intel-DLA-like CAs,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:20 A. Boutros et al.

respectively, since it is a heavily arithmetic block and is mostly implemented in the soft fabric.
However, it only consumes 3% of the total area in the Chain-NN-like CA, which produces outputs
in one dimension only and therefore does not normalize output features at different locations in
parallel. The POOL, ELTWISE and BNORM blocks have large area ratios, however they have small
overall areas and hence limited impact on the total gap.

An interesting observation is that the area gap in the convolution engine of the Intel-DLA-like
CA is significantly less than that of the other two CAs: an area ratio of 13 compared to 20 and
29 in ASU-like and Chain-NN-like CAs, respectively. This is because the Intel-DLA-like CA uses
the hard adders in the DSP blocks to implement its dot-product unit, while the other two CAs
pay for the area of the complete DSP block on the FPGA but only make use of the multipliers
inside it and thus have a higher area gap compared to their ASIC counterparts. This observation
motivates the investigation of new DSP block designs that could bring more of the convolution
engine functionality inside the hard DSP block. For instance, the ASU-like CA needs two separate
accumulators for the two independent 18-bit multipliers, which is not supported in current DSP
blocks. Hence, the DSP block accumulators are wasted and soft logic is used to implement the
accumulators. The convolution engine of the Chain-NN-like CA has the highest area gap as it
implements input multiplexing, accumulation, and output de-multiplexing in the soft fabric.

5.4 Architectural Insights

Based on the results of Sections 5.1 and 5.2, we can draw several architectural insights:

• According to the resource utilization results in Figure 8(b), the limiting factor is the DSP
block count available on-chip, with close to 100% resource utilization in most cases. One
direct approach to gain higher performance is adding more DSP blocks to current FPGAs,
especially given that a DSP-focused device spends only 5% of its core area on DSP blocks
[21]. This requires a careful architectural study to determine the optimal ratio and area
distribution between DSPs, BRAMs, and ALMs for DL-tuned FPGAs that are still flexible
enough and suitable for other applications as well. These architectural explorations require
a suite of DL benchmark circuits such as the one we developed in this work, and which we
plan to expand and open-source in future work.

• As shown in Figure 10, the area gap of the convolution engine of the Intel-like-DLA CA is
significantly less than that of the other two CAs, since it makes better use of the DSP block
available functionalities such as the internal adders and hard cascade chains. By looking
at the ASIC area breakdown of the convolution engine, we can see that about 72% of the
logic in the convolution engine of the Intel-DLA-like CA was implemented inside hard DSP
blocks on the FPGA compared to only 32% and 35% in the ASU-like and Chain-NN-like CAs,
respectively, and the rest is implemented in the soft fabric. We believe that small changes to
the DSP block architecture could capture more of the convolution engine hardware inside
the hard circuitry of the DSP block. For example, adding an operation mode that configures
the two internal adders as independent accumulators for two independent 18-bit MACs
(such as in the ASU-like CA) or having a small circular shift register accumulator for inter-
leaving dot-product operations (as in the Intel-DLA-like CA) would save soft logic. Neither
of the DSP block enhancements would add much logic to the block, nor would they require
more block routing ports (inputs and outputs) and, therefore, the DSP block area increase
would be minimal. To increase the DSP block count on-chip, as mentioned in our first sug-
gestion, we not only wish to avoid significant block area increase, but also remove DSP
block functionalities that are unnecessary for DL applications and would not cause severe
performance degradation when implemented in the soft fabric. For example, removing the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:21

built-in constant coefficient banks in the Arria 10 DSP blocks should be evaluated as they
are not usable by any of our CAs.

• In this study, we used 16- and 8-bit fixed-point precision for features and weights, respec-
tively, in all CAs to ensure fair comparisons. However, the most suitable precision for CNN
inference is debatable and varies widely in the literature from single-precision floating-
point down to ternary and binary [28]. Currently, DSP blocks from Intel and Xilinx support
a limited number of precisions. For instance, a DSP block in Intel Arria 10, and similarly
Stratix 10, FPGAs supports two 18-bit, one 27-bit, or one single-precision floating-point
multiplication. However, a DSP slice in Xilinx Virtex Ultrascale FPGAs supports one 27 × 18
multiplication. Designers can sometimes fit more low-precision multiplies that match cer-
tain patterns using clever tricks such as performing two 8-bit multiplies that share one
operand using a single Xilinx DSP slice [8]. Even with these operand packing tricks, using
lower precision leaves a portion of the DSP block logic idle. We can avoid this by designing
DSP blocks that natively support low-precision multiplications and reuse routing ports and
multiplier sub-arrays to keep the area overhead minimal.

• When implementing the three CAs, we noticed that the required on-chip buffers are either
deep central buffers for input and output features or smaller and more distributed buffers
for the weights. When we tried to extend the double-buffering technique used in the Intel-
DLA-like CA to more layers of models larger than AlexNet by implementing deeper stream
buffers, it resulted in a net performance degradation as the operating frequency dropped
significantly due to depth stitching of M20K BRAMs to implement those deep buffers. How-
ever, when implementing the small weight buffers of the Chain-NN-like CA in MLABs, the
high utilization of the soft fabric also resulted in lower operating frequency. This observa-
tion indicates that having only M20K BRAMs and MLABs to implement on-chip memories
might not be a good fit for DL acceleration on FPGAs. This also requires a more detailed ar-
chitectural study to determine the best size and ratio of on-chip BRAMs and their effect on
the overall performance using DL-representative benchmarks, and we believe our parame-
terized CAs can form the start of this benchmark set. In addition, the memory-richness of
FPGAs can be enhanced by employing emerging technologies such as Magnetic Tunneling
Junction memories, which can provide bigger yet more dense BRAMs for memory-intensive
applications as shown in Reference [54].

6 CONCLUSION

In this article, we implemented three highly optimized state-of-the-art CAs for accelerating CNN
inference, which are: ASU-like, Intel-DLA-like, and Chain-NN-like CAs. We implemented three
variations of each CA (BSC, LRN, and ELT) for three different CNN models (VGG-16, AlexNet, and
ResNet-50, respectively) on an Intel Arria 10 FPGA device and compared them to 28nm ASIC im-
plementations of the same CAs to quantify the programmability cost that comes with using FPGAs
on the performance and area of DL accelerators. Across different variations of the three CAs, we
observed a consistent area gap with an average FPGA-to-ASIC area ratio of 8.7×, to which the con-
volution engine contributes the most with area ratios ranging from 13 to 31 for different CAs. The
performance gap, unlike the area gap, varies significantly across different CAs. The computational
performance of the ASIC implementations is 2.8× to 6.3× faster than that of the FPGA imple-
mentations when assuming infinite external memory bandwidth. We find that the Intel-DLA-like
CA has the smallest performance gap compared to its ASIC counterpart indicating that focusing
on modular and routing-friendly designs is of great importance for building efficient FPGA-based
DL accelerators. Finally, we suggest several FPGA DSP and RAM architecture changes for future

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



20:22 A. Boutros et al.

work that could reduce the area and performance gaps and enable more efficient DL acceleration
on FPGAs.

ACKNOWLEDGMENTS

The authors thank Martin Langhammer, Debbie Marr, and Eriko Nurvitadhi for helpful discussions,
as well as Huawei, Intel, and NSERC for funding support.

REFERENCES

[1] M. Abadi et al. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the OSDI. 265–283.

[2] U. Aydonat et al. 2017. An OpenCL (TM) deep learning accelerator on Arria 10. In Proceedings of the FPGA. 55–64.

[3] Y. Chen et al. 2014. DaDianNao: A machine-learning supercomputer. In Proceedings of the MICRO. 609–622.

[4] Y. Chen et al. 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks.

In Proceedings of the JSSC, Vol. 52. 127–138.

[5] S. Chetlur et al. 2014. CuDNN: Efficient primitives for deep learning. arXiv:1410.0759.

[6] E. Chung and J. Fowers. 2017. Accelerating persistent neural networks at datacenter scale. In Proceedings of the HOT

CHIPS, Vol. 29.

[7] F. Colombo et al. 2017. Deep artificial composer: A creative neural network model for automated melody generation.

In Proceedings of the EvoMUSART. 81–96.

[8] Y. Fu et al. 2016. Deep learning with INT8 optimization on Xilinx devices. In white paper of Xilinx.

[9] L. Gatys et al. 2015. A neural algorithm of artistic style. arXiv:1508.06576.

[10] A. Graves et al. 2013. Speech recognition with deep recurrent neural networks. In Proceedings of the ICASSP. 6645–

6649.

[11] Y. Guan et al. 2017. FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS

hybrid templates. In Proceedings of the FCCM. 152–159.

[12] Matthew R. Guthaus et al. 2016. OpenRAM: An open-source memory compiler. In Proceedings of the ICCAD.

[13] P. Gysel et al. 2016. Hardware-oriented approximation of convolutional neural networks. arXiv:1604.03168.

[14] K. He et al. 2015. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In

Proceedings of the ICCV. 1026–1034.

[15] K. He et al. 2016. Deep residual learning for image recognition. In Proceedings of the CVPR. 770–778.

[16] S. Herculano-Houzel. 2009. The human brain in numbers: A linearly scaled-up primate brain. In Frontiers in Human

Neuroscience, Vol. 3.

[17] S. Ioffe and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. In Proceedings of the ICML. 448–456.

[18] Y. Jia et al. 2014. Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093.

[19] N. Jouppi et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the ISCA. 1–12.

[20] A. Krizhevsky et al. 2012. ImageNet classification with deep convolutional neural networks. In Proceedings of the

NIPS. 1097–1105.

[21] M. Langhammer and B. Pasca. 2015. Floating-point DSP block architecture for FPGAs. In Proceedings of the FPGA.

117–125.

[22] A. Lavin and S. Gray. 2016. Fast algorithms for convolutional neural networks. In Proceedings of the CVPR. 4013–4021.

[23] Z. Liu et al. 2016. Automatic code generation of convolutional neural networks in FPGA implementation. In Proceed-

ings of the FPT. 61–68.

[24] L. Lu et al. 2017. Evaluating fast algorithms for convolutional neural networks on FPGAs. In Proceedings of the FCCM.

101–108.

[25] Y. Ma et al. 2016. Scalable and modularized RTL compilation of convolutional neural networks onto FPGA. In Pro-

ceedings of the FPL. 1–8.

[26] Y. Ma et al. 2017. An automatic RTL compiler for high-throughput FPGA implementation of diverse deep convolu-

tional neural networks. In Proceedings of the FPL. 1–8.

[27] Y. Ma et al. 2017. Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural net-

works. In Proceedings of the FPGA. 45–54.

[28] A. Mishra et al. 2017. WRPN: Wide reduced-precision networks. arXiv:1709.01134.

[29] E. Nurvitadhi et al. 2016. Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. In

Proceedings of the FPT. 77–84.

[30] K. Ovtcharov et al. 2015. Accelerating deep convolutional neural networks using specialized hardware. In Microsoft

Research Whitepaper, Vol. 2.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.



FPGA vs. ASIC Efficiency Gaps for Convolutional Neural Network Inference 20:23

[31] A. Prost-Boucle et al. 2017. Scalable high-performance architecture for convolutional ternary neural networks on

FPGA. In Proceedings of the FPL. 1–7.

[32] A. Putnam et al. 2014. A reconfigurable fabric for accelerating large-scale datacenter services. In Proceedings of the

ISCA. 13–24.

[33] J. Qiu et al. 2016. Going deeper with embedded FPGA platform for convolutional neural network. In Proceedings of

the FPGA. 26–35.

[34] R. Rashid et al. 2014. Comparing performance, productivity and scalability of the TILT overlay processor to OpenCL

HLS. In Proceedings of the FPT. 20–27.

[35] D. E. Rumelhart et al. 1985. Learning Internal Representations by Error Propagation. Technical Report.

[36] O. Russakovsky et al. 2015. Imagenet large scale visual recognition challenge. In Proceedings of the IJCV, Vol. 115.

211–252.

[37] H. Sharma et al. 2016. From high-level deep neural models to FPGAs. In Proceedings of the MICRO. 1–12.

[38] F. Shen et al. 2016. Weighted residuals for very deep networks. In Proceedings of the ICSAI. 936–941.

[39] Y. Shen et al. 2016. Overcoming resource underutilization in spatial CNN accelerators. In Proceedings of the FPL. 1–4.

[40] Y. Shen et al. 2017. Maximizing CNN accelerator efficiency through resource partitioning. In Proceedings of the ISCA.

535–547.

[41] D. Silver et al. 2017. Mastering the game of go without human knowledge. In Nature, Vol. 550. 354–359.

[42] N. Suda et al. 2016. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural

networks. In Proceedings of the FPGA. 16–25.

[43] A. Suleiman et al. 2017. Towards closing the energy Gap between HOG and CNN features for embedded vision.

arXiv:1703.05853.

[44] I. Sutskever et al. 2014. Sequence to sequence learning with neural networks. In Proceedings of the NIPS. 3104–3112.

[45] C. Szegedy et al. 2015. Going deeper with convolutions. In Proceedings of the CVPR.

[46] Kosuke Tatsumura et al. 2016. High density, low energy, magnetic tunnel junction based block RAMs for memory-rich

FPGAs. In Proceedings of the FPT. 4–11.

[47] Y. Umuroglu et al. 2017. FINN: A framework for fast, scalable binarized neural network inference. In Proceedings of

the FPGA. 65–74.

[48] S. Venieris and C. Bouganis. 2016. fpgaConvNet: A framework for mapping convolutional neural networks on FPGAs.

In Proceedings of the FCCM. 40–47.

[49] G. Venkatesh et al. 2017. Accelerating deep convolutional networks using low-precision and sparsity. In Proceedings

of the ICASSP. 2861–2865.

[50] S. Wang et al. 2017. Chain-NN: An energy-efficient 1D chain architecture for accelerating deep convolutional neural

networks. In Proceedings of the DATE. 1032–1037.

[51] Y. Wang et al. 2016. DeepBurning: Automatic generation of FPGA-based learning accelerators for the neural network

family. In Proceedings of the DAC. 1–6.

[52] X. Wei et al. 2017. Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In

Proceedings of the DAC. 1–6.

[53] H. Wong et al. 2011. Comparing FPGA vs. custom CMOS and the impact on processor microarchitecture. In Proceed-

ings of the FPGA. 5–14.

[54] S. Yazdanshenas et al. 2017. Don’t forget the memory: Automatic block RAM modelling, optimization, and architec-

ture exploration. In Proceedings of the FPGA. 115–124.

[55] C. Zhang et al. 2015. Optimizing FPGA-based accelerator design for deep convolutional neural networks. In Proceed-

ings of the FPGA. 161–170.

[56] C. Zhang et al. 2016. Energy-efficient CNN implementation on a deeply pipelined FPGA cluster. In Proceedings of the

ISLPED. 326–331.

[57] C. Zhang and V. Prasanna. 2017. Frequency domain acceleration of convolutional neural networks on CPU-FPGA

shared memory system. In Proceedings of the FPGA. 35–44.

Received December 2017; revised April 2018; accepted July 2018

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 20. Pub. date: December 2018.


