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Abstract—Use of reduced precisions in Deep Learning (DL)
inference tasks has recently been shown to significantly improve
accelerator performance and greatly reduce both model memory
footprint and the required external memory bandwidth. With
appropriate network retuning, reduced precision networks can
achieve accuracy close or equal to that of full-precision floating-
point models. Given the wide spectrum of precisions used in DL
inference, FPGAs’ ability to create custom bit-width datapaths
gives them an advantage over other acceleration platforms in this
domain. However, the embedded DSP blocks in the latest Intel
and Xilinx FPGAs do not natively support precisions below 18-bit
and thus can not efficiently pack low-precision multiplications,
leaving the DSP blocks under-utilized. In this work, we present an
enhanced DSP block that can efficiently pack 2× as many 9-bit
and 4× as many 4-bit multiplications compared to the baseline
Arria-10-like DSP block at the cost of 12% block area overhead
which leads to only 0.6% total FPGA core area increase. We
quantify the performance gains of using this enhanced DSP block
in two state-of-the-art convolutional neural network accelerators
on three different models: AlexNet, VGG-16, and ResNet-50.
On average, the new DSP block enhanced the computational
performance of the 8-bit and 4-bit accelerators by 1.32× and
1.6× and at the same time reduced the utilized chip area by
15% and 30% respectively.

I. INTRODUCTION

Deep neural networks (DNNs) have been widely replacing
conventional machine learning algorithms as the de facto stan-
dard in numerous applications. However, their unprecedented
accuracy and ability to learn complex features from unstructured
data comes at the cost of increased computational complex-
ity and a large memory footprint. The compute and memory
requirements further escalate as models get deeper and more
complex in order to achieve higher accuracy. For example,
model size increased by a factor of 2.3× in VGG-16 compared
to AlexNet for an 11% increase in top-1 image classification
accuracy [1]. As a result, many researchers are investigating the
use of reduced precision weights and/or activations, especially
in inference tasks that do not necessarily require full-precision
floating-point arithmetic [2].

A linear reduction of 4× in model memory footprint and
required external memory bandwidth can be achieved when us-
ing 8-bit fixed-point instead of 32-bit floating-point activations
and weights for example. Although these gains come at the
cost of accuracy degradation, the resilience of deep learning
(DL) models to noise made it possible to use 16-bit fixed-point
arithmetic with less than 0.5% accuracy degradation on the
ImageNet dataset [3]. Several techniques, such as incremental
quantization [4] and increasing the depth of convolutional layers
[5], enabled the use of further lower precisions ranging from 8-
bit and 4-bit down to ternary and binary with negligible or no
accuracy degradation.

The advances in mitigating the accuracy degradation when
using reduced-precision DNNs have also led hardware architects
to add support for low-precision arithmetic units into their DL
inference accelerators. In addition to reducing memory footprint
and the required external memory bandwidth, this also allows
fitting more multiply-accumulates (MACs) on-chip and achiev-
ing higher energy efficiency. The gains can be substantial: a 16-
bit fixed-point multiplication consumes about 6.2× less energy
than a 32-bit floating-point multiplication in 45nm process
technology [3]. Examples of architectures with low-precision
support include Nvidia’s Tesla P40 DL inference accelerator,
which added support for 8-bit operations resulting in a 4×
higher inference throughput compared to their equivalent 32-
bit floating-point architectures [6], and Google’s TPU which
includes an 8-bit 256×256 matrix multiply-accumulate unit to
accelerate inference workloads in datacenters [7].

On the other hand, FPGAs are an attractive low-precision
DNN acceleration option due to their: flexibility in building
custom bit-width datapaths, higher energy efficiency compared
to GPUs, and lower non-recurring engineering cost compared
to ASICs. However, the digital signal processing (DSP) blocks
in the latest Intel and Xilinx FPGAs fall short on flexibility as
they do not natively support multiplications smaller than 18 bits.
Therefore, when implementing low-precision DL accelerators,
designers resort to either implementing most of the small bit-
width multipliers in the soft fabric or packing two multiplica-
tions that have a common multiplicand into a single multiplier
as shown in [8]. Both approaches are suboptimal, leaving DSP
blocks underutilized, with the former leading to higher power
consumption and possibly lower operating frequency, and the
latter imposing the restrictions of having a shared multiplicand
and a limited number of MACs before requiring additional logic
to adjust the accumulation result.

In this paper, we make the following contributions:

• Enhancing the DSP block on current commercial FPGAs
to support 9-bit and 4-bit multiplications/MACs at the cost
of minimal area overhead and no frequency drop.

• Quantifying the performance gains of the enhanced DSP
block in two state-of-the-art convolutional neural network
(CNN) accelerators on a variety of models for both 8-bit
and 4-bit precisions.

II. BACKGROUND AND RELATED WORK

A. The Chaos of Deep Learning Precisions
The idea of using low precisions in neural networks goes

back to the early 1990s when Holt and Baker compared the use
of floating-point and limited-precision integer back propagation
to build efficient neural network hardware [9]. After the recent
resurgence of interest in DNNs, research was initially focused
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(a) Intel’s DSP block (dual 18×19 mode) (b) Intel’s DSP block (27×27 mode) (c) Xilinx’s DSP block

Fig. 1: DSP blocks on current FPGAs.

on maximizing model accuracy and achieving near human-level
accuracy in some applications. The resulting large models can
be challenging to deploy both in embedded mobile applications
and large-scale datacenters that have tight constraints on latency
and power budget. Therefore, many recent works have focused
on co-designing DL models and the underlying computing hard-
ware to improve efficiency by reducing the arithmetic precision
without affecting the hard-won accuracy.

Some of the early works in this area focused on training
simple CNNs on MNIST and CIFAR-10 datasets using low
numeric precisions like 16-bit weights and activations [10], 10-
bit weights and 12-bit activations [11] down to 2-bit weights and
3-bit activations [12]. In [2], the authors introduced Ristretto, a
framework for quantizing floating-point CNNs using dynamic
fixed-point precision. They were able to use 8-bit weights
and activations in several ImageNet models with less than 1%
accuracy degradation. Mellempudi et al. [13] used a cluster-
based quantization approach on ResNet-101 model that enabled
the use of 8-bit activations and 4-bit weights with less than
2% accuracy degradation. Researchers have also investigated
several techniques to re-gain the accuracy lost as a result of
using low-precision arithmetic. For example, authors of [5]
introduced Wide Reduced-Precision Networks to compensate
the accuracy loss by increasing the number of filters in each
layer when using 8-bit and 4-bit down to ternary and binary
weights and activations. The huge variety of precisions used
in DL inference is not just limited to reduced bit-widths, but
also extends to using non-standard numeric representations such
as Microsoft’s 9-bit floating-point representation in the FPGA-
based project BrainWave [14]. In this project, custom floating
point units are implemented in the soft fabric including 4-bit or
5-bit multipliers for mantissa multiplication.

B. DSP Blocks on Current FPGAs
One of the unique advantages of FPGAs has always been

the ability to offer a flexible and efficient hardware acceleration
solution for domains where various standards are adopted. This
is the current case for DL inference in which the optimal
precision is still undecided and model-dependent as discussed
in the previous subsection. Unlike CPUs and GPUs, FPGAs can
benefit from reducing the data-path width either by reducing the
power consumption or flexibly fitting more computations on-
chip. DSP blocks in Intel’s latest FPGAs [15] can pack either
two 18×19 multiplications or one 27×27 multiplication per
DSP block as shown in Fig. 1(a) and 1(b) respectively. They
support different modes such as independent multiplications,
pre-addition, and multiply-accumulate as well as having ded-
icated input and output chains to implement efficient vector

structures for applications such as FIR filters, dot-products
and matrix multiplication. Intel has also introduced support for
single-precision floating-point arithmetic in the DSPs of Arria
10 FPGAs with only 10% block area overhead [16]. On the other
hand, DSP blocks in Xilinx FPGAs, shown in Fig. 1(c), support
one 18×27 multiplication and contain a 48-bit Arithmetic Logic
Unit, a wide XOR operator, a pattern detector, and dedicated
input and output chains [17]. One unique feature in Xilinx DSP
blocks is that their operating mode is dynamically controlled
by external signals at runtime in contrast to Intel’s DSP blocks
that are statically configured at compilation time using SRAM
cells. Unlike Intel and Xilinx, DSP blocks in Microsemi FPGAs
support two 9-bit multiplications in the dot-product mode and a
single 18-bit multiplication in the normal mode [18].

C. Related Work on Multi-precision DSP blocks
In [19], the authors proposed a new DSP block architecture

that supports different multiplication bit-widths and exposes the
partial product reduction logic to the designer to implement
efficient multi-input addition. Their proposed DSP block added
support for eight 9-bit, six 12-bit, two 24-bit and one 36-bit
for an 11% area overhead and an additional 2% for supporting
multi-input addition compared to a base DSP block that only
implements four 18-bit multiplications. They showed that their
multi-input addition is on average 50% faster than that imple-
mented using soft logic. However, they did not present any study
of benchmark circuits that benefited from supporting 12-bit and
24-bit multiplications that were not supported in the equivalent
Stratix-II DSP block. Also, the authors do not mention any
details about implementing the MAC mode in their DSP block
which is necessary for the vector operations and dot-products
that are heavily used in DL applications. The authors of [20]
proposed adding runtime fracturability to the 16-bit DSP blocks
in a multi-context reconfigurable architecture. Their new DSP
block added support for two 8-bit multiplications at the cost of
13% area overhead and an extra pipeline stage to reduce the
critical path delay. In both studies, the reported area for the
enhanced DSP block is only based on synthesis results which
can be misleading as we will show in the results section. In our
study, we also present a detailed evaluation of the performance
gains of using our enhanced DSP block in several reduced-
precision CNN benchmarks.

III. DSP BLOCK ARCHITECTURE

In this section, we first discuss some arithmetic preliminar-
ies necessary for understanding the rest of this section and then
describe the baseline Arria-10-like DSP block architecture
followed by implementation details of our enhanced DSP
block to support 9-bit and 4-bit multiplications.
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Fig. 2: Arria-10-like baseline DSP block architecture.

A. Arithmetic Preliminaries
The partial product generation of the multipliers in our

proposed DSP block is based on the Baugh-Wooley Algorithm
for two’s complement signed multiplication [21] followed by
a Dadda Reduction Tree [22]. We developed a script that
generates the Verilog hardware description for the partial
product generation and reduction given any multiplier size.
The output of each multiplier is represented in redundant form
as a sum and a carry that are summed up only immediately
before exiting the DSP block to avoid the delay of multiple
carry propagate adders (CPAs) in modes like sum-of-products
or multiply-accumulate. All intermediate additions in the DSP
block are performed using 4:2 compressors. A single-bit 4:2
compressor takes 4 input bits and a carry-in bit to output a sum
bit, a carry bit of higher significance and a carry-out bit that
propagates to the subsequent bit compressor. The advantage
of 4:2 compressors is that the carry-out is only dependent on
the inputs and not the carry-in which eliminates any carry
propagation delays.

B. Baseline DSP Block
In this work, we implement an Arria-10-like DSP block

as a baseline to which we later compare our modified DSP
block. This baseline DSP supports one 27-bit multiplication
that can be fractured into two 18-bit multiplications. This DSP
block is similar to that in Arria 10 and Stratix 10 chips but
without floating-point arithmetic support which is out of the
scope of this work. Fig. 2 shows the architecture of the DSP
block we implement based on [23]. It contains four different
multipliers: one 18×18 (M1), one 9×9 (M2), and two 9×18
(M3, M4) multipliers. The multipliers are followed by a
series of shifters (S1, S2) and compressors (C1, C2, C3) to
implement different DSP block modes. Notice that the solid
lines in Fig. 2 represent numbers in sum-carry redundant form
that are summed using the final CPA.

In the dual 18-bit multiplication mode, M1 is used to
multiply the first two operands, X1 and Y1, while the second
multiplication is performed using M3 and M4. The operand
Y2 is split into two 9-bit halves, as illustrated in Fig. 3(a),
where each of the most significant half (Y2MS

) and the least
significant half (Y2LS

) is multiplied by X2 on M3 and M4
respectively. In this mode, M2 is idle, the shifter S1 is

(a) Dual 18×18 multiplication modes.

(b) 27×27 multiplication mode.

Fig. 3: Mapping of different modes to the baseline DSP block

architecture.

bypassed and the compressor C1 is used to add the two
partial results of the second multiplication. In the case of two
independent 18×18 multiplications, the outputs of M1 bypass
all the intermediate blocks and are added separately in the
upper half of the final CPA, while the lower half of the CPA
is used to add the outputs of the second multiplication after
passing through the compressors C2 and C3. In the case of
MAC shown in Fig. 3(a), the shifter S2 is bypassed and the
compressor C2 is used to add the two multiplication results
before adding it to the input chain and/or the previous cycle
result using C3. The two CPAs are cascaded by propagating
the carry-out of the right CPA to the carry-in of the left one.

In the 27-bit multiplication mode, each of the two multipli-
cands, X and Y , are split into two parts: the most significant
18 bits and the least significant 9 bits. M1 and M2 are used to
perform the two symmetric multiplications XMS × YMS and
XLS×YLS . The two asymmetric multipliers M3 and M4 are
used to multiply YMS × XLS and XMS × YLS respectively.
The output of M1 is shifted to the left by 18 bits using S2 and
concatenated with the output of M2 while the output of M4
is shifted to the left by 9 bits using S1 and added to the output
of M3 using the compressor C1. The two partial outputs are
then added using C2 as shown in Fig. 3(b) to get the final
result of the 27×27 multiplication which can be accumulated
using C3 in a similar manner to the 18-bit MAC mode.

When changing the baseline DSP to support lower precision
multiplications, we set the following specifications:

• All the modes in the baseline DSP block must be sup-
ported in the modified DSP block to ensure backward
compatibility and avoid negatively affecting other bench-
mark applications.

• The number of input and output ports must not increase
to minimize the area overhead and avoid stressing the
routing to and from the DSP block.

• The modified DSP block must have an operating fre-
quency of 600 MHz, matching that of the commercial
DSP block in the same 28nm technology node which we
use in our study. [24].
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Fig. 4: Modifications to the M4 multiplier array to support

9-bit multiplication.

Fig. 5: Mapping of 9-bit independent multiplies and MAC to

the modified DSP block architecture.

C. Adding Support for 9×9 Multiply and MAC modes
Since the baseline DSP block has 72 output ports, it can

pack at most four 9-bit multiplications. We use M1 to perform
the first multiplication by feeding the multiplicands to the
most-significant 9 bits of its inputs and obtaining the result
from the most-significant 18 bits of its output. We also use the
9×9 multiplier M2 to perform the second multiplication and
modify the two other multipliers (M3, M4) to achieve correct
functionality for signed multiplications. For M4, as shown in
Fig. 4, we enable only the lower half of the partial product
generation array in the 9-bit multiplication mode. This requires
adding inverting capability to the cells on the left and bottom
borders of the used array as well as the two’s complement ’1’s
(denoted by S) in the locations shown in Fig. 4 to correctly
implement the Baugh-Wooley multiplication algorithm. The
carries in the partial product reduction tree are also killed so
as not to propagate beyond the dashed line and ensure that the
highest-significant 9 bits of the result are zeros in this mode.
We follow the same approach in M3 but for the higher half of
the partial product generation array to ensure that the results
of M3 and M4 do not overlap when added in C1. For M3,
the inverting cells are already present and we only need to
add the two’s complement ’1’s in their proper location. Fig. 5
illustrates how the four 9-bit multiplications are performed in
the modified DSP block. The least-significant 18 bits of the
output of M1 are replaced by the result of M2. For the other
two results, the shifter S1 is bypassed and the compressor C1
is modified to kill the carry propagation after its first 9 bits to
separate the two results of M3 and M4.

For the 9-bit MAC mode, adding all four results would
require an additional compressor stage between C2 and C3.
When we implemented this, the design failed to meet the
600 MHz timing constraint due to the longer critical path
through three stages of compressors. Alternatively, we decided
to split the MAC operation such that each two of the four
multiplication results are added together producing two results

Fig. 6: Splitting the 9-bit MAC mode (right) to avoid second

addition stage (left).
instead of one. In this case, two dot-product units of size 4
are mapped to two DSP blocks cascaded using the dedicated
routing chains instead of one dot-product unit per DSP block
as shown in Fig. 6. In this mode, the compressor C2 adds
the outputs of M2 and M4 in the least-significant 36 bits as
well as the outputs of M1 and M3 in the higher significance
bits as shown in Fig. 5. This approach eliminates the second
layer of addition, does not require any increase in the number
of dedicated routing chain wires, provides the same density
of MACs and gives 10 extra bits for accumulation per result
similar to that in the 27-bit MAC mode.

D. Adding Support for 4×4 Multiply and MAC modes
Adding support for eight 4-bit multiplications is more

challenging since there are many different design choices to
explore. One approach is to further fracture the four available
multiplier arrays such that each one accommodates two 4-bit
multiplications by dividing it into four quadrants and adding
masking logic to the unused ones and signed multiplication
logic to the used ones. Another approach is to add standalone
4×4 multipliers that have a small area footprint to the DSP
block. We implemented the three variations listed below to
find the design point that has the least area overhead while
meeting the 600 MHz timing constraint: (1) Fracturing the
four multipliers to perform two 4-bit multipliers each. (2)
Fracturing the two multipliers M2 and M3 that are not on
the critical path of the DSP block and avoiding fracturing the
other two multipliers. From Fig. 2, we can see that both M1
and M4 pass through more layers of shifters and compressors
and any addition of fracturing logic will lengthen the critical
path. We add four standalone 4×4 multipliers in this case. (3)
Fracturing the two multipliers M2 and M3, adding signed
multiplication support to use M1 and M4 to perform one
4-bit multiplication each and adding two standalone 4×4
multipliers. Interestingly, our experiments showed that the
second approach had the least area overhead as will be detailed
in Section IV, even though it left both M1 and M4 idle
and added four small multipliers. Fig. 7 shows how the
eight 4×4 multiplications are performed in the DSP block.
Four multiplications are performed using the four standalone
multipliers (M5−M8) while the other four are performed on
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Fig. 7: Mapping of 4-bit independent multiplies and MAC to

the modified DSP block architecture.

the fractured M2 and M3. Since M2 and the used half of
M3 are of size 9×9, the two 4-bit inputs are separated by 1
bit and thus their two results are 2 bits apart.

For the 4×4 MAC mode, we use a similar approach
to that used in the 9×9 mode. The results of every four
multiplications are added together to produce two outputs that
are exposed to the soft-fabric or propagate through chains of
DSP blocks. We modify the compressor C1 in Fig. 2 to be
fracturable into three 9-bit units that are used to sum three
pairs of results and we add another 9-bit compressor (C4) to
sum the fourth pair. We also add another compressor (C5)
to perform the second level of addition and then multiplex
between the outputs of C2 and C5; this proved to be cheaper
and more routing-friendly than adding a multiplexing layer
and using C2 for this purpose. The final architecture of the
enhanced DSP block is shown in Fig. 8.

IV. DSP BLOCK RESULTS

We implement the baseline and enhanced DSP blocks in
structural Verilog HDL and perform simulation using Mod-
elSim Starter Edition 10.5b to verify their functionality in
all supported modes for corner cases as well as randomly
generated input vectors. We use the hybrid COFFE flow
described in [25] to obtain the area of the DSP blocks. This
flow can model hard blocks in heterogeneous FPGAs such that
the core of the block is implemented in standard cells using
a given library while the interface to the programmable inter-
connect (i.e. local routing crossbars, switch boxes, connection
boxes and dedicated chain routing buffers) is implemented
in full custom. COFFE uses iterative HSPICE simulations to
perform transistor sizing of the full custom interface. In the
standard-cell flow, it uses 28nm STMicroelectronics libraries
(1.0V, 125 ◦C, worst-case) to first synthesize our designs using
Synopsys Design Compiler 2013.03 and then place and route
them using Cadence Innovus 16.

Table I shows the area breakdown of our baseline DSP block
obtained from COFFE. When scaling down the area of the
Stratix-III DSP block in [26] to 28nm, its area is 48673 μm2

which is ∼ 4.9× that of our baseline DSP block. Given that

TABLE I: Breakdown of baseline DSP block area.
Component Area (μm2)
Standard-cell Core 7367

Switch Block 828

Connection Block 1042

Local Crossbar 588

Dedicated Chain Buffers 50

Total 9875

Fig. 8: Enhanced DSP block architecture.

the Stratix-III DSP block contains eight 18-bit multipliers and
spans 4 LAB rows compared to only two 18-bit multipliers
and 1 LAB row for our baseline Arria-10-like DSP block, we
expect an area ratio around 4×. We do not implement all the
skip muxing logic required to bypass defective rows [23], so
we expect an area ratio slightly higher than 4× and hence 4.9×
is logical and provides a sanity check on our area results.

The area results for the enhanced DSP block are presented
in Table II. We use the area of placed and routed designs
to calculate the area overhead compared to the baseline
DSP block. Supporting four 9-bit multiplications caused an
overhead of 4% for the modifications to the M3 and M4
multiplier arrays and the additional control logic. As a result
of using the split MAC approach explained in Section III-C,
supporting the 9-bit MAC mode required almost no additional
circuitry and thus had an additional cost of only 1%. When
evaluating the 3 options discussed in Section III-D to add
support for 4×4 multiplications, option (1) did not pass timing
at place and route despite achieving the desired 600 MHz
frequency in synthesis. Although option (3) had slightly less
post-synthesis area than (2), option (2) achieved significantly
less area overhead after place and route than option (3) with
9% and 18% increase for (2) and (3) respectively. While
option (2) adds more logic to the block, it turned out to
be more wiring-friendly and easier to route compared to
option (3). This highlights that making detailed design choices
based on synthesis results, while a common practice, can be
misleading.

Proceeding with option (2), area increased by an additional
11% when using the existing compressor C2 and adding
multiplexing logic to its inputs to perform the second level
of addition in the 4×4 MAC mode. However, when adding
another compressor C5 and multiplexing logic to choose
between the outputs of C2 and C5, the 11% additional
overhead was reduced to only 3%. Our final DSP block
supporting one 27-bit, two 18-bit, four 9-bit and eight 4-bit
multiplications/MACs has an operating frequency of 600 MHz
and an overall area overhead of 12% compared to the baseline
Arria-10-like DSP block. In DSP-rich FPGAs, DSP blocks
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TABLE II: Area of enhanced DSP blocks and overhead of

supporting different modes compared to the baseline.

DSP Block Post-Synth.
Area (μm2)

Post-P&R
Area (μm2)

Area
Ratio

Baseline DSP Block 8404 9875 1.00

Add 9×9 Mult. 8368 10320 1.04
Add 9×9 MAC 8810 10384 1.05
Add 4×4 Mult.(1)-max reuse 9571 – –

Add 4×4 Mult.(2)-min reuse 9104 10752 1.09
Add 4×4 Mult.(3)-mid reuse 8909 11651 1.18

Add 4×4 MAC using C2 9543 11887 1.20

Add 4×4 MAC using C5 9389 11108 1.12

consume approximately 5% of the FPGA [16] and therefore
the 12% block area overhead is equivalent to only a 0.6%
increase in the FPGA core area.

V. BENCHMARKS RESULTS

A. Benchmarks Description
In order to quantify the performance gains of incorporating

our enhanced DSP blocks in current FPGA architectures,
we implement the computational core of two state-of-the-
art FPGA-based CNN inference accelerators: Intel’s Deep
Learning Accelerator (DLA) [27] and an architecture from
Arizona State University (ASU) [28]. We implement all on-
chip buffers, convolution engine and pooling engine. In addi-
tion, we also implement the control logic to read features and
weights from input buffers, perform the required computations
and store the results in the output buffers. However, we do not
implement external memory interfacing as it is out of scope
and irrelevant to our architectural studies. We also extend
the two architectures by adding all the blocks required to
accelerate three different CNN models: AlexNet, VGG-16 and
ResNet-50 to obtain 6 different benchmark circuits that enable
a broad study of the performance gains on different models
and computing architectures.

All our implementations are written in SystemVerilog and
are parameterizable to easily change the accelerator size (i.e.
number of processing elements/multipliers and consequently
on-chip buffers) as well as their type (either BSC, LRN or
ELT equivalent to accelerating VGG-16, AlexNet or ResNet-
50) and their activations/weights precisions. Functionality of
the designs is verified using RTL-level simulations in which
the input buffers are initialized with feature and weight values
and the results written in the output buffers are verified for
correctness. We are currently extending our benchmark circuits
to include a variety of DL architectures and we are planning
to release it as an open-source DL benchmark suite for FPGA
architecture explorations.

The DLA architecture has an array of Processing Elements
(PEs) arranged in a pipelined daisy-chain scheme as shown
in Fig. 9. Each of the PEs contain multiple dot-product units
that perform the MAC operations as well as local buffers for
storing the weights in the convolution layers and features in
the fully connected layers. The two sets of stream buffers inter-
change roles as input and output buffers in convolutional layers
whose features can be completely stored on-chip without the
need for any external memory transfers. In fully connected
layers, the stream buffers are used to store the weights instead.
We removed the Winograd Transform optimization from this
computing architecture due to its instability in low precisions

Fig. 9: DLA architecture.

Fig. 10: ASU architecture.

[29] and added support for element-wise (ELTWISE) and
batch normalization (BNORM) layers.

The ASU architecture contains distinct input and output
buffers as depicted in Fig. 10 while the weights are double
buffered in the fully connected layers such that one buffer
is filled from external memory while the other is used in
computations. This architecture comprises a three dimensional
array of PEs preceded by a complex data reuse shift register
network that efficiently implements convolutions in a sliding
window fashion. We extended this architecture to support the
local response normalization (NORM) layer used in AlexNet.

B. Methodology
We synthesize, place and route our designs on

the largest and fastest speed grade Arria 10 FPGA
(10AX115N2F45I1SG) using Intel Quartus Prime 17.
We carry out two sets of experiments: one using 8-bit
weights and activations and the other using 4-bit weights and
activations. We scale up the size of each accelerator starting
from the original sizes (i.e. number of PEs and size of on-chip
buffers) published in [27] and [28] for the DLA and ASU
architectures until either BRAMs are fully utilized or the
design becomes unroutable. If the design consumes all the
available DSP blocks, we start implementing multipliers in
the soft fabric with the same number of pipeline stages as that
used in the DSP blocks. We found that due to the modular
nature of the CNN benchmark architectures, performance was
insensitive to exactly which multipliers we implemented in
the soft fabric. For each size, precision and architecture, we
obtain the results when using the original FPGA as well as an
FPGA incorporating our enhanced DSP block (i.e. modified
FPGA). Since our proposed DSP block has the same routing
interface and number of input/output ports as that of the
Arria 10 DSP block, we modify our HDL description of the
benchmarks by connecting eight 8-bit inputs or sixteen 4-bit
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Fig. 11: Performance results using the original and modified FPGAs for different sizes of: (a) 8-bit DLA (b) 4-bit DLA (d)

8-bit ASU (e) 4-bit ASU, and their operating frequencies averaged across BSC, ELT and LRN with error bars indicating

maximum and minimum for: (c) DLA (f) ASU.

inputs to each DSP block instantiation in Quartus. This way,
we let Quartus route the input and output signals to and from
the Arria 10 DSP blocks as if they are our enhanced DSP
blocks.

To obtain the performance results, we develop performance
models for both benchmark architectures based on our RTL-
simulations. The performance models count the number of
cycles and the time required for the computation of each layer
as well as its external memory transfers according to the tiling
and unrolling schemes of each architecture. We assume that the
data is laid out in the external memory in a way that allows us
to fully use the available memory bandwidth. Our performance
models assume two different external memory subsystems: a
relatively weak one using single bank of DDR4x64 and a
high-end one using the recently introduced High-Bandwidth
Memory (HBM) [30]. The performance results using both
memory subsystems follow the same trends; however for
brevity and space constraints we only present the results using
HBM as we believe it better captures the performance gains of
our architectural change unhindered by the external memory
subsystem which is not the focus of this work.

C. Experimental Results
Fig. 11(a) and 11(b) show the performance of the 8-bit

and 4-bit DLA architecture respectively at different accelerator
sizes using the original and modified FPGA. In the 8-bit DLA,
the performance gap between the current and modified FPGAs
increases as the accelerator size increases. With the original
FPGA, programmable logic utilization increases rapidly to
implement more multipliers after all the DSP blocks are used,
leading to the steeper frequency decline with accelerator size
as shown in Fig. 11(c) and hence lower performance. The
scaling of both the BSC and ELT variations of DLA is limited
by the available BRAMs although there is more room in

the soft fabric for further scaling with ALM utilization of
77% and 58% in the original and modified FPGAs respec-
tively. The DLA architecture suffers from this problem as
the number of on-chip stream and weight buffers, required to
supply the multipliers with sufficient bandwidth to perform
a multiplication at every clock cycle, increases rapidly as
we scale the number and length of the dot-product units
inside each PE. However, the LRN variation was not able to
scale to the largest size of the BSC and ELT variations in
either the original and modified FPGA because of the heavily
arithmetic NORM block that is completely implemented in
the soft fabric. Similarly, the 4-bit DLA architectures showed
increasing performance gains from the DSP modifications as
the number of PEs is scaled up. Although the fracturable look-
up table architecture with two bits of arithmetic in Intel FPGAs
enables a highly efficient implementation of 4×4 multipliers
in only 11 ALMs, our enhanced DSP block still resulted in
approximately 1.5× performance gain on average. The scaling
of all three variations in the 4-bit DLA on the modified FPGA
is limited by the available on-chip BRAMs, while soft logic
utilization is under 50%.

In the ASU architecture, we observe higher performance
gains when using the proposed DSP blocks compared to
those seen with the DLA architecture both in 8-bit and 4-
bit precisions. As shown in Fig. 11(d) and 11(e), we could
scale the architecture on the modified FPGA to much larger
sizes than on the original FPGA as designs on it became
unroutable at smaller sizes. In the 8-bit ASU architecture,
even the first scaling from 3136 to 3920 multipliers degraded
the performance on the original FPGA due to the very steep
decline in frequency shown in Fig. 11(f) outweighing the
increased number of PEs. The reason is that the ASU archi-
tecture has complex control logic and a data reuse register
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Fig. 12: Utilized area results for 8-bit/4-bit DLA and ASU on

the original and modified FPGAs.

network which make it less routing-friendly compared to the
modular pipelined daisy-chain architecture of DLA. When
comparing the highest performing points on the original and
modified FPGA for each variation of the benchmarks in Fig.
11(a), 11(b), 11(d) and 11(e), we obtain a 1.32× and 1.6×
average performance enhancement in 8-bit and 4-bit bench-
marks respectively from using the proposed DSP block. In
the case where the multiplication operations are implemented
only using DSP blocks (modeling scenarios in which the
soft fabric is used to implement a different functionality), the
performance gains of the enhanced DSP block are on average
1.62× and 2.97× for 8-bit and 4-bit benchmarks respectively.

Fig. 12 illustrates the utilized area of the largest accelerator
size that could fit on the original FPGA compared to its
area on the modified FPGA in equivalent ALMs (eALMs).
In [31], the authors quantified the areas of an M20K BRAM
and a Stratix-V DSP block (similar to our baseline DSP)
to be 40× and 30× that of an ALM respectively. When
measuring the utilized area of the benchmarks implemented
on the modified FPGA, we consider the DSP block area to
be 33.6 eALMs to account for the 12% block area increase.
On average, our proposed DSP block resulted in 15% and
30% reduction in FPGA utilized area in the 8-bit and 4-bit
benchmarks respectively, indicating that the enhanced DSP
block can simultaneously improve performance and reduce the
utilization of the FPGA’s soft fabric. These area results also
provide a first order approximation of the power reductions
that can be achieved when using our enhanced DSP block.

VI. CONCLUSION

While a diversity of arithmetic precisions are used in deep
learning inference tasks, the DSP blocks on current FPGAs
lack the flexibility to efficiently implement the commonly
used 8-bit and 4-bit precisions without underutilizing the
DSP blocks. In this paper, we present a DSP block that
can pack twice as many 9-bit and four times as many 4-bit
multiplications as DSP blocks in current commercial FPGAs.
We carefully study the trade-offs of circuitry reuse when
adding the new modes to the DSP block to minimize the
increase in block area. Adding support for four 9-bit and eight
4-bit independent multiplications and MAC modes resulted
in 12% block area overhead which leads to an increase of
only ∼0.6% in total core area of the FPGA. Finally, we
quantify the performance gains of using our proposed DSP

block in two state-of-the-art convolutional neural network
accelerators, Intel’s DLA and ASU architectures, on a variety
of models (AlexNet, VGG-16 and ResNet-50) at both 8-bit
and 4-bit precisions. On average, an FPGA incorporating our
enhanced DSP block not only achieves 1.32× and 1.6× higher
performance, but also has 15% and 30% less utilized area for
8-bit and 4-bit benchmarks respectively.
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