
978-1-5386-3797-5/17/$31.00 ©2017 IEEE

Build Fast, Trade Fast: FPGA-based
High-Frequency Trading using High-Level Synthesis

Andrew Boutros, Brett Grady, Mustafa Abbas and Paul Chow
Department of Electrical and Computer Engineering, University of Toronto

Email: {andrew.boutros, bgrady, mustafas.abbas}@mail.utoronto.ca, pc@eecg.toronto.edu

Abstract—High-Frequency Trading (HFT) systems require ex-
tremely low latency in response to market updates. This motivates
the use of Field-Programmable Gate Arrays (FPGAs) to accel-
erate different system components such as the network stack,
financial protocol parsing, order book handling and even custom
trading algorithms. However, the long cycle of developing and
verifying FPGA designs makes it challenging for HFT software
developers to deploy such highly-dynamic systems, especially
with their limited hardware design expertise. We present a
complete highly-optimized infrastructure that implements low-
latency system components in C++ using High-Level Synthesis
(HLS). We also develop a framework that enables HFT algorithm
developers to implement their trading algorithms in a high-level
programming language and rapidly integrate it to the rest of
the system. We implemented our HLS-based system on a Xilinx
Kintex Ultrascale FPGA running at 156 MHz. Our on-board
measurements show an end-to-end round-trip latency less than
870ns, which is comparable to that achieved by prior RTL-based
implementations but requires reduced system development time
and effort.

I. INTRODUCTION

Throughout the last decade, financial markets have wit-

nessed a major change from the conventional human-based

physical venues and floor-based trading into electronic-based

automated trading controlled by sophisticated computer algo-

rithms without any human intervention. A large portion of

these automated trades are based on identifying and exploiting

market spread; the transient differences between top asking

and bidding prices of securities. The term High-Frequency
Trading (HFT) emerged in the mid 2000s to refer to this

type of automated trading systems [1]. According to a study

carried out in 2010, the Securities and Exchange Commission

estimated that the HFT volume in U.S. equity markets in the

second half of the decade was greater than 50% of the total

trading volume [2].

A typical HFT system consists of four main building blocks:

network stack, financial protocol parsing, order book handling

and custom application layer. Financial exchanges broadcast

market updates along an Ethernet connection at typical line

rates of 10 Gb/s [3]. The network stack receives the messages

sent by the financial exchange and performs the initial packet

processing. The packets are usually compressed in a domain-

specific format to save on bandwidth; a prominent example is

FAST (FIX Adapted for STreaming), which is an adaptation

of FIX (Financial Information Exchange) [4]. The financial

protocol parsing block changes the compressed packets into

meaningful limited and market orders that are used to build

the order book. The order book gives a view of the current

Fig. 1. HFT System block diagram

market price by ordering bids (buying offers) and asks (selling

offers) according to their prices with the highest bidding price

and lowest asking price at the top of the book. Finally, the

top bid and ask entries are used by the custom application

layer to analyze the market and consequently issue buy/sell

orders. These orders are then encoded using the same financial

protocol and sent back over the network. The time interval

between receiving incoming packets of an order into the

system and sending out the triggered response packets is

defined as the time-to-trade or the round-trip latency.

Due to the importance of having low-latency HFT sys-

tems, traders and hardware vendors have been in an arms

race to lower the total round-trip latency. Typical high-end

processor-based systems with specialized Network Interface

Controllers (NICs) can react to market orders in a few mi-

croseconds [5]. But due to the need of further decreasing

latency beyond that, designing application-specific hardware

accelerators started to gain more attention in the HFT domain,

especially FPGA-based accelerators due to their flexibility and

re-programmability. FPGA-based systems proved to achieve

far lower latency, approaching a four-fold reduction compared

to conventional NIC solutions, often with more deterministic

response times [6].

However, despite the performance advantages of this ap-

proach, there remains a concern about the development time

of such systems. This is due to the longer cycle of designing

and verifying FPGA systems as well as the rapid change in the

implemented trading algorithms. In addition, HFT algorithm

developers usually have different skill sets including high-

level software programming and machine learning algorithms

design that have minimal overlap with the hardware design

skills required for this task.

Our work uses advancing FPGA High Level Synthesis

(HLS) tools to prove that it is an attractive solution even

for low-latency applications such as HFT systems. Offering

an easier design and verification flow, this approach can be

used by the more software-oriented HFT algorithm developers

to achieve comparable latency to that of RTL designs and

faster turn-around times. The contributions of this paper can

be summarized as follows:

• A complete end-to-end HFT system, shown in Fig. 1,

that achieves a round-trip latency less than 869ns mea-

sured using on-board time-stamping and monitoring that

demonstrates the feasibility of HLS as a competitive

solution to custom RTL designs in [3], [6].

• A novel HLS implementation for the order book handling

IP core that achieves high-throughput and low-latency

insertion, deletion and update operations of 80 ns.

• Demonstrating how HFT algorithm developers can im-

plement their custom trading algorithms in high-level

programming languages as C/C++, then use it to generate

a hardware IP core and integrate it into our modular

streaming infrastructure to generate a complete stan-

dalone system with minimal hardware design expertise.

II. PRIOR WORK

As previously mentioned, HFT systems impose very tight

constraints on latency, which favors the use of application-

specific hardware to minimize the overhead of any unnecessary

components when compared to conventional general-purpose

CPUs. However, HFT algorithms and financial protocols have

numerous variations and are dynamically changing in a way

that makes it impossible to use Application-Specific Integrated

Circuits (ASICs) in this domain. As a result, FPGAs are

regarded as a very attractive solution for accelerating HFT sys-

tems due to their flexibility in designing application-specific

hardware and reconfigurability in accounting for changes in

implemented algorithms.

Most of the prior works in this domain focus on acceler-

ating only parts of the system while having a software-based

financial trading algorithm implemented on a host CPU. The

reason for this is the large design effort and time required to

build the hardware for those rapidly changing algorithms. It

also requires hardware design expertise, which is not common

among HFT software developers.

As an example for such systems, Leber et al. [6] pro-

posed offloading the network stack as well as implementing

a multiple-stream decoding of incoming financial packets on

a Virtex-4 FPGA. The decoded packets are then sent to the

host server for software-based book handling and processing.

They implemented their system in Verilog code and compared

it to a top-of-the-line server with a standard Network Interface

TABLE I
SUMMARY OF PRIOR WORK

Work FPGA Blocks a Latency Design Financial
NT FP OB (μs) Method Algorithm b

[6] � � � 2.6 RTL SW

[8] � � � 0.25 RTL –

[9] � � � 0.4 - 0.7 MaxJ –

[7] � � � 0.5 - 1.3 HLS SW

[3] � � � 1 c RTL HW (HDL)

Our Work � � � 0.87 HLS HW (C++)

aNetworking (NT), Financial Parsing (FP), Order Book Handling (OB)
bSoftware-based (SW), Hardware-based (HW)
cRound-trip latency does not include order book handling.

Controller (NIC) achieving a one-way latency of 2.6 μs which

is four times less when compared to the standard NIC solution.

Similarly, in [7], the authors presented a library of different

financial parsing and packet processing IP cores implemented

in HLS. Their system also offloads the decoded market data to

the host CPU using the PCIe interface for further processing

with a latency of 0.5-1.3 μs.

Another category of prior work focuses on the acceler-

ation of order book handling on the traders’ side building

the order book from a market feed broadcast such as [8].

They implement an architecture that uses Cuckoo hashing in

VHDL and use external SRAM modules to store the book

for 119,275 instruments with a latency of 253 ns. On the

financial exchanges’ side, order book handling requires dealing

with larger amounts of data. For instance, Fu et al. [9] use a

CPU-FPGA hybrid table that caches MBs of most accessed

data on-chip and GBs of data on the host CPU memory with

synchronization support at a latency of 400-700 ns.

As an attempt to facilitate the deployment of FPGA-based

HFT systems, Lockwood et al. [3] introduced a library of RTL-

based IP cores to handle networking, protocol parsing and

order book handling so that users can focus on developing

the hardware for their custom trading algorithms. The system

they implemented on a Virtex-5 FPGA using the IPs from this

library achieved an end-to-end latency of 1 μs for the network

stack and financial protocol parsing without including the

order book handling or the application layer latency. However,

using this library still requires extensive hardware design skills

to both implement the financial trading algorithms in RTL and

interface it to the rest of the system.

Table I summarizes prior works mentioned in this section in

comparison to the work presented in this paper. In our work,

we investigate the use of HLS to design a complete end-to-

end HFT system and show that the latency results achieved are

comparable to that of RTL designs. Not only does this allow

HFT algorithm developers to implement their algorithms in

C/C++ and easily transform them into optimized IP cores using

simple pragmas, but also offers them the ability to integrate

their IP cores with a complete off-the-shelf infrastructure for

networking, financial protocol parsing and order book keeping

blocks with minimal effort and hardware design expertise.

III. SYSTEM ARCHITECTURE

Our proposed system consists of three different layers as

color-coded in Fig. 1: the Network Layer which contains

UDP/IP and Ethernet layers as well as a network switch and

timestamper block, a FAST protocol decoder/encoder for the

Financial Protocol Parsing layer and finally the Application

Layer which performs the order book handling and contains

the custom trading algorithm as well. The modules of the

different layers are arranged as a streaming pipeline using the

AXI4-Stream bus protocol [10].

This section will present the functionality and architecture

of each block followed by a demonstration of how HFT

algorithm developers can take advantage of the presented

infrastructure to develop complete end-to-end HFT systems

with minimal design effort.

A. Network Layer

Typically, HFT systems are built on top of commodity

networking protocols that uses one of the various Ethernet

standards (i.e. IEEE 802.3ae-2002) as the physical layer, while

the transport and internet layers are commonly UDP/IP [5],

[3]. UDP is preferred over other alternatives because it is

connectionless, fast to encode/decode, and relatively simple.

Therefore, a UDP stream can be broadcast to many different

destinations with no handshaking or re-transmission, and it is

also a good fit for streaming hardware as almost no control

flow or check-summing is required.

Since network acceleration on FPGAs is a mature topic

and off the scope of this paper, we leverage off-the-shelf

Ethernet and UDP/IP cores from Xilinx to implement the

network stack [11]. We further added a simple custom network

switch for system monitoring and priority based multiplexing

of the channel as shown in Fig. 2. The network switch tags

all incoming packets with a timestamp that is appended to the

corresponding FAST message. Incoming market updates that

trigger a trade have their timestamps appended to correspond-

ing outgoing orders, which allows accurate benchmarking

of the system’s round-trip latency. The network switch also

allows time-multiplexed access to the network prioritizing

outgoing order packets over other system monitoring packets

in case the FPGA is connected to a remote monitoring CPU

over the network.

Fig. 2. Block diagram of our custom network switch

TABLE II
FAST PROTOCOL TEMPLATE SPECIFICATIONS

Field Offset Size Field Description
(Bytes)

Presence Map 0 1 Flags fields present in template

Template ID 1 1 Specifies template used

Price (Exponent) 2 1 Specifies the order price in

Price (Mantissa) 3 1-5 base-10 floating-point format

Order Size 4-8 1-2 Specifies size in units of tens

Order ID 9-13 1-5 Specifies a unique order ID

Order Type 14 1
Specifies the order type

(Buy/Sell - Market/Limited)

B. Financial Protocol Parsing Layer

The FAST Protocol is a data compression algorithm devel-

oped for low-latency transfer of market data from financial

exchanges to traders and the other way around [12]. Each

FAST message contains multiple-field values that can define a

market order such as price, order size, type, etc. The message

is decoded by the receiver based on a pre-defined template

that specifies the contents and locations of different fields.

Due to a lack of publicly available templates for exchanges,

we created our own template for the FAST message fields

based on [12] as detailed in Table II. We exploit the reconfig-

urability of FPGAs by building hardware that supports only

the needed parts of the financial protocol according to the

pre-defined template instead of sacrificing latency to build a

generic encoder/decoder that handles all possible templates.

Fig. 3 shows the block diagram of the implemented FAST

decoder and encoder. The decoder receives the FAST message

as 64-bit chunks of data, concatenates them, and determines

the offsets of each field by detecting the stop bits. Individ-

ual sub-decoders then operate on different fields in parallel,

providing a scalable architecture similar to that in [4].

The encoder takes a triggered market order from the appli-

cation layer and encodes all of its variables into the proper

FAST-compliant data-types using the minimum number of

bytes possible, concatenating them together with the required

stop bits. The encoded blocks are then sent to the Network

Switch, which bundles the data as UDP packets before sending

it over the network.

Fig. 3. Block diagram of our FAST decoder/encoder

C. Order Book Handling

We implemented an order book that can handle up to

212 entries based on a heap-like structure with an efficient

algorithm for insertion and deletion of nodes presented in

[13]. A heap is a binary tree where each node is guaranteed to

have less priority than its two children. In our implementation,

each node of the heap represents a complete data structure

containing the order price, size, ID and type. The priority of

nodes is assigned according to the order’s price.

Since our main concern is the insertion/deletion latency and

we are only interested in the top bid and ask, we adopt a top-

down heap structure. This allows us, in most cases, to write

the top entry of the books to the output stream directly after

the first comparison such that the custom trading algorithm

can start execution while the rest of the heap is being sorted

simultaneously. This also offers a scalable solution as the

insertion and deletion times are not affected by increasing the

size of the order book.

Algorithm 1 shows the basic insertion routine for the heap

structure in our system where H is the array storing the nodes

of the heap and Ho is the array storing indices of nodes that

were previously removed from the heap. The insertion routine

depends mainly on two observations: Firstly, if we represent

the heap structure as an array of values stored in on-chip Block

RAMs (BRAMs), for any node at index j, its left and right

children are at index 2j and 2j+1 respectively. Secondly, for

any node at index j and level i, the path from the root of the

heap to this node can be represented as the least significant i-
bits of the value j − 2i with 0 indicating left and 1 indicating

right. The deletion routine works similarly but will not be

described in detail in this paper for brevity.

Unlike conventional heaps, order book handling requires

more features beyond simple insertion and deletion such as:

arbitrary delete, modify top and multiple-node delete.

Input: Heap Array (H), Holes Array (Ho), Input Order (O)
if (numItems < heapSize) then

if (numHoles == 0) then
numItems++
j ← numItems

else
numItems++
numHoles−−
j ← Ho[numHoles]

end
i ← log2(j)
path ← j-2i

while (currentNodeIndex �= j) do
currentNodeIndex ← getNextNode(path)
if (O.price > H[currentNodeIndex].price) then

swap(H[currentNodeIndex], O)
end

end
end

Algorithm 1: Insertion routine for heap-based order book

Fig. 4. Block diagram of our order book handling block

1) Arbitrary Delete: The ability to delete any arbitrary node

from the heap is necessary in case an order is timed out

or is withdrawn from the market regardless of its position

in the order book. Scanning the heap to find and delete a

specific node is an O(N) operation, where N is the size of the

heap, which is practically not affordable in such low-latency

applications as HFT. Another solution is to have a hash map

that links the order ID to its current position in the heap.

However, this would be an inefficient use of on-chip memory

and requires updates each time the order changes its position

within the order book. Instead, we implemented this feature

by storing all the incoming arbitrary delete orders in a separate

heap structure that keeps track of the to-be-deleted order with

highest priority and each time the top of the original heap is

changed, if it matches the top to-be-deleted order, they are

both removed.

2) Modify Top: If a market order of size S is received, it

means that the best S units are to be removed from the order

book. However if S is less than the size of the current best

bid/ask (Sbest), this requires not removing the best bid/ask

order but only to modify its size to Sbest − S, which is

implemented by adding extra logic to check the size of the

incoming market order compared to that of the top order.

3) Multiple-Node Delete: This feature is necessary if the

size of the received market order S is more than the size of

the current best bid/ask Sbest. This means that the incoming

market order will lead to the removal of more than one

order from the order book. This is performed iteratively by

subtracting the size of the deleted best order from the required

size of the market order until it reaches zero.

The order book is tested to support those features as well

as any combinations of them that can result from a complex

scenario of received orders. As shown in Fig. 4, the order

book takes an input stream of incoming decoded orders along

with their time stamps. It outputs the current top bid and ask

orders, once ready, as streams to the custom trading algorithm.

It also sends the top bid and ask order IDs to a MicroBlaze

core instantiated on the programmable fabric for monitoring

and debugging the system through two AXI-Lite ports.

Fig. 5. System Integration Flow

D. Integration with Custom HFT Algorithms

Fig. 5 illustrates the system integration flow that we imple-

mented by developing a set of scripts that automates the HLS

compilation of the back-end IP cores for the network, financial

protocol parsing and order book handling along with the user

provided custom HFT algorithm. After that, system integration

is automated to instantiate all the IP cores and handle the

interfaces between them to produce a programming bitstream

that is used to implement the system on the target FPGA.

Implemented completely using HLS with streaming con-

nections and interfaces, the provided back-end IPs along with

the system integration flow allow HFT algorithm developers

to write their trading algorithms ranging from simple online

algorithms [14] to more complicated financial Monte-Carlo

simulations [15], [16] in C++ using a template as shown

in Fig. 5. Then, with minimal effort and hardware design

expertise, they can optimize their code with HLS pragmas to

get a complete end-to-end FPGA-based HFT system.

Although developing a custom trading algorithm is out of

the scope of this work, we implemented a simple algorithm to

test our system’s functionality, integration flow and accurately

benchmark the round-trip latency. The implemented algorithm

triggers a trade whenever the top bid or ask price crosses a

specified threshold.

IV. EXPERIMENTAL RESULTS

All system blocks were implemented in Vivado HLS 2016.3

and integrated using Vivado 2016.3. The target FPGA used in

our experiments was a Xilinx Kintex Ultrascale XCKU115-2-

FLVA1517E on the Alpha Data 8K5 board. Our system runs

at 156.2 MHz frequency to match the 10G Ethernet bit rate

(64-bit packet per cycle) and avoid clock domain crossing.

TABLE III
FPGA RESOURCES UTILIZATION REPORT

Resource Used Available Utilization %
LUT 49,638 663,360 7.48

LUTRAM 2,148 29,3760 0.73

FF 32,718 1,326,720 2.47

BRAM 474 2,160 21.92

DSP 0 5,520 0

TABLE IV
FPGA TIMING RESULTS

System Frequency Round-trip Cycles Latency
HFT Subsystem 156 MHz 42 cycles 269ns

HFT and Network 156 MHz 136 cycles 869ns

TABLE V
LATENCY BREAKDOWN

Module
Latency Latency
(Cycles) (ns)

Network Receive 47 300

Network Transmit 47 300

Network Switch 12 77

FAST Encoder & Decoder 18 115

Order Book & App 12 77

Total 136 869

A. Resources Utilization

The utilization of different resources is shown in Table III.

Our system uses less than 8% of the logic blocks and no

DSP blocks which leaves the majority of the FPGA resources

available for implementing complex HFT algorithms. The

BRAM utilization is around 22% which is mostly due to the

extensive partitioning of the order book storage to ensure high

throughput. Some of these partitions are only a few records in

size, but must be mapped to an entire BRAM on the FPGA.

This issue was exacerbated by limited flexibility in HLS mem-

ory partitioning directives. Relaxing throughput constraints

would allow for more compact partitioning schemes that use

less BRAM. We suspect that in practice lower throughput is

acceptable, however our design demonstrates that there is no

hard performance ceiling with our approach. For future work

offloading table entries of less priorities to off chip DRAM,

similar to that in [9], would also reduce BRAM utilization.

Both [3] and [6] do not disclose the resource utilization of

their implementation for comparison.

B. Timing Results

To test the round-trip latency of the system, we developed

a Python script that runs on the host CPU and sends 10,000

orders of different types to the FPGA over the network and

later receives the system’s response packets. The timestamps

embedded in outgoing packets by the network switch module

were aggregated and averaged to determine the number of

cycles. Recalling Section III.A, this timestamp is effectively

the delta from a trade-triggering order being received, till

the corresponding response reaches the network stack. We

achieved an average round-trip latency of 42 cycles (270ns)

with best and worst case cycle counts of 36 and 62 respec-

tively. This variability in the round-trip latency is due to the

different insertion and removal scenarios that can occur in the

order book. Adding the additional worst case latency need

for transmitting and receiving through the Xilinx UDP and

TABLE VI
LATENCY COMPARISON TO PRIOR WORKS

Latency (μs)
System Platform Freq. Network Financial Order

(MHz) Stack Parsing Book
[6] Virtex-4 FX100 125 2 0.6 –

[3] Virtex-5 TX240T 156 0.8 0.2 –

[7] Kintex-7 325T 156 0.8 0.5 - 1.3 –

Ours Kintex-U 1517E 156 0.6 0.12 0.08

Ethernet layers (2×300ns as reported by [11]) yields a total

system round-trip latency of 869ns as summarized in Table IV.

To gain more insight from the timing results, we performed

a latency breakdown among different system modules by im-

plementing variations of the original system to loop-back the

received packets after the network and the financial protocol

parsing layers. Table V shows the number of cycles consumed

by each module as well as the cumulative latency that adds

up to the total latency. The order book and network switch

latency appear higher than expected from the modules alone

due to the overhead of the AXI Stream interconnect used to

interface all of the modules.

In Table VI, we compare the latency of different system

modules to other prior work. Although prior works are not

implemented on the same target FPGA, they are all operating

at the same 156 MHz frequency to match the 10G Ethernet bit-

rate. The work from [6] operates at a lower frequency of 125

MHz which, if scaled to 156 MHz frequency, achieves latency

of 1.6 μs and 0.48 μs for the network stack and the financial

parsing protocol respectively. The financial protocol parsing

layer in our work achieves 1.6 to 10 times lower latency due

to implementing only the required part of the protocol instead

of a generic encoder/decoder that handles all the protocol

variations. This is encouraged by the fact that whenever a

different protocol variation is used, the HLS C++ source code

of the encoder/decoder can be modified to add this new change

or remove any no longer needed components.

Despite implementing order book handling in [3], they did

not include its latency in their published results so we were

unable to compare it to our latency results. The comparison

presented in Table VI aims to show that the HLS-based

implementation in our work offers easy system deployment

and integration for HFT algorithm developers in addition

to achieving a round-trip latency that is in the ballpark of

previous RTL designs.

V. CONCLUSION

This paper presented an HLS implementation of a complete

end-to-end standalone HFT system implemented on a Xilinx

Kintex Ultrascale FPGA. The system consists of the network

stack, financial protocol parsing based on the FAST protocol,

as well as order book handling to provide an abstract view

of the current market state. The system achieves a round-trip

latency less than 870ns measured using on-board timestamp-

ing. The order book handling block is implemented based

on an top-down heap-like structure that takes around 80ns

on average for insertion and deletion operations. We also

present a framework that allows the more software-oriented

HFT algorithm developers to implement their custom trading

algorithms in C++ and easily integrate it with our infrastruc-

ture. This enables rapid deployment of complete FPGA-based

HFT systems with minimal hardware design expertise while

achieving comparable round-trip latency to that of prior RTL-

based designs.

ACKNOWLEDGMENT

The authors would like to thank Chris Madill from Arches

Computing Systems and Dan Ly-Ma from University of

Toronto for their insights and recommendation which were

very useful for this work.

REFERENCES

[1] P. Gomber et al., “High-Frequency Trading,” 2011. Available at SSRN:
https://ssrn.com/abstract=1858626.

[2] A. J. Menkveld, “High Frequency Trading and the New Market Makers,”
Journal of Financial Markets, vol. 16, no. 4, 2013.

[3] J. W. Lockwood et al., “A Low-Latency Library in FPGA Hardware
for High-Frequency Trading (HFT),” in IEEE Symposium on High-
Performance Interconnects, 2012.

[4] H. Li et al., “Fast Protocol Decoding in Parallel with FPGA hardware,”
in IEEE International Conference on Computational Science and Engi-
neering (CSE), 2014.

[5] H. Subramoni et al., “Streaming, Low-Latency Communication in
Online Trading Systems,” in IEEE International Symposium on Parallel
Distributed Processing (IPDPSW), 2010.

[6] C. Leber et al., “High Frequency Trading Acceleration using FPGAs,”
in IEEE International Conference on Field Programmable Logic and
Applications (FPL), 2011.

[7] Q. Tang et al., “A Scalable Architecture for Low-Latency Market-
Data Processing on FPGA,” in IEEE Symposium on Computers and
Communication (ISCC), 2016.

[8] M. Dvorak and J. Korenek, “Low Latency Book Handling in FPGA for
High Frequency Trading,” in International Symposium on Design and
Diagnostics of Electronic Circuits Systems, 2014.

[9] H. Fu et al., “A Nanosecond Level Hybrid Table Design for Financial
Market Data Generators,” in IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2017.

[10] Xilinx, “AXI4-Stream Infrastructure IP Suite (PG085),” Apr 2017.
[11] D. Sidler et al., “Scalable 10Gbps TCP/IP Stack Architecture for

Reconfigurable Hardware,” in IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2015.

[12] D. Rosenberg, “FAST Specification Version 1.1,” 2006.
[13] R. V. Nageshwara and V. Kumar, “Concurrent Access of Priority

Queues,” IEEE Transactions on Computers, vol. 37, no. 12, 1988.
[14] J. Loveless, S. Stoikov, and R. Waeber, “Online Algorithms in High-

Frequency Trading,” Communications of the ACM, vol. 56, no. 10, 2013.
[15] X. Tian and K. Benkrid, “Design and Implementation of a High

Performance Financial Monte-Carlo Simulation Engine on an FPGA Su-
percomputer,” in IEEE International Conference on Field-Programmable
Technology (FPT), 2008.

[16] D. B. Thomas et al., “Hardware Architectures for Monte-Carlo Based
Financial Simulations,” in IEEE International Conference on Field
Programmable Technology (FPT), 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

