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Abstract— Advanced driver assistance systems (ADAS) are 
the key to enable autonomous cars in the near future. One 
important task for autonomous cars is to detect pedestrians 
reliably in real-time. The HOG algorithm is one of the best 
algorithms for this task; however it is very compute intensive. 
To fulfill the real-time requirements for high resolution images 
an efficient parallel implementation is necessary. This paper 
presents an efficient hardware implementation as well as a 
parallel software implementation of the HOG algorithm for 
pedestrian detection on a Xilinx Zynq SoC. The hardware 
implementation achieves a speedup of 2x compared to the 
parallel software implementation for high resolution images 
(1920 x 1080). Against state-of-the-art a speedup of 1.32x is 
achieved. The hardware implementation has a reliable 
detection rate of 90.2% using a classifier trained by an 
AdaBoost algorithm and a minor false positive rate of 4 %.  

Keywords—HOG algorithm; Pedestrian Detection; FPGA; 
Xilinx Zynq; Image Processing; Real-Ttime 

I.  INTRODUCTION  

Traffic accidents, involving pedestrians, have in most 
cases severe consequences since pedestrians do not have 
high protection at the time of impact with a vehicle. 
Therefore, they are exposed to high risk even at low speed 
impacts. Studies conducted by the National Highway Traffic 
Safety Administration at the U.S. Department of 
Transportation showed that 4,735 pedestrians were killed in 
traffic accidents and crashes in the year 2013. Additionally, 
an estimate of 66,000 injuries was also reported in the United 
States [1]. To sum up, a pedestrian was killed every 2 hours 
and another was injured every 8 minutes in traffic crashes by 
calculating an average. The reasons behind these accidents 
are the complexity of the driving scene in urban areas and the 
continuous motion of all the scene elements. Moreover, the 
vehicle driver will never be able to have a 360°-view around 
the car. There are always blind spots that cannot be observed 
by drivers. Even if the driver was able to detect the location 
of pedestrians without missing anything in the scene, a slow 
reaction time of the driver might still result in collisions.  

In order to overcome these issues, advanced driver 
assistance systems (ADAS) are developed. They increase the 
road traffic safety besides the car safety by warning the 
driver when critical situations are detected. Furthermore, 
such systems can also control the vehicle to avoid collisions 
in addition to warnings. Therefore the need of reliable and 
real-time pedestrian detection systems has become 
inevitable.  

To enable a reliable pedestrian detection, robust visual 
object recognition based on a feature set for humans is 
required. It has been shown by [2] that grids of Histograms 

of Oriented Gradients (HOG) descriptors outperform other 
feature sets for human detection. These feature sets from the 
HOG algorithm can be classified reliable into human or no 
human. However, the HOG algorithm is very compute 
intensive. To enable a real-time pedestrian detection this 
algorithm can benefit from architectures such as Field 
Programmable Gate Arrays (FPGAs).  

The main contribution of this paper is an efficient 
hardware implementation of a pedestrian detection for 
FPGAs using the HOG algorithm. A reliable AdaBoost 
classifier is used to determine a human based on the obtained 
features. The implementation fulfills the real-time 
requirements even for high resolution 1080P video streams. 
This is enabled by optimizations of selected steps from the 
HOG algorithm for FPGAs. Consequently, the resource 
utilization is improved in addition to the performance. The 
resource and performance results are determined for a Xilinx 
Zynq chip that contains an ARM processor besides an 
FPGA. Besides the hardware implementation for FPGAs, a 
parallel software implementation of the HOG algorithm has 
been developed using OpenCV for the ARM processor. This 
system has been improved to increase the frame processing 
time by a factor of 249. Comparing the optimized software to 
the hardware approach shows a speedup of 2x regarding the 
FPGA implementation.  

The paper is organized as follows: In Section 0 related 
work is presented. The individual steps of the HOG 
algorithm and their hardware implementation are explained 
in Section III. The software implementation is explained in 
Section IV. In Section V the hardware implementation of the 
HOG algorithm is compared against the software 
implementation. Finally, Section VI concludes this paper and 
gives an outlook to future work. 

II. RELATED WORK 

Since Dalal and Triggs published the HOG algorithm [2] 
in 2005, many researchers investigated in efficiently 
mapping this algorithm on accelerators, such as FPGAs, 
DSPs and GPUs. In [3] a real-time pedestrian detection 
technique using the HOG algorithm for embedded driver 
assistance systems is presented. The proposed techniques are 
implemented on a digital signal processor (DSP) resulting in 
a processing time of 8 fps for a 640x480 image size. The 
work presented in this paper achieves 40 fps for high-
resolution images. An example of heterogeneous systems 
consisting of a multicore CPU, a GPU and an FPGA for 
pedestrian detection was presented by Bauer et al.[4]. The 
multi-core CPU managed the FPGA-GPU pipeline, while the 
FPGA was responsible for the feature detection and the GPU  
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TABLE I.  COMPARISON OF DIFFERENT FPGA IMPLEMENTATIONS OF THE HOG ALGORITHM 

 

FPGA 
Frame 

Size 
Classifier 

Max. 
Frequ. 
(MHz) 

Detection 
Rate 

False 
Pos. 
Rate 

FPS 

Pixels per 
Seconds 
(PPS) 

Frame Size x 
FPS

Resources 

Slices LUTs DSPs BRAMs 

Negi et 
al.[7] 

Xilinx 
Virtex-5 

320x240 AdaBoost 44.85 96.6% 20.7% 112 8.6x106 2181 17383 - 36 

Xie et 
al.[8] 

Xilinx 
Spartan-3e 

320x240 SVM 67.75 98.03% 1% 293 22.5x106 2041 3379 - 6 

Kadota et 
al.[9] 

Altera 
Stratix II 

640x480 - 127.49 - - 30 9.2x106 - 3794 12 - 

Mizuno 
et al.[10] 

Altera 
Cyclone 
IV 

1920x1080 SVM 76.2 - - 30 62.2x106 - 34403 68 - 

Ma et 
al.[11] 

Xilinx 
Virtex-6 

1600x1200 SVM 150 - - 10.41 19.9x106 22% 39% 53% 22% 

Proposed 
Approach 

Xilinx 
xc7z020 

1920x1080 AdaBoost 82.2 90.2% 4% 40 82.9x106 5942 21297 4 0 

for the SVM classification. An implementation of the HOG 
algorithm on a 0.13µm CMOS standard cell library consisting 
of 1,046,807 gates with a maximum frequency of 200 MHz is 
developed in [5]. However, this system achieves a lower frame 
processing time of 33.38 fps for a 640x480 image size in 
contrast to the work presented in this paper. Another interesting 
approach is presented in [6]. An IP core called IPPro is 
implemented on a ZedBoard. This IP core achieves a high 
frame processing rate. However, only the first steps of the 
HOG algorithm are implemented. 

Negi et al. [7] introduced a hardware implementation of the 
HOG algorithm with an AdaBoost classifier on a Xilinx 
Virtex-5 VLX-50 FPGA. Empirical evaluation of their system 
showed a 96.6% detection rate and a 20.7% false positive rate. 
The maximum frequency of the system was 44.85 MHz.Xie et 
al. [8] presented a binarization- based implementation of the 
HOG algorithm along with a linear Support Vector Machine 
(SVM) classifier implemented on a low-end Xilinx Spartan-3e 
FPGA. Their system showed a detection accuracy of 98.03% 
with 1% false positives. A maximum frequency of 67.75MHz 
was achieved. Both implementations [6] and [8] were for a 
frame size of 320x240 pixels. 

In order to optimize the algorithm for an FPGA 
implementation, methods to simplify the computation were 
proposed by Kadota et al. [9]. They implemented the feature 
extraction part without a classifier on an Altera Stratix II FPGA 
using Verilog-HDL. The maximum frequency for the 
implementation of the simplified feature extraction part was 
127.49 MHz for a frame size of 640x480 pixels. 

Mizuno et al. [10] were able to implement an optimized 
HOG algorithm with cell-based scanning along with 
simultaneous SVM classifier with a maximum frequency of 
76.2 MHz for HDTV 1920x1080 frames on an Altera Cyclone 
IV EP4CE115 FPGA.  

In contrast to the presented related work, this paper 
contributes a combination of a block normalization stage that 
uses only shift operation and a binarization stage.  This feature 
reduces the amount of the required hardware resources.  

Moreover, an evaluation of high-throughput fixed-point 
object detection systems on FPGAs is presented. The HOG 
algorithm with an SVM classifier is implemented on a Xilinx 
Virtex-6 LX760 FPGA to detect pedestrians in different scales. 
For an image size of 1600x1200 pixels 10.41 fps are achieved 
which results in approximately 20•106 pixels that are processed 
in 1 second. The work presented in this paper is not scale 
invariant. However, it achieves 4x more pixels that are 
processed in 1 second. 

Table 1 shows a summary and comparison of the different 
HOG FPGA implementations. The resource utilization of [7], 
[8] and [9] is lower due to the smaller frame size. In order to 
compare the frames per seconds (FPS) between the different 
frame sizes, pixels per second is used as metric. It gives the 
number of pixels that are processed in one second. It is 
calculated by multiplying the number of pixels for a single 
frame by the FPS rate. The implementation presented in this 
paper shows the highest number of pixels that are processed in 
one second. It shows a speedup of 1.32x and a lower resource 
utilization in comparison to Mizuno et al. [10]. 

III. HOG ALGORITHM IMPLEMENTED IN HARDWARE 

The HOG algorithm is a feature detection algorithm 
frequently used in computer vision to detect humans. An 
abstract overview of the HOG algorithm implemented in 
hardware is given by Fig. 1. The first step of the algorithm 
calculates the luminance value for each pixel in case of a 
colored image. In case of grayscale images, this step is 
excluded. Afterwards, the HOG descriptor is computed by 
dividing the image in 8x8 pixels that are called cells. In each 
cell, the two gradient components in the x- and y- directions 
are determined. By means of these gradients components, the 
gradient magnitude and direction is computed for each of the 
64 pixels inside a cell. Subsequently, a histogram of gradient 
directions is constructed. A normalization of these histograms 
results in better invariance to changes in illumination. In order 
to avoid floating point numbers, as they require a lot of FPGA 
hardware resources, a binarization step is used to optimize the 
algorithm for an FPGA implementation. A classifier using this 
descriptor can distinguish between human and non-human. 
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Fig. 1 Overview of the blocks for the HOG algorithm implemented in hardware 
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Fig. 2 Block diagram of the luminance calculation module 

L[7:0] 1917 PIXELS BUFFERPIXEL9 PIXEL8 PIXEL7

1917 PIXELS BUFFERPIXEL6 PIXEL4

Subtractor

PIXEL3 PIXEL2 PIXEL1

PIXEL5

Subtractor ΔLx [8:0]

ΔLy[8:0]

 

Fig. 3 Gradient computation module consisting of row buffers and subtractors 

A. Luminance Calculation Block 

The Luminance Calculation block, as shown in Fig. 2, is a 
module that calculates approximately the luminance value L by 
the equation: 


2

B)G,min(R,B)G,max(R,
L


  

This module has a 24-bit input signal pixel_in that consists 
of three 8-bit color components R, G and B for each pixel. 
Since each color component has a value range from 0 to 255, 
the maximum output luminance value L is 255. Accordingly, 
the output signal L has a bit width of 8 bits. The input signal 
pixel_in is processed by a series of comparator blocks to 
determine the maximum and the minimum components. 
Afterwards, the result is added up. The division by two is 
performed by a shift right block to generate the output L. This 
signal is the input for the gradient computation. 

B. Gradient Computation 

The gradient computation at pixel position (x, y) in the 
horizontal ΔLx(x, y) and vertical directions ΔLy(x, y) is 
conducted by following equations: 

              ),1(),1(),( yxLyxLyxLx     (2) 

                 )1,()1,(),(  yxLyxLyxLy               (3) 

The gradient of the pixel (x, y) is calculated by luminance 
values L(x,y) of pixels that surround pixel (x, y). The 
luminance values L(x,y) are forwarded line-by-line of the 
image as a stream. Therefore, row buffers are needed in order 
to buffer two image rows and three pixels of a third row. This 
results in an architecture as shown in Fig. 3. The output signals 
ΔLx(x, y) and ΔLy(x, y) have a range from -255 to 255 and a bit 
width of 9 bits. 

C. Gradient Magnitude and Direction for Bin Assignment 

The third step of the algorithm is to calculate the gradient 
magnitude M(x, y) and direction θ(x, y) using the following 
equations: 

                   22 ),(),(),( yxLyxLyxM yx                 (4)        
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x

y


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Equation (4) is implemented using a Look-Up Table as a 2-
dimensional vector with the inputs ΔLx(x, y) and ΔLy(x, y) and 
the output M(x, y). The values of ΔLx(x, y) and ΔLy(x, y) 
range from -255 to 255. Since these values are squared in 
equation (4), the negative numbers can be neglected. The 
highest value of the gradient magnitude 

is 360255255 22  .  

Equation (5) calculates the gradient direction that is needed to 
assign the magnitude to histogram bins in the next stage. Due 
to redundant information, it is sufficient to analyze only from   
-π/2 until +π/2. This range is divided into 8 bins for the 
associated gradient magnitude. In order to implement this 
equation efficiently in hardware, the equation is simplified 
based on [7]. For example, if a gradient direction  θ  has to be 
assigned to bin 7, it should satisfy the following inequality: 

      56.25° <  θ  <78.75°                            (6) 
A substitution of θ with equation (5) gives: 

                     



 75.78)

),(

),(
arctan(25.56

yxL

yxL

x

y              (7) 

Inequation (7) is equivalent to the following inequations with 
tan(56.25%) ≈1.496 and tan(78.75°)≈5.027 as constant values: 

               )75.78tan(
),(
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x

y            (8)  

                            027.5
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yxL
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x

y         (9) 

By multiplying the inequality with 1024 ΔLx(x, y): 



 
    1533 ΔLx(x, y) < 1024 ΔLy(x, y) < 5148 ΔLx(x, y)    (10) 
 

Subsequently, the inequality contains only integer 
multiplication and simple comparisons instead of divisions. By 
deriving the appropriate expressions for all eight bins, 
conditional expressions are used to assign the magnitudes to 
bins. The block diagram of this module is shown in Fig. 4. It 
has two inputs ΔLx and ΔLy calculated in the previous stage. It 
also has two outputs: the gradient magnitude M that has a 
maximum value of 360 and thus can be represented in 9 bits 
and the bin assignment Bin that has a value from 0 to 7. Thus, 
it can be represented in 3 bits. 

D. Formation of Cell Histogram 

The next step of the algorithm is the generation of a 
histogram for groups of 8x8 pixels. A group of 8x8 pixels is 
called a cell. The block diagram of this module is shown in Fig. 
5. Partial histograms are calculated for each row of a cell by the 
partial histogram generator. Subsequently, the eight resulting 
partial histograms are summed up to form the final histogram 
of the cell. This requires seven row buffers of partial 
histograms. The maximum value of a histogram bin occurs 
when all 8x8 pixels have a maximum magnitude of 360 and are 
assigned to the same bin. Accordingly, the maximum value of a 
histogram is 8 x 8 x 360 = 23,040 which can be represented in 
15 bits. Therefore, the resulting histogram output hist of each 
cell is represented in 8 bins x 15 bits = 120 bits. 

E. Normalization 

In this step of the algorithm, the resulting cell histogram 
from the previous step is normalized with respect to 
neighboring cells that form a larger building block called 
block. Each block consists of 2x2 cells. This normalization step 
is performed using equation (11): 
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Fig. 4 Gradient magnitude and bin assignment module block diagram  
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Fig. 5 Histogram generation module block diagram 
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Given that ν is the normalized histogram, ν k is the vector 
corresponding to the combined histograms of 4 cells in a block, 
|| ν k || is the summation of all elements of ν k and ε is a constant 
to avoid a zero enumerator. This equation consumes a lot of 
resources in hardware. Negi et al. [7] simplifies the 
normalization step into different shift operations for sub-
intervals. This paper presents another approach using only one 
shift operation without sub-intervals. 

Following this, equation (11) can be simplified since ε is 
very small in comparison to the summation of all histogram 
elements in a block ||ν k ||. Therefore, the equation is reduced to: 

                                     
k

k

v

v
v                                     (12) 

This is the division of each element of the block combined 
histogram by the summation of all histogram elements of the 
block to result in a normalized histogram. This expression 
contains a division. Subsequently, it will always result in 
decimals and floating point numbers which are complicated 
and consume a lot of FPGA resources. In order to solve this, 
another step called Binarizaton is added to the original HOG 
algorithm. In this step, a certain threshold is specified. If the 
value of each element of ν is greater than this threshold, it is 
considered as logic ‘1’, else it is considered as logic ‘0’ as it is 
presented in equation (13). The histogram binarizaton step is 
shown in Fig. 6.  
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In the work of Negi et al.[7], a binarization threshold of 
0.08 is tested. However, this will also lead to floating point 
arithmetic and a resource consuming division. Therefore, this 



threshold is taken as 8/128 instead of 8/100 since the first can 
be seen as a logic shift right four times. This step is considered 
to be one of the most important optimizations of the original 
HOG algorithm to be implemented in hardware. It has the 
advantage to change each 14-bit value of ν k to a 1-bit binary 
value which reduces the size of the block histogram to 4 cells x 
8 bits = 32 bits. It also helps getting rid of the division 
operation of the normalization step and replacing it with a logic 
shift operation and a comparator. 

F. Classifier 

The AdaBoost algorithm was first introduced in 1995 by 
Freund and Schapire [12]. It is based on the idea of creating a 
strong and accurate classifier by combining together several 
weak and inaccurate classifiers. For example, if it is required to 
classify fruits into two groups: apples and other fruit. The weak 
classifiers for this operation can be that apples are circular, 
apples are red or green or yellow and apples have a stem at the 
top. If only one of those rules is used, the resulting 
classification is inaccurate. However, combining all weak 
classifiers leads to an accurate classifier. AdaBoost classifiers 
are most suitable when dealing with dense features sets which 
is the case in the HOG algorithm. Additionally, it can be 
implemented using block descriptor buffers to form the 
detection window, a set of comparators and adders.  

In order to train the AdaBoost, a Matlab implementation of 
the presented hardware is developed that extracts the features. 
The pedestrian detection is evaluated with frames captured 
from a car simulator. The car simulator is from the company 
FOERST [13]. According to that, the size of the detection 
window was chosen to be 136x280 pixels which is the typical 
size for pedestrians in these frames. The detection window is 
composed of 16x34 blocks. Therefore, the descriptor of each 
detection window is a vector of 16 x 34 x 32 = 17,408 
dimensions. 

 

Fig. 6 Histogram binarization 
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Fig. 7 AdaBoost classifier block diagram 

Two hundred positive samples of humans and three 
hundred negative samples of non-humans obtained from both 
INRIA pedestrian database [14] and NICTA pedestrian 
database [15] were used to train the classifier with 500 
iterations. 41 weak classifiers are obtained. Each of the weak 
classifiers checks a specific dimension of the binarized 
descriptor of a complete detection window. Subsequently, it 
adds a specific either positive or negative weight depending on 
the binarized value and the classifier. If the summation of all 
these positive or negative weights is a positive number, then 
the detection window represents a human. If it is a negative 
number, then the detection window does not represent a 
human. In Fig. 8, an overview of the classifier is given. The 
signal human specifies the detection of a human. The 
appropriate detection window is given by the 16-bit signal 
win_number. The Detection Window Descriptor Generation 
block receives the binarized histogram. This is forwarded 
through buffers to generate the detection window of 16x34 
blocks. 

IV. HOG ALGORITHM IMPLEMENTED IN SOFTWARE 

In addition to the hardware implementation of the HOG 
algorithm, a software approach using OpenCV 2.4.1 has been 
implemented. This approach is built on the ARM processor of 
the Zedboard that has installed Linaro 12.09 as operating 
system. The OpenCV library offers an implementation of the 
Dalal and Triggs HOG algorithm along with a pre-trained 
SVM classifier for human detection. This function is used to 
detect pedestrians in 1920x1080 input frames. 

A VDMA core stores an HDMI input stream via the High 
Performance port (HP) into the DDR memory. The HDMI 
stream that shows a driving scene with pedestrians is given by 
the car simulator [13]. The ARM processor analyzes this 
stream from the DDR memory to detect pedestrians. 
Afterwards, the frames that are processed by the ARM 
processor are forwarded to an HDMI output to visualize 
detected pedestrians. An overview of the system is given by 
Fig. 8. An AXI performance monitor measures the 
performance of the system. 

The total processing time of the HOG algorithm for a 
1920x1080 frame is approximately 12.7 seconds which is 
equivalent to 0.08 fps. In comparison to related work, Mizuno 
et al. [10] achieves 30 fps which is a speedup of 375x for the 
same size of frames. This section presents 3 optimizations for 
the software implementation to improve the performance as 
much as possible to fulfill the real-time requirements. 

A. Resize Down/Up 

The HOG descriptor depends in human detection on the 
silhouette and structure of the human body. Resizing down the 
image to a smaller size does not affect significantly the 
silhouette of the human body until a certain limit of resizing. 
This implies that it does not downgrade the detection of the 
pedestrians, but it decreases the number of pixels that have to 
be processed.  
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Fig. 8 Overview of the software system 

Subsequently, it reduces the processing time of the HOG 
algorithm. However, if the human size in an image becomes 
much smaller than the image size that was used to train the 
classifier, the human might not be detected correctly. The 
decrease of processing time due to resizing comes at the cost of 
degradation of resolution after resizing the image down and up 
as shown in Fig. 9. A nearest-neighbor interpolation is used in 
this figure. Since the main target of the application is the 
detection of pedestrians in real-time, the resolution of the 
output image can be sacrificed for the sake of decreasing the 
computation time of the HOG algorithm. According to that, a 
frame is resized down before it is processed and resized up 
after it is processed using the OpenCV resize( ) function with 
nearest neighbor interpolation.  

B. Region of Interest  

Another method to reduce the runtime of the HOG 
algorithm is the idea of not processing the whole frame but a 
specific Region of Interest (ROI). In this region it is expected 
that humans appear and they must be detected. For example, 
Fig. 10 shows a driving scene given by the car simulator [13]. 
There is a large area of the image where humans are not 
expected to appear and it is not valuable to detect humans in 
this area. Therefore, processing only a ROI (bordered with a 
frame shown in Fig. 10) would decrease the computation time 
significantly as the size of the image to be processed is 
decreased. The ROI specified was of size 700x350 pixels at the 
center of the image.  

C. Threading Building Blocks 

Threading Building Blocks (TBB) is a C++ library 
developed by Intel that allows writing parallel programs. 

              

Fig. 9 Resolution decreasing: original image (l.) and image resized down and 
up (r.) 

 

Fig. 10 Driving scene with ROI given by a car simulator [13] 

It can take the advantages of multicore architectures. In this 
paper, the ZedBoard is used that has a dual-core ARM Cortex-
A9 processor. OpenCV allows the use of TBB functionality 
with its native data types by providing the cv::parallel_for_ 
function. This function executes independent for-loops in 
parallel. Since the processing system (PS) of the ZedBoard is a 
dual-core Cortex-A9 processor, it is possible to use TBB along 
with OpenCV. In order to reduce the processing time 
theoretically to the half, the image is divided into two halves 
that are then processed in parallel. By dividing the image 
equally into two halves that are processed independently by 
two cores, a human that is located in the middle of the image is 
probably not detected. However, pedestrians are expected to 
arrive from the left or right side in the driving scene. Thus, 
pedestrians will be detected before they arrive in the middle of 
the image. 

D. Complete Sequence of the HOG-based Pedestrian 
Detection 

The optimization techniques mentioned before are 
combined to increase the system performance. First, the input 
frame is acquired. A ROI that shows the most critical part for 
pedestrians in this driving scene is specified manually at the 
beginning of the program. By resizing down this ROI, the 
number of pixels that have to be processed is reduced. Since 
the software approach runs on a dual-core processor, the frame 
is divided into two halves to be processed simultaneously by 
the cores. After the HOG computation has finished, rectangles 
are drawn around pedestrians detected in this scene. Before the 
stream is forwarded as an output HDMI stream, the frame is 
resized up to the original frame size of 1920x1080. Listing I 
presents the pseudo code for the optimization steps to reduce 
the HOG computation time.  

LISTING I. PSEUDO CODE OF THE COMPLETE SEQUENCE OF THE HOG-BASED 
PEDESTRIAN DETECTION 

1: Get input 1920x1080 image  
2: Specify a 700x350 region of interest  
3: Resize down by scaling each dimension of the image  
4: Divide into two halves to be processed in parallel using TBB  
5: HOG computation  
6: Get the output image with rectangles drawn around humans  
7:  Resize up to original 1920x1080 size 
8: Copy to the address of the output buffer of the VDMA block



 

 

Fig. 11 Resize down scale vs. detection accuracy 

 

Fig. 12 Resize down scale vs. processing time 

V. EVALUATION 

A. HOG Algorithm Implemented in Software 

Resizing down reduces the resolution of the frames. By 
reducing the resolution the accuracy also decreases. Fig. 11 
shows the relation between the resize down scale and the 
detection accuracy using a 1080p image that contains 28 
pedestrian images from the INRIA pedestrian dataset [12]. In 
addition, the relation between the resize down scale and the 
frame processing time is shown in Fig. 12. 

According to that, instead of processing the full resolution 
1920x1080 frame, it is resized by scaling each dimensions of 
the frame to 0.5 using the OpenCV resize( ) function. Resizing 
down by more than 0.5 leads to large degradation in the 
detection accuracy. This dropdown of the detection accuracy 
can be explained with a missing classifier trained for this scale. 
The classifier is not able to classify humans in this size 
anymore. Another classifier trained for this size of detection 
could solve this problem. The processing time of a single frame 
is reduced from 12.7 seconds to 3 seconds. This is a significant 
speedup of 4.2x.  

Combining resizing with ROI leads to a further reduction of 
the computation time from 3 seconds to 0.091s.  

 

Fig. 13 Frame processing time of the original software implementation with 
and without optimizations 

This means that it runs 30x faster than when using the 
resize method only and 120x faster than the original 
implementation without any optimizations. In addition, the 
system performance is improved by exploiting parallelism of 
the application using TBB. The frame processing time 
decreases from 0.091 seconds to 0.051 seconds. A summary of 
the different performance results is presented by Fig. 13. 

B. Comparison between Hardware and Software 

The hardware implementation is synthesized for the 
ZedBoard using Xilinx Vivado Design Suite 2014.4. 
Simulation using ISim 14.7 is used to verify the functionality 
of each step of the HOG algorithm. The results of the 
simulation are compared to a Matlab implementation. Each 
step of the hardware was implemented in the same way in 
Matlab. Both implementations are evaluated with frames from 
the car simulator [13]. In conclusion, the Matlab results 
showed the same output in comparison to the hardware 
implementation. This proves that the implemented hardware 
architecture executes each step of the HOG algorithm properly. 
Five hundred images (200 positive samples and 300 negative 
samples from [14]) were used to train the classifier for a 
detection window size of 136x280 pixels. Matlab supports an 
AdaBoost learning algorithm which has been used in this work. 
This classifier was evaluated using 1104 images. It gives an 
accuracy of 90.2% and a false positive rate of 4%. The results 
can be further improved by using a larger set of images to train 
the classifier. 

The synthesis and implementation of the complete system 
gives an operating frequency of 82.2 MHz. A full post-
synthesis and post-routing VHDL test-bench simulation is 
performed to measure the frame processing time. A complete 
HDTV 1080p frame needs 25.207 ms to be analyzed by the 
implemented HOG algorithm. Consequently, it achieves a final 
throughput of 40 fps. The original software implementation is 
improved by a factor of 250x in terms performance due to 
several optimizations. In comparison to this optimized software 
implementation, the hardware implementation still achieves a 
speedup of 2x without any optimizations, such as ROI or 
Resized Down/Up, as shown in Fig. 14.  



 

Fig. 14 Comparison between hardware and software implementations in terms 
of system throughput 

TABLE II.  RESOURCE UTILIZATION OF THE HOG ALGORITHM 
IMPLEMENTED ON XC7Z020-CLG484-1 AFTER PLACE&ROUTE 

MODULE LUTS SLICES DSPS 

LUMINANCE CALCULATION 59 17 0 

GRADIENT COMPUTATION 2985 797 0 

GRADIENT MAGNITUDE AND DIRECTION 8432 2397 4 

FORMATION OF CELL HISTOGRAM 6140 1676 0 

BLOCK NORMALIZATION 1278 421 0 

BINARIZATION 93 26 0 

ADABOOST CLASSIFIER 2310 608 0 

TOTAL 21297 (40%) 5942 (45%) 4 (2%) 

The resource utilization after place&route of the 
implemented HOG algorithm is shown in TABLE II. The 
results are generated for the ZedBoard using Xilinx Vivado 
Design Suite 2014.4. 

VI. CONCLUSION & OUTLOOK 

This paper presents a real-time implementation in hardware 
and software for pedestrian detection using the HOG algorithm 
presented by Dalal and Triggs [1] on the ZedBoard. These 
systems process high resolution images with 1920x1080 pixels. 
The HOG algorithm implemented in an FPGA uses an 
AdaBoost classifier. It has an additional binarization step that 
allows in combination with a modified normalization step an 
efficient FPGA implementation. A verification of the system 
with Matlab shows a reliable detection rate of 90.2 % and a 
minor false positive rate of 4%. Besides the hardware 
approach, a software implementation using OpenCV has been 
implemented on the ARM processor of the ZedBoard and 
improved by a speedup of 250x. This is enabled by exploiting 
the data parallelism and a reasonable reduction of pixels that 
have to be processed. However, the FPGA implementation 
achieves 40 fps which is twice as much as the optimized 
software implementation.  

Future work is to improve further the frame processing time 
of the software implementation by exploiting NEON cores 
from the ARM processor. Adding multi-scale detection to the 
hardware implementation is an improvement in order to be able 
to detect pedestrians of different sizes. This could be achieved 
by training several AdaBoost classifiers. These classifiers can 
be reconfigured partially to reduce the resource utilization. 
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