
Real-Time Pedestrian Detection on a Xilinx Zynq
using the HOG Algorithm

Jens Rettkowski, Andrew Boutros, Diana Göhringer

Application-Specific Multi-Core Architectures (MCA) Group
Ruhr-University Bochum

jens.rettkowski@rub.de, andrew.boutros@student.guc.edu.eg, diana.goehringer@rub.de

Abstract— Advanced driver assistance systems (ADAS) are
the key to enable autonomous cars in the near future. One
important task for autonomous cars is to detect pedestrians
reliably in real-time. The HOG algorithm is one of the best
algorithms for this task; however it is very compute intensive.
To fulfill the real-time requirements for high resolution images
an efficient parallel implementation is necessary. This paper
presents an efficient hardware implementation as well as a
parallel software implementation of the HOG algorithm for
pedestrian detection on a Xilinx Zynq SoC. The hardware
implementation achieves a speedup of 2x compared to the
parallel software implementation for high resolution images
(1920 x 1080). Against state-of-the-art a speedup of 1.32x is
achieved. The hardware implementation has a reliable
detection rate of 90.2% using a classifier trained by an
AdaBoost algorithm and a minor false positive rate of 4 %.

Keywords—HOG algorithm; Pedestrian Detection; FPGA;
Xilinx Zynq; Image Processing; Real-Ttime

I. INTRODUCTION

Traffic accidents, involving pedestrians, have in most
cases severe consequences since pedestrians do not have
high protection at the time of impact with a vehicle.
Therefore, they are exposed to high risk even at low speed
impacts. Studies conducted by the National Highway Traffic
Safety Administration at the U.S. Department of
Transportation showed that 4,735 pedestrians were killed in
traffic accidents and crashes in the year 2013. Additionally,
an estimate of 66,000 injuries was also reported in the United
States [1]. To sum up, a pedestrian was killed every 2 hours
and another was injured every 8 minutes in traffic crashes by
calculating an average. The reasons behind these accidents
are the complexity of the driving scene in urban areas and the
continuous motion of all the scene elements. Moreover, the
vehicle driver will never be able to have a 360°-view around
the car. There are always blind spots that cannot be observed
by drivers. Even if the driver was able to detect the location
of pedestrians without missing anything in the scene, a slow
reaction time of the driver might still result in collisions.

In order to overcome these issues, advanced driver
assistance systems (ADAS) are developed. They increase the
road traffic safety besides the car safety by warning the
driver when critical situations are detected. Furthermore,
such systems can also control the vehicle to avoid collisions
in addition to warnings. Therefore the need of reliable and
real-time pedestrian detection systems has become
inevitable.

To enable a reliable pedestrian detection, robust visual
object recognition based on a feature set for humans is
required. It has been shown by [2] that grids of Histograms

of Oriented Gradients (HOG) descriptors outperform other
feature sets for human detection. These feature sets from the
HOG algorithm can be classified reliable into human or no
human. However, the HOG algorithm is very compute
intensive. To enable a real-time pedestrian detection this
algorithm can benefit from architectures such as Field
Programmable Gate Arrays (FPGAs).

The main contribution of this paper is an efficient
hardware implementation of a pedestrian detection for
FPGAs using the HOG algorithm. A reliable AdaBoost
classifier is used to determine a human based on the obtained
features. The implementation fulfills the real-time
requirements even for high resolution 1080P video streams.
This is enabled by optimizations of selected steps from the
HOG algorithm for FPGAs. Consequently, the resource
utilization is improved in addition to the performance. The
resource and performance results are determined for a Xilinx
Zynq chip that contains an ARM processor besides an
FPGA. Besides the hardware implementation for FPGAs, a
parallel software implementation of the HOG algorithm has
been developed using OpenCV for the ARM processor. This
system has been improved to increase the frame processing
time by a factor of 249. Comparing the optimized software to
the hardware approach shows a speedup of 2x regarding the
FPGA implementation.

The paper is organized as follows: In Section 0 related
work is presented. The individual steps of the HOG
algorithm and their hardware implementation are explained
in Section III. The software implementation is explained in
Section IV. In Section V the hardware implementation of the
HOG algorithm is compared against the software
implementation. Finally, Section VI concludes this paper and
gives an outlook to future work.

II. RELATED WORK

Since Dalal and Triggs published the HOG algorithm [2]
in 2005, many researchers investigated in efficiently
mapping this algorithm on accelerators, such as FPGAs,
DSPs and GPUs. In [3] a real-time pedestrian detection
technique using the HOG algorithm for embedded driver
assistance systems is presented. The proposed techniques are
implemented on a digital signal processor (DSP) resulting in
a processing time of 8 fps for a 640x480 image size. The
work presented in this paper achieves 40 fps for high-
resolution images. An example of heterogeneous systems
consisting of a multicore CPU, a GPU and an FPGA for
pedestrian detection was presented by Bauer et al.[4]. The
multi-core CPU managed the FPGA-GPU pipeline, while the
FPGA was responsible for the feature detection and the GPU

978-1-4673-9406-2/15/$31.00 ©2015 IEEE

TABLE I. COMPARISON OF DIFFERENT FPGA IMPLEMENTATIONS OF THE HOG ALGORITHM

FPGA
Frame

Size
Classifier

Max.
Frequ.
(MHz)

Detection
Rate

False
Pos.
Rate

FPS

Pixels per
Seconds
(PPS)

Frame Size x
FPS

Resources

Slices LUTs DSPs BRAMs

Negi et
al.[7]

Xilinx
Virtex-5

320x240 AdaBoost 44.85 96.6% 20.7% 112 8.6x106 2181 17383 - 36

Xie et
al.[8]

Xilinx
Spartan-3e

320x240 SVM 67.75 98.03% 1% 293 22.5x106 2041 3379 - 6

Kadota et
al.[9]

Altera
Stratix II

640x480 - 127.49 - - 30 9.2x106 - 3794 12 -

Mizuno
et al.[10]

Altera
Cyclone
IV

1920x1080 SVM 76.2 - - 30 62.2x106 - 34403 68 -

Ma et
al.[11]

Xilinx
Virtex-6

1600x1200 SVM 150 - - 10.41 19.9x106 22% 39% 53% 22%

Proposed
Approach

Xilinx
xc7z020

1920x1080 AdaBoost 82.2 90.2% 4% 40 82.9x106 5942 21297 4 0

for the SVM classification. An implementation of the HOG
algorithm on a 0.13µm CMOS standard cell library consisting
of 1,046,807 gates with a maximum frequency of 200 MHz is
developed in [5]. However, this system achieves a lower frame
processing time of 33.38 fps for a 640x480 image size in
contrast to the work presented in this paper. Another interesting
approach is presented in [6]. An IP core called IPPro is
implemented on a ZedBoard. This IP core achieves a high
frame processing rate. However, only the first steps of the
HOG algorithm are implemented.

Negi et al. [7] introduced a hardware implementation of the
HOG algorithm with an AdaBoost classifier on a Xilinx
Virtex-5 VLX-50 FPGA. Empirical evaluation of their system
showed a 96.6% detection rate and a 20.7% false positive rate.
The maximum frequency of the system was 44.85 MHz.Xie et
al. [8] presented a binarization- based implementation of the
HOG algorithm along with a linear Support Vector Machine
(SVM) classifier implemented on a low-end Xilinx Spartan-3e
FPGA. Their system showed a detection accuracy of 98.03%
with 1% false positives. A maximum frequency of 67.75MHz
was achieved. Both implementations [6] and [8] were for a
frame size of 320x240 pixels.

In order to optimize the algorithm for an FPGA
implementation, methods to simplify the computation were
proposed by Kadota et al. [9]. They implemented the feature
extraction part without a classifier on an Altera Stratix II FPGA
using Verilog-HDL. The maximum frequency for the
implementation of the simplified feature extraction part was
127.49 MHz for a frame size of 640x480 pixels.

Mizuno et al. [10] were able to implement an optimized
HOG algorithm with cell-based scanning along with
simultaneous SVM classifier with a maximum frequency of
76.2 MHz for HDTV 1920x1080 frames on an Altera Cyclone
IV EP4CE115 FPGA.

In contrast to the presented related work, this paper
contributes a combination of a block normalization stage that
uses only shift operation and a binarization stage. This feature
reduces the amount of the required hardware resources.

Moreover, an evaluation of high-throughput fixed-point
object detection systems on FPGAs is presented. The HOG
algorithm with an SVM classifier is implemented on a Xilinx
Virtex-6 LX760 FPGA to detect pedestrians in different scales.
For an image size of 1600x1200 pixels 10.41 fps are achieved
which results in approximately 20•106 pixels that are processed
in 1 second. The work presented in this paper is not scale
invariant. However, it achieves 4x more pixels that are
processed in 1 second.

Table 1 shows a summary and comparison of the different
HOG FPGA implementations. The resource utilization of [7],
[8] and [9] is lower due to the smaller frame size. In order to
compare the frames per seconds (FPS) between the different
frame sizes, pixels per second is used as metric. It gives the
number of pixels that are processed in one second. It is
calculated by multiplying the number of pixels for a single
frame by the FPS rate. The implementation presented in this
paper shows the highest number of pixels that are processed in
one second. It shows a speedup of 1.32x and a lower resource
utilization in comparison to Mizuno et al. [10].

III. HOG ALGORITHM IMPLEMENTED IN HARDWARE

The HOG algorithm is a feature detection algorithm
frequently used in computer vision to detect humans. An
abstract overview of the HOG algorithm implemented in
hardware is given by Fig. 1. The first step of the algorithm
calculates the luminance value for each pixel in case of a
colored image. In case of grayscale images, this step is
excluded. Afterwards, the HOG descriptor is computed by
dividing the image in 8x8 pixels that are called cells. In each
cell, the two gradient components in the x- and y- directions
are determined. By means of these gradients components, the
gradient magnitude and direction is computed for each of the
64 pixels inside a cell. Subsequently, a histogram of gradient
directions is constructed. A normalization of these histograms
results in better invariance to changes in illumination. In order
to avoid floating point numbers, as they require a lot of FPGA
hardware resources, a binarization step is used to optimize the
algorithm for an FPGA implementation. A classifier using this
descriptor can distinguish between human and non-human.

Luminance
Calculation

Gradient
Computation

Gradient
Magnitude

and
Direction

Formation of
Cell

Histogram

Block
Normalization

Binarization
AdaBoost
Classifier

pixel_in L

ΔLx

ΔLy

M

Bin

hist

V

block_hist

binarized
_hist

human

win_number

Fig. 1 Overview of the blocks for the HOG algorithm implemented in hardware

MAX

MIN

+
SHIFT
RIGHT

pixel_in [23:0]

L [7:0]

Fig. 2 Block diagram of the luminance calculation module

L[7:0] 1917 PIXELS BUFFERPIXEL9 PIXEL8 PIXEL7

1917 PIXELS BUFFERPIXEL6 PIXEL4

Subtractor

PIXEL3 PIXEL2 PIXEL1

PIXEL5

Subtractor ΔLx [8:0]

ΔLy[8:0]

Fig. 3 Gradient computation module consisting of row buffers and subtractors

A. Luminance Calculation Block

The Luminance Calculation block, as shown in Fig. 2, is a
module that calculates approximately the luminance value L by
the equation:

2

B)G,min(R,B)G,max(R,
L

This module has a 24-bit input signal pixel_in that consists
of three 8-bit color components R, G and B for each pixel.
Since each color component has a value range from 0 to 255,
the maximum output luminance value L is 255. Accordingly,
the output signal L has a bit width of 8 bits. The input signal
pixel_in is processed by a series of comparator blocks to
determine the maximum and the minimum components.
Afterwards, the result is added up. The division by two is
performed by a shift right block to generate the output L. This
signal is the input for the gradient computation.

B. Gradient Computation

The gradient computation at pixel position (x, y) in the
horizontal ΔLx(x, y) and vertical directions ΔLy(x, y) is
conducted by following equations:

),1(),1(),(yxLyxLyxLx (2)

)1,()1,(),(yxLyxLyxLy (3)

The gradient of the pixel (x, y) is calculated by luminance
values L(x,y) of pixels that surround pixel (x, y). The
luminance values L(x,y) are forwarded line-by-line of the
image as a stream. Therefore, row buffers are needed in order
to buffer two image rows and three pixels of a third row. This
results in an architecture as shown in Fig. 3. The output signals
ΔLx(x, y) and ΔLy(x, y) have a range from -255 to 255 and a bit
width of 9 bits.

C. Gradient Magnitude and Direction for Bin Assignment

The third step of the algorithm is to calculate the gradient
magnitude M(x, y) and direction θ(x, y) using the following
equations:

 22),(),(),(yxLyxLyxM yx (4)

)
),(

),(
arctan(),(

yxL

yxL
yx

x

y

 (5)

Equation (4) is implemented using a Look-Up Table as a 2-
dimensional vector with the inputs ΔLx(x, y) and ΔLy(x, y) and
the output M(x, y). The values of ΔLx(x, y) and ΔLy(x, y)
range from -255 to 255. Since these values are squared in
equation (4), the negative numbers can be neglected. The
highest value of the gradient magnitude

is 360255255 22 .

Equation (5) calculates the gradient direction that is needed to
assign the magnitude to histogram bins in the next stage. Due
to redundant information, it is sufficient to analyze only from
-π/2 until +π/2. This range is divided into 8 bins for the
associated gradient magnitude. In order to implement this
equation efficiently in hardware, the equation is simplified
based on [7]. For example, if a gradient direction θ has to be
assigned to bin 7, it should satisfy the following inequality:

 56.25° < θ <78.75° (6)
A substitution of θ with equation (5) gives:

 75.78)

),(

),(
arctan(25.56

yxL

yxL

x

y (7)

Inequation (7) is equivalent to the following inequations with
tan(56.25%) ≈1.496 and tan(78.75°)≈5.027 as constant values:

)75.78tan(
),(

),(
)25.56tan(

yxL

yxL

x

y (8)

 027.5
),(

),(
496.1

yxL

yxL

x

y (9)

By multiplying the inequality with 1024 ΔLx(x, y):

 1533 ΔLx(x, y) < 1024 ΔLy(x, y) < 5148 ΔLx(x, y) (10)

Subsequently, the inequality contains only integer
multiplication and simple comparisons instead of divisions. By
deriving the appropriate expressions for all eight bins,
conditional expressions are used to assign the magnitudes to
bins. The block diagram of this module is shown in Fig. 4. It
has two inputs ΔLx and ΔLy calculated in the previous stage. It
also has two outputs: the gradient magnitude M that has a
maximum value of 360 and thus can be represented in 9 bits
and the bin assignment Bin that has a value from 0 to 7. Thus,
it can be represented in 3 bits.

D. Formation of Cell Histogram

The next step of the algorithm is the generation of a
histogram for groups of 8x8 pixels. A group of 8x8 pixels is
called a cell. The block diagram of this module is shown in Fig.
5. Partial histograms are calculated for each row of a cell by the
partial histogram generator. Subsequently, the eight resulting
partial histograms are summed up to form the final histogram
of the cell. This requires seven row buffers of partial
histograms. The maximum value of a histogram bin occurs
when all 8x8 pixels have a maximum magnitude of 360 and are
assigned to the same bin. Accordingly, the maximum value of a
histogram is 8 x 8 x 360 = 23,040 which can be represented in
15 bits. Therefore, the resulting histogram output hist of each
cell is represented in 8 bins x 15 bits = 120 bits.

E. Normalization

In this step of the algorithm, the resulting cell histogram
from the previous step is normalized with respect to
neighboring cells that form a larger building block called
block. Each block consists of 2x2 cells. This normalization step
is performed using equation (11):

ΔLx[8:0]
M [8:0]

Conditional
Expressions

ΔLy[8:0]

Bin [2:0]

ΔLx

ΔLy

Look-Up Table

M

Fig. 4 Gradient magnitude and bin assignment module block diagram

M [8:0]
Partial Histograms Row Buffer

Partial
Histogram
Generator

Partial
Hist 8

Partial Histograms Row Buffer

hist [119:0]

Partial
Hist 7

Partial Histograms Row Buffer
Partial
Hist 6

Partial Histograms Row Buffer
Partial
Hist 5

Partial Histograms Row Buffer
Partial
Hist 4

Partial Histograms Row Buffer
Partial
Hist 3

Partial Histograms Row Buffer
Partial
Hist 2

Partial
Hist 1

Cell Histogram Generator

Bin [2:0]

Fig. 5 Histogram generation module block diagram

2

k

k

v

v
v (11)

Given that ν is the normalized histogram, ν k is the vector
corresponding to the combined histograms of 4 cells in a block,
|| ν k || is the summation of all elements of ν k and ε is a constant
to avoid a zero enumerator. This equation consumes a lot of
resources in hardware. Negi et al. [7] simplifies the
normalization step into different shift operations for sub-
intervals. This paper presents another approach using only one
shift operation without sub-intervals.

Following this, equation (11) can be simplified since ε is
very small in comparison to the summation of all histogram
elements in a block ||ν k ||. Therefore, the equation is reduced to:

k

k

v

v
v (12)

This is the division of each element of the block combined
histogram by the summation of all histogram elements of the
block to result in a normalized histogram. This expression
contains a division. Subsequently, it will always result in
decimals and floating point numbers which are complicated
and consume a lot of FPGA resources. In order to solve this,
another step called Binarizaton is added to the original HOG
algorithm. In this step, a certain threshold is specified. If the
value of each element of ν is greater than this threshold, it is
considered as logic ‘1’, else it is considered as logic ‘0’ as it is
presented in equation (13). The histogram binarizaton step is
shown in Fig. 6.

threshold

v

v

threshold
v

v

v

k

k

k

k

,1

,0
 (13)

In the work of Negi et al.[7], a binarization threshold of
0.08 is tested. However, this will also lead to floating point
arithmetic and a resource consuming division. Therefore, this

threshold is taken as 8/128 instead of 8/100 since the first can
be seen as a logic shift right four times. This step is considered
to be one of the most important optimizations of the original
HOG algorithm to be implemented in hardware. It has the
advantage to change each 14-bit value of ν k to a 1-bit binary
value which reduces the size of the block histogram to 4 cells x
8 bits = 32 bits. It also helps getting rid of the division
operation of the normalization step and replacing it with a logic
shift operation and a comparator.

F. Classifier

The AdaBoost algorithm was first introduced in 1995 by
Freund and Schapire [12]. It is based on the idea of creating a
strong and accurate classifier by combining together several
weak and inaccurate classifiers. For example, if it is required to
classify fruits into two groups: apples and other fruit. The weak
classifiers for this operation can be that apples are circular,
apples are red or green or yellow and apples have a stem at the
top. If only one of those rules is used, the resulting
classification is inaccurate. However, combining all weak
classifiers leads to an accurate classifier. AdaBoost classifiers
are most suitable when dealing with dense features sets which
is the case in the HOG algorithm. Additionally, it can be
implemented using block descriptor buffers to form the
detection window, a set of comparators and adders.

In order to train the AdaBoost, a Matlab implementation of
the presented hardware is developed that extracts the features.
The pedestrian detection is evaluated with frames captured
from a car simulator. The car simulator is from the company
FOERST [13]. According to that, the size of the detection
window was chosen to be 136x280 pixels which is the typical
size for pedestrians in these frames. The detection window is
composed of 16x34 blocks. Therefore, the descriptor of each
detection window is a vector of 16 x 34 x 32 = 17,408
dimensions.

Fig. 6 Histogram binarization

binarized_hist [31:0]

Detection
Window

Descriptor
Generation

AdaBoost
Parameters

Human
Detection

human

win_number [15:0]

Fig. 7 AdaBoost classifier block diagram

Two hundred positive samples of humans and three
hundred negative samples of non-humans obtained from both
INRIA pedestrian database [14] and NICTA pedestrian
database [15] were used to train the classifier with 500
iterations. 41 weak classifiers are obtained. Each of the weak
classifiers checks a specific dimension of the binarized
descriptor of a complete detection window. Subsequently, it
adds a specific either positive or negative weight depending on
the binarized value and the classifier. If the summation of all
these positive or negative weights is a positive number, then
the detection window represents a human. If it is a negative
number, then the detection window does not represent a
human. In Fig. 8, an overview of the classifier is given. The
signal human specifies the detection of a human. The
appropriate detection window is given by the 16-bit signal
win_number. The Detection Window Descriptor Generation
block receives the binarized histogram. This is forwarded
through buffers to generate the detection window of 16x34
blocks.

IV. HOG ALGORITHM IMPLEMENTED IN SOFTWARE

In addition to the hardware implementation of the HOG
algorithm, a software approach using OpenCV 2.4.1 has been
implemented. This approach is built on the ARM processor of
the Zedboard that has installed Linaro 12.09 as operating
system. The OpenCV library offers an implementation of the
Dalal and Triggs HOG algorithm along with a pre-trained
SVM classifier for human detection. This function is used to
detect pedestrians in 1920x1080 input frames.

A VDMA core stores an HDMI input stream via the High
Performance port (HP) into the DDR memory. The HDMI
stream that shows a driving scene with pedestrians is given by
the car simulator [13]. The ARM processor analyzes this
stream from the DDR memory to detect pedestrians.
Afterwards, the frames that are processed by the ARM
processor are forwarded to an HDMI output to visualize
detected pedestrians. An overview of the system is given by
Fig. 8. An AXI performance monitor measures the
performance of the system.

The total processing time of the HOG algorithm for a
1920x1080 frame is approximately 12.7 seconds which is
equivalent to 0.08 fps. In comparison to related work, Mizuno
et al. [10] achieves 30 fps which is a speedup of 375x for the
same size of frames. This section presents 3 optimizations for
the software implementation to improve the performance as
much as possible to fulfill the real-time requirements.

A. Resize Down/Up

The HOG descriptor depends in human detection on the
silhouette and structure of the human body. Resizing down the
image to a smaller size does not affect significantly the
silhouette of the human body until a certain limit of resizing.
This implies that it does not downgrade the detection of the
pedestrians, but it decreases the number of pixels that have to
be processed.

HDMI
input

VDMA
HDMI
output

AXI Performance
Monitor

PS DDR
Memory

HP Port

ARM

Fig. 8 Overview of the software system

Subsequently, it reduces the processing time of the HOG
algorithm. However, if the human size in an image becomes
much smaller than the image size that was used to train the
classifier, the human might not be detected correctly. The
decrease of processing time due to resizing comes at the cost of
degradation of resolution after resizing the image down and up
as shown in Fig. 9. A nearest-neighbor interpolation is used in
this figure. Since the main target of the application is the
detection of pedestrians in real-time, the resolution of the
output image can be sacrificed for the sake of decreasing the
computation time of the HOG algorithm. According to that, a
frame is resized down before it is processed and resized up
after it is processed using the OpenCV resize() function with
nearest neighbor interpolation.

B. Region of Interest

Another method to reduce the runtime of the HOG
algorithm is the idea of not processing the whole frame but a
specific Region of Interest (ROI). In this region it is expected
that humans appear and they must be detected. For example,
Fig. 10 shows a driving scene given by the car simulator [13].
There is a large area of the image where humans are not
expected to appear and it is not valuable to detect humans in
this area. Therefore, processing only a ROI (bordered with a
frame shown in Fig. 10) would decrease the computation time
significantly as the size of the image to be processed is
decreased. The ROI specified was of size 700x350 pixels at the
center of the image.

C. Threading Building Blocks

Threading Building Blocks (TBB) is a C++ library
developed by Intel that allows writing parallel programs.

Fig. 9 Resolution decreasing: original image (l.) and image resized down and
up (r.)

Fig. 10 Driving scene with ROI given by a car simulator [13]

It can take the advantages of multicore architectures. In this
paper, the ZedBoard is used that has a dual-core ARM Cortex-
A9 processor. OpenCV allows the use of TBB functionality
with its native data types by providing the cv::parallel_for_
function. This function executes independent for-loops in
parallel. Since the processing system (PS) of the ZedBoard is a
dual-core Cortex-A9 processor, it is possible to use TBB along
with OpenCV. In order to reduce the processing time
theoretically to the half, the image is divided into two halves
that are then processed in parallel. By dividing the image
equally into two halves that are processed independently by
two cores, a human that is located in the middle of the image is
probably not detected. However, pedestrians are expected to
arrive from the left or right side in the driving scene. Thus,
pedestrians will be detected before they arrive in the middle of
the image.

D. Complete Sequence of the HOG-based Pedestrian
Detection

The optimization techniques mentioned before are
combined to increase the system performance. First, the input
frame is acquired. A ROI that shows the most critical part for
pedestrians in this driving scene is specified manually at the
beginning of the program. By resizing down this ROI, the
number of pixels that have to be processed is reduced. Since
the software approach runs on a dual-core processor, the frame
is divided into two halves to be processed simultaneously by
the cores. After the HOG computation has finished, rectangles
are drawn around pedestrians detected in this scene. Before the
stream is forwarded as an output HDMI stream, the frame is
resized up to the original frame size of 1920x1080. Listing I
presents the pseudo code for the optimization steps to reduce
the HOG computation time.

LISTING I. PSEUDO CODE OF THE COMPLETE SEQUENCE OF THE HOG-BASED
PEDESTRIAN DETECTION

1: Get input 1920x1080 image
2: Specify a 700x350 region of interest
3: Resize down by scaling each dimension of the image
4: Divide into two halves to be processed in parallel using TBB
5: HOG computation
6: Get the output image with rectangles drawn around humans
7: Resize up to original 1920x1080 size
8: Copy to the address of the output buffer of the VDMA block

Fig. 11 Resize down scale vs. detection accuracy

Fig. 12 Resize down scale vs. processing time

V. EVALUATION

A. HOG Algorithm Implemented in Software

Resizing down reduces the resolution of the frames. By
reducing the resolution the accuracy also decreases. Fig. 11
shows the relation between the resize down scale and the
detection accuracy using a 1080p image that contains 28
pedestrian images from the INRIA pedestrian dataset [12]. In
addition, the relation between the resize down scale and the
frame processing time is shown in Fig. 12.

According to that, instead of processing the full resolution
1920x1080 frame, it is resized by scaling each dimensions of
the frame to 0.5 using the OpenCV resize() function. Resizing
down by more than 0.5 leads to large degradation in the
detection accuracy. This dropdown of the detection accuracy
can be explained with a missing classifier trained for this scale.
The classifier is not able to classify humans in this size
anymore. Another classifier trained for this size of detection
could solve this problem. The processing time of a single frame
is reduced from 12.7 seconds to 3 seconds. This is a significant
speedup of 4.2x.

Combining resizing with ROI leads to a further reduction of
the computation time from 3 seconds to 0.091s.

Fig. 13 Frame processing time of the original software implementation with
and without optimizations

This means that it runs 30x faster than when using the
resize method only and 120x faster than the original
implementation without any optimizations. In addition, the
system performance is improved by exploiting parallelism of
the application using TBB. The frame processing time
decreases from 0.091 seconds to 0.051 seconds. A summary of
the different performance results is presented by Fig. 13.

B. Comparison between Hardware and Software

The hardware implementation is synthesized for the
ZedBoard using Xilinx Vivado Design Suite 2014.4.
Simulation using ISim 14.7 is used to verify the functionality
of each step of the HOG algorithm. The results of the
simulation are compared to a Matlab implementation. Each
step of the hardware was implemented in the same way in
Matlab. Both implementations are evaluated with frames from
the car simulator [13]. In conclusion, the Matlab results
showed the same output in comparison to the hardware
implementation. This proves that the implemented hardware
architecture executes each step of the HOG algorithm properly.
Five hundred images (200 positive samples and 300 negative
samples from [14]) were used to train the classifier for a
detection window size of 136x280 pixels. Matlab supports an
AdaBoost learning algorithm which has been used in this work.
This classifier was evaluated using 1104 images. It gives an
accuracy of 90.2% and a false positive rate of 4%. The results
can be further improved by using a larger set of images to train
the classifier.

The synthesis and implementation of the complete system
gives an operating frequency of 82.2 MHz. A full post-
synthesis and post-routing VHDL test-bench simulation is
performed to measure the frame processing time. A complete
HDTV 1080p frame needs 25.207 ms to be analyzed by the
implemented HOG algorithm. Consequently, it achieves a final
throughput of 40 fps. The original software implementation is
improved by a factor of 250x in terms performance due to
several optimizations. In comparison to this optimized software
implementation, the hardware implementation still achieves a
speedup of 2x without any optimizations, such as ROI or
Resized Down/Up, as shown in Fig. 14.

Fig. 14 Comparison between hardware and software implementations in terms
of system throughput

TABLE II. RESOURCE UTILIZATION OF THE HOG ALGORITHM
IMPLEMENTED ON XC7Z020-CLG484-1 AFTER PLACE&ROUTE

MODULE LUTS SLICES DSPS

LUMINANCE CALCULATION 59 17 0

GRADIENT COMPUTATION 2985 797 0

GRADIENT MAGNITUDE AND DIRECTION 8432 2397 4

FORMATION OF CELL HISTOGRAM 6140 1676 0

BLOCK NORMALIZATION 1278 421 0

BINARIZATION 93 26 0

ADABOOST CLASSIFIER 2310 608 0

TOTAL 21297 (40%) 5942 (45%) 4 (2%)

The resource utilization after place&route of the
implemented HOG algorithm is shown in TABLE II. The
results are generated for the ZedBoard using Xilinx Vivado
Design Suite 2014.4.

VI. CONCLUSION & OUTLOOK

This paper presents a real-time implementation in hardware
and software for pedestrian detection using the HOG algorithm
presented by Dalal and Triggs [1] on the ZedBoard. These
systems process high resolution images with 1920x1080 pixels.
The HOG algorithm implemented in an FPGA uses an
AdaBoost classifier. It has an additional binarization step that
allows in combination with a modified normalization step an
efficient FPGA implementation. A verification of the system
with Matlab shows a reliable detection rate of 90.2 % and a
minor false positive rate of 4%. Besides the hardware
approach, a software implementation using OpenCV has been
implemented on the ARM processor of the ZedBoard and
improved by a speedup of 250x. This is enabled by exploiting
the data parallelism and a reasonable reduction of pixels that
have to be processed. However, the FPGA implementation
achieves 40 fps which is twice as much as the optimized
software implementation.

Future work is to improve further the frame processing time
of the software implementation by exploiting NEON cores
from the ARM processor. Adding multi-scale detection to the
hardware implementation is an improvement in order to be able
to detect pedestrians of different sizes. This could be achieved
by training several AdaBoost classifiers. These classifiers can
be reconfigured partially to reduce the resource utilization.

REFERENCES
[1] National Center for Statistics and Analysis. (2015, February).

Pedestrians: 2013 data. (Traffic Safety Facts. Report No. DOT HS 812
124). Washington, DC: National Highway Traffic Safety
Administration.

[2] Dalal, N.; Triggs, B., "Histograms of oriented gradients for human
detection," Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol.1, no., pp.886,893
vol. 1, 25-25 June 2005.

[3] Chiang, C.; Chen, Y.; Ke, K.; Yuan, K., "Real-time pedestrian detection
technique for embedded driver assistance systems," in Consumer
Electronics (ICCE), 2015 IEEE International Conference on , vol., no.,
pp.206-207, 9-12 Jan. 2015.

[4] Bauer, S.; Kohler, S.; Doll, K.; Brunsmann, U., "FPGA-GPU
architecture for kernel SVM pedestrian detection," Computer Vision and
Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on , vol., no., pp.61,68, 13-18 June 2010.

[5] Lee, S.; Son, H.; Choi, J. C.; Min, K., "HOG feature extractor circuit for
real-time human and vehicle detection," in TENCON 2012 - 2012 IEEE
Region 10 Conference , vol., no., pp.1-5, 19-22 Nov. 2012.

[6] Kelly, C.; Siddiqui, F.M.; Bardak, B.; Woods, R., "Histogram of
oriented gradients front end processing: An FPGA based processor
approach," Signal Processing Systems (SiPS), 2014 IEEE Workshop on ,
vol., no., pp.1,6, 20-22 Oct. 2014.

[7] Negi, K.; Dohi, K.; Shibata, Y.; Oguri, K., "Deep pipelined one-chip
FPGA implementation of a real-time image-based human detection
algorithm," Field-Programmable Technology (FPT), 2011 International
Conference on , vol., no., pp.1,8, 12-14 Dec. 2011.

[8] Shuai Xie; Yibin Li; Zhiping Jia; Lei Ju, "Binarization based
implementation for real-time human detection," Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on ,
vol., no., pp.1,4, 2-4 Sept. 2013.

[9] Kadota, R.; Sugano, H.; Hiromoto, M.; Ochi, H.; Miyamoto, R.;
Nakamura, Y., "Hardware Architecture for HOG Feature
Extraction," Intelligent Information Hiding and Multimedia Signal
Processing, 2009. IIH-MSP '09. Fifth International Conference on , vol.,
no., pp.1330,1333, 12-14 Sept. 2009.

[10] Mizuno, K.; Terachi, Y.; Takagi, K.; Izumi, S.; Kawaguchi, H.;
Yoshimoto, M., "Architectural Study of HOG Feature Extraction
Processor for Real-Time Object Detection," Signal Processing Systems
(SiPS), 2012 IEEE Workshop on , vol., no., pp.197,202, 17-19 Oct.
2012.

[11] Ma X.; Najjar, W.A.; Roy-Chowdhury, A.K., "Evaluation and
Acceleration of High-Throughput Fixed-Point Object Detection on
FPGAs," in Circuits and Systems for Video Technology, IEEE
Transactions on , vol.25, no.6, pp.1051-1062, June 2015.

[12] Y. Freund; R. E. Schapire; "A decision-theoretic generalization of on-
line learning and an application to boosting," in Proceedings of the 2nd
European Conference on Computational Learning Theory. London, UK:
Springer Verlag, 1995, pp. 23-27.

[13] Foerst GmbH, “Programming Tool Reference”, 2012. Available at:
www.driving-simulators.eu

[14] INRIA Person Dataset. Available at:
http://pascal.inrialpes.fr/data/human/

[15] G. Overett, L. Petersson, N. Brewer, L. Andersson and N. Pettersson, A
New Pedestrian Dataset for Supervised Learning, In IEEE Intelligent
Vehicles Symposium, 2008.

View publication statsView publication stats

https://www.researchgate.net/publication/304297373

